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-1. Introduction
A surprising number of data stream problems are solved by
methods involving computations with stable distributions. This
paper will give a short summary of some of these problems,
and how the best known solutions depend on use of stable
distributions; it also lists some related open problems. Sta-
ble distributions arise from seeking statistics with the property
that

����� ��� � is distributed as�� ��� � 	�� 	
 ���
�  . Here,��
are scalars, and� � � � � � are independent and identically dis-
tributed random variables. Such distributions1 exist for all� �
�� � ��. Gaussian is stable with� � � and Cauchy stable with
� � �. See the books [10, 11] for a statistical treatment of Sta-
ble Distributions. The principal application to a stream context
is to approximate of the�
 norm of a stream of values defining
a vector. That is, the computation of		� 		
 � �� � 	�� 	
 ���
 ,
where� may be described in some arbitrary, incremental man-
ner. This approach was pioneered by Indyk2.

Theorem 1 (Theorem 1 of [8]). Given � � � � � and a
sequence of updates to an (initially zero) vector� of the form
�� � �� �, which we interpret as “add�� to entry ��”, we can
compute a small “sketch” of the vector�, �� ���. The sketch is
a vector with� �� !" #$% � & � entries. With it, we can compute
an approximation of		� 		
 which is correct within a factor of
�� ' !� with probability � ( &.
The sketch is computed by forming the dot-product of the vec-
tor � with a matrix), where each entry of) is drawn indepen-
dently from a stable distribution with parameter� . Each entry
in the sketch is taken absolutely, so is distributed as		� 		
 	� 	.
The computation of�� ��� � � * ) from a stream of updates to
� relies on a number of technical issues, including

+ That the dot product is a linear transformation, and so
updates require only a scalar multiple of a row of) to be
added to�� .+ That stable distributions can be simulated for any value
of � using transforms from uniform variables [1].3

+ That it suffices to use pseudorandom generators with
small space to generate row

�
as a function of

�
.+ That the median of� �� !" #$% � & � estimators is close

to the median of the distribution with probability at least
� ( &, relying on the derivative of the distribution being
bounded at the median.,
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1Technically, we are describingsymmetric and strictly stabledistributions.
2On being described as a pioneer, Piotr commented “I can imagine myself

in a transatlantic ship coming to Boston, in a funny hat, holding a bible and
looking forward to the New World”.

3The author’s implementation of this is available from
http://athos.rutgers.edu/-muthu/stream-seminar.html

These results are shown for� � � and� � � in [8], and for
all � � � � � in [4]. These give an efficient way to approx-
imate the�
 norm of a datastream with small space require-
ments. Experimental work has shown this to be accurate in
practice [4]. The method has many attractive features, in par-
ticular that because of the linearity of the method of construc-
tion, sketches can be combined by summing them component
wise to find the aggregation over multiple streams, and more
importantly, taking differences component-wise allows the ap-
proximation of�
 differences,		� ( . 		
 . This follows since
�� ��� / �� �.� � �� �� / .�, and�� ��� ( �� �.� � �� �� ( .�.
This leads to efficient distributedcommunicationschemes for
these problems, since different parties can communicate their
sketches with a cost linear in the size of the sketch.

These results are of interest in themselves, but we go on to
describe how they have been applied to several other problems.
The power and flexibility of these distributions has meant that
they have found numerous applications, and they have shown
impressive performance improvements and additional function-
ality when compared to existing solutions. Conversely, in the
course of their application to streaming questions, new results
have been proved about stable distributions (such as range-
summable constructions), which contribute back to the statis-
tical community. Hercules showed how to process stables with
streams in just one day4; a less herculean task is to show how
to process streams with stable(distribution)s in two pages. [9]
is a longer survey of data stream problems, with additional
background to the following discussion. In Sections 0, 1 and2
we discuss results specific to stable distributions with� � � � �
and 2, respectively. Note thatfractionalvalues of� have been
investigated for data mining purposes [4].

0. 01 for Distinct Elements
It is straightforward to observe an interesting behaviour of the
approximation of		� 		
 raised to the power� as� 2 �: if �� is
zero, then this contributes nothing; if�� is non-zero, then the
contribution of 	� � 	
 is close to 1. Then,		� 		

 approximates
the number of non-zero entries in the vector�. If we add 1
to �� whenever some item labelled

�
arrives in the stream, and

subtract 1 whenever item
�

departs, then the number of non-
zero entries in� is precisely the current number of distinct
elements: a fundamental quantity required in database man-
agement and network scenarios. This approach was described
in [3]. Additionally, a faster and more robust way of generating
values from stable distributions was tested, based on the lim-
iting distribution as� 2 � being 34567$89 �(�� ���:��
 . This

4Hercules cleaned the Augean stables by diverting a river through them.
See, for example,Hercules(Disney, 1997).



idea was extended in [5] in order to compute the worst case
influence of multiple data streams, defined as

�� 9 ��� ��� �� �.
[5] began a study of the behavior of algorithmic applications
of stable distributions as� 2 �, and computes certain range
sums of stable distributions in a simple fashion.

1. 0 � for Embeddings
Theorem 1 can be thought of as a dimensionality-reduction
for vectors, an analog of the Johnson-Lindenstrauss lemma for
other�
 norms5. Because of the highly flexible way in which
the sketch can be updated, it can be used in many situations
as a “black box” for stream computations to reduce the size
required when intermediate results can be modelled as vectors
in �� space. [2] gives several examples where a single pass
over a string computes a vector representation so that an edit
distance between strings is approximated by the�� distance
between vectors. The embedding is generated as a series of
additions to the vector; by sketching, the space required isre-
duced from the exponential size of the vector to the effectively
constant size of the sketch.

Range-summability of stable distributions for the Cauchy
(� � �) and Gaussian (� � �) cases is shown in [7]. This is
used to help find Haar wavelet coefficients: the sketch cor-
responding to a wavelet vector of the form' ��� ����: ����� �
can be found in time� �#$% � � instead of� �� � by computing
the range sum

� ����� � � �. This relies on the defining prop-
erty of stable distributions, that the sum of stable distributions
is itself distributed stable, and so constructing pairs of random
variables by first drawing their sum from an appropriate distri-
bution, and then picking the pair conditioned on this sum.

2. 0 	 for Nearest Neighbors
Stable distributions have found recent application in improv-
ing results on Approximate Nearest Neighbor searching [6].
This works by making sketches, and then “coarsening” each
entry onto an integer range, giving a hash function whose prob-
ability of collision is related to the similarity of the vectors.
This then feeds into the Locality-Sensitive Hashing methodof
Indyk (see [6]). Since it depends on sketches, then all the nec-
essary computations can be made on the stream, so for streams
of input vectors arriving in arbitrarily interleaved order, we can
find approximate nearest neighbors for each on the fly.

 . Open Problems
There still remain some important questions to resolve to make
a complete theory of stable distributions used as tools in algo-
rithmic processing.

+ Strong range-summability results are known for�� and
�"; can these be extended to all� � � � �?6

+ Existing work makes numerical approximations of the
median of 	� 	 and assumes that the derivative at this
point is bounded for non-integer� ; an analytical ap-

5It is not a perfect analog, since the use of the median operation to extract
the result means that it is not an embedding into a normed space; for many
practical applications, this is not a significant disadvantage.

6The range summability shown in [5] applies only to sums from zero.

proach would be preferable, especially a characteriza-
tion of the behavior of the median as� tends to 0.7+ Are there other distributions which are comparable to
stable distributions which would allow computation of
other quantites of interest? For example, might there be
log-stable distributions where

�� ��� � is distributed as
�� � #$% �� ��  or �� � �� #$% �� �� ? 8 Even if these
do not exist as distributions, can we build constructions
making use of�
 norm estimations as building blocks?+ Stable distributions are known not to exist with param-
eter� � �, and strong space lower bounds are known
for computing		� 		
 on streams for (integer)� � . Can
lower bounds tell us more about distributions with cer-
tain properties, and vice-versa?+ Computations of values from stable distributions can be
slow and numerically unstable, since the formula in [1]
is somewhat complex. Can generation of values be made
faster using implementation tricks, look-up tables, lim-
ited precision, or combinations of these?9

Lastly, it will be of interest to deploy computations using
sketches from stable distributions in “real world” scenarios, in
software or dedicated hardware.
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