
Query Strategies for Priced Information
(Extended Abstract)

Moses Charikar
�

Ronald Fagin
�

Venkatesan Guruswami
�

Jon Kleinberg
�

Prabhakar Raghavan
�

Amit Sahai
�

� ����	
�

We consider a class of problems in which an algorithm seeks to
compute a function� over a set of� inputs, where each input has an
associatedprice. The algorithm queries inputs sequentially, trying
to learn the value of the function for the minimum cost. We apply
the competitive analysis of algorithms to this framework, designing
algorithms that incur large cost only when the cost of the cheapest
“proof” for the value of � is also large. We provide algorithms
that achieve the optimal competitive ratio for functions that include
arbitrary Boolean AND/OR trees, and for the problem of searching
in a sorted array. We also investigate a model for pricing in this
framework, constructing a set of prices for any AND/OR tree that
satisfies a very strong type of equilibrium property.

 ����� ��
����

The potential ofpriced information sources[12, 13] that charge
for usage is being discussed in a number of domains — software,
research papers, legal information, proprietary corporate and finan-
cial information — and it forms a basic component of the larger
area of electronic commerce [4, 6, 16, 17]. In a networked econ-
omy, we envision software agents that autonomously purchase in-
formation from various sources, and use the information to support

�
Computer Science Department, Stanford University, CA 94305. Email:

moses@cs.stanford.edu. Research supported by the Pierre and
Christine Lamond Fellowship, NSF Grant IIS-9811904 and NSFAward
CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger
Foundation, Shell Foundation, and Xerox Corporation. Mostof this work
was done while the author was visiting IBM Almaden Research Center.�

IBM Almaden Reseach Center, 650 Harry Road, San Jose, CA 95120.
Email: �fagin,pragh�@almaden.ibm.com.�

Laboratory for Computer Science, MIT, Cambridge, MA 02139.
Email: �venkat,amits�@theory.lcs.mit.edu. Research sup-
ported by an IBM Graduate Fellowship and DOD Fellowship, respectively.
Most of this work was done while the authors were visiting IBMAlmaden
Research Center.�

Department of Computer Science, Cornell University, Ithaca NY
14853. Email: kleinber@cs.cornell.edu. Supported in partby a David and
Lucile Packard Foundation Fellowship, an Alfred P. Sloan Research Fel-
lowship, an ONR Young Investigator Award, and NSF Faculty Early Career
Development Award CCR-9701399.

decisions. How should one query data in the presence of a given
price structure?

Previous theoretical analysis has posited settings in which there
is atargetpiece of information, and the goal is to locate it as rapidly
as possible; see for example the work of Etzioni et al. [5] andKout-
soupias et al. [9]. Here we take an alternate perspective, motivated
by the following type of consideration. Suppose we have derived,
through some pre-processing based on data mining or other statis-
tical means, adecision rulethat we wish to apply. To take a toy
example, such a rule might look like

If Analyst A values Microsoft at $X
or Analyst B values Netscape at $Y;

and if Analyst C values Oracle at $Z
or Analyst D values IBM at $W;

then we should sell our shares of eBay.

The decision rule in this example depends on four available infor-
mation sources, which we could label� , � , � , and� ; each has a
Boolean value. It is possible to evaluate the rule, under some cir-
cumstances, without querying all the information sources.If each
of these pieces of information has an associated price, whatis the
best strategy for evaluating the decision rule?

Note the following features of this toy example. There is an
underlying set of information sources, but our goal is not simply
to gatherall the information; rather it is to collect (as cheaply as
possible) a subset of the information sufficient to compute ade-
sired function� . Thus, a crucial component of our approach is
the view that disparate information sources contain raw data to be
combinedto reach a decision, and it is the structure of this combina-
tion that determines the optimal strategy for querying the sources.
Our setting may be further generalized to allow inputs that are en-
tire databases, rather than bits (say, a demographic information
database from a vendor such as Lexis-Nexis), and the goal is to dis-
till valuable information from a combination of such databases; this
generalization suggests an interesting direction for further work.

An Illustrative Example. In Figure 1 we depict the above toy
example, with the decision rule represented by a tree-structured
Boolean circuit, and with the prices�� ! " #$ attached to the in-
puts. An algorithm is presented with this circuit and the vector of
prices; the hidden information is the setting% of the four Boolean
variables. It must query the variables, one by one, until it learns
the value of the circuit; with each variable it queries, it pays the
associated cost. We could ask for an algorithm& that incurs the
minimum worst-case cost over all settings of the variables;but this
is too simplistic: many of the natural functions we wish to study
(including all Boolean AND/OR trees) areevasive[3], so any al-
gorithm can be made to pay for all the variables, and all algorithms
perform equally poorly under this measure.

A B C D
cost: 1 436

Figure 1: A Boolean function with priced inputs

The competitive analysis of algorithms [2] fits naturally within
our framework; we define the performance of an algorithm& on
a given setting% of the variables to be the ratio of the cost in-
curred by& to the cost of the cheapest “proof” for the value of the
function. Thecompetitive ratioof & is then the maximum of this
performance ratio over all settings% of the variables.

In the example above, consider the algorithm& � that first queries
� . If � is ����, it then queries� and � (if necessary); if� is�����, it then queries� , then� and� (if necessary). The perfor-
mance ratio of& � when the setting is����� ����� ����� ���� $
is 	
�: & � queries all the variables and pays"#, while querying
only � and� would prove the value of the function is����. In-
deed, this is the competitive ratio of& � , and& � achieves the opti-
mal competitive ratio of any algorithm on this function, with this
cost vector. Two aspects of& � are noteworthy: (i) it isadaptive–
its behavior depends on the values of the inputs it has read, and (ii)
it does not always read the inputs in increasing order of price.

A Framework. We now describe a general framework that cap-
tures the issues and example discussed above. We have a function
� over a set� �� � � � � �� � of � variables. Each variable� �
has a non-negativecost ��; the vector� �� � � � � �� $ will be
called thecost vector. A setting% of the variables is a choice of a
value for each variable; the partial setting restricted to asubset�
of the variables will be denoted% �� . A subset� � � is sufficient
with respect to setting% if the value of� is determined by the par-
tial setting% �� . Such a� is a proof of the value of� under the
setting% �� ; the cheapest proof of the value of� under% is thus
the cheapest sufficient set with respect to% . We denote its cost by
� �% �.

An evaluation algorithm& is a deterministic rule that queries
variables sequentially, basing its decisions on the cost vector and
the values of variables already queried. When an evaluationalgo-
rithm & is run under a setting% , it incurs a cost that we denote
�� �% �. We seek algorithms& that optimize thecompetitive ratio
� �� �� � � ! " #$% �� �% �
� �% � � The best possible competitive ratio
for any algorithm, then, is

�� �� � � ! " &'� � �� �� � �
The model above is general enough to include almost any prob-

lem in which an algorithm adaptively queries its input. Our ap-
proach will be to focus on simple functions that have been well-
studied in the case of unit prices. We find that the inclusion of
arbitrary prices on the inputs gives the problem a much more com-
plex character, and leads to query algorithms that are noveland
non-obvious.

Our primary focus will be on Boolean AND/OR trees (briefly,
Boolean trees) — these are tree circuits rooted (w.l.o.g.) at an AND
gate, with each leaf corresponding to a distinct variable, and with
each root-to-leaf path strictly alternating AND and OR gates at the

internal nodes. One can easily build examples in which an opti-
mal algorithm cannot follow a “depth-first search” style evaluation
of variables and subtrees. Indeed, the criteria for optimality lead
quickly to issues similar to those in thesearch ratio problemand
minimum latency problemfor weighted trees [1, 9] — problems for
which polynomial-time algorithms are not known. It is not atall
obvious that the optimal evaluation algorithm for a Booleantree
can be found efficiently, or even have a succinct description, even
in the case of complete binary trees.

We also consider functions that generalize Boolean trees, in-
cluding MIN/MAX game trees. Finally, we investigate analogues
of searching, sorting, and selection within our model; heretoo,
problems that are well-understood in traditional settingsbecome
highly non-trivial when prices are introduced.

()�� *��
We provide a fairly complete characterization of the boundsachiev-
able by optimal algorithms on Boolean trees, and focus on three
related sets of issues.

(1) Tractability of optimal algorithms. We show that for ev-
ery Boolean tree, and every cost vector, the optimal competitive
ratio can be achieved by an efficient algorithm. Specifically, the
algorithm has a running time that is polynomial in the size ofthe
tree and the magnitudes of the costs. At a high level, the algorithm
is based on the following naturalBalance Principle: in each step,
we try to balance the amount spent in each subtree as evenly as
possible. However, to achieve the optimal ratio, this principle must
be modified so that in fact we are balancing certain estimateson
the lower bound for the cost of the cheapest proof in each subtree.
These results are described in Section 2.

(2) Dependence of competitive ratio on the structure of � .
Much of the complexity of the Boolean tree evaluation problem is
already contained in the case of complete binary trees of depth +,,
with � +-. inputs. When the cost vector isuniform (all input
prices are") the situation has a very simple analysis: any algorithm
can be forced to pay�, and the cheapest proof always has value
exactly +. /� . A natural question is therefore the following:
is there is a/�-competitive algorithm foreverycost vector on the
complete binary tree? More generally, for a given Boolean tree0 ,
we could consider the largest competitive ratio that can be forced
by any assignment of prices to the inputs:

� �0 � � ! 123�
�� �0 � � (1)

This definition naturally suggests the following questions: How
does the above competitive ratio depend on the topology of the un-
derlying tree? Can we characterize the structure of the costvector
� that achieves�� �0 � � �0 �?

We prove a general characterization theorem for� �0 �; as a
corollary, we find that the uniform cost vector is in fact extremal
for the complete binary tree. We say that a Boolean tree0 on �
inputs cansimulatean AND gate of size4 if by fixing the values of
some�� 54� inputs, the function induced on the remaining4 inputs
is equivalent to a simple AND of4 variables. (We define the simu-
lation of an OR gate analogously.) We show:� �0 � is equal to the
maximum4 for which 0 can simulate an AND gate or an OR gate
of size4 (this also shows that� �0 � is always an integer). The proof
is obtained using information from the lower bound estimates that
form a component of our optimal balance-based algorithm. These
results are described in Section 2.

We give extensions of some of these results to more general
types of functions. All of these functions are defined over a tree
structure, and for each we can give an efficient algorithm whose
competitive ratio is within a factor of+ of optimal.

(a) Threshold trees. Each internal node is a threshold gate;the
output is���� iff at least a certain number of the inputs are����. The threshold values for different gates could be dif-
ferent.

(b) Game trees. The inputs are real numbers, and nodes are MIN
or MAX functions.

(c) A common generalization of (a) and (b). The inputs are real
numbers and the nodes are gates that return the���-largest
of their input values. This threshold� could be different for
different nodes.

In all of this, we have been considering deterministic algo-
rithms only. Understanding how much better one can do with a
randomized algorithm is a major open direction; this would in-
volve a generalization of earlier results on randomized tree eval-
uation [7, 11, 14, 15] to the setting in which inputs have prices.

(3) Equilibrium prices for a function � . Finally, we consider
a “dual” issue, motivated by the following general question. Sup-
pose many individuals are all interested in computing a function �
on variables�� � � � � �� �, and each is employing an algorithm that
adaptively buys information from the� vendors that own the val-
ues of� � � � � �� . What is a “natural” set of market prices arising
from this process?

There are, of course, many possible answers to this question
— just as there are many models for the behavior of prices in a
competitive market [10]. Intuitively, one would believe that each
vendor would try to charge a high price for its input, but not so
high as to price itself out of competition. If we further believe that
the individuals performing the queries will be using only optimal
on-line algorithms, then the vendor of� � will not want to be “priced
out” of optimal on-line algorithms.

Here we describe one set of prices motivated by this intuition;
it exhibits an interesting behavior with a concrete formulation. Let
us say that a cost vector� is ultra-uniformwith respect to a tree0
if, with input prices set according to�, every evaluation algorithm
achieves the optimal competitive ratio. In other words, the prices
are in a state such that there is no reason, from the point of view
of competitive analysis, to prefer one algorithm over any other —
whether an input� � is queried relies purely on the arbitrary choice
of an optimal algorithm by the individual performing the queries.
We prove: for every Boolean tree0 , there is an ultra-uniform cost
vector. The construction of this vector is quite natural, and fol-
lows a direct “balancing” principle of its own. These results are
described in Section 3.

Sorting, Searching and Selection. We also investigate a problem
of a very different character, to which the same style of analysis can
be applied: suppose we are given a sorted array with� positions,
and wish to determine whether it contains a particular number � . In
the unit-price setting, when we simply wish to minimize the num-
ber of queries to array entries, binary search solves this problem in
at most���� - �� queries.

Now suppose each array entry has a price, and we seek an al-
gorithm of optimum competitive ratio. Here the cheapest “proof”
of membership of� is simply a single query to an entry contain-
ing � ; the cheapest proof of non-membership is a pair of queries
to adjacent entries containing numbers less than and greater than� , respectively. It is possible to formalize this problem in terms
of a function� of the type described above, imposing certain con-
straints on the sets of inputs that are allowed; we omit the details
here.

We provide an efficient algorithm for this problem that achieves
the optimal competitive ratio with respect to any given costvector.
We then consider the associatedextremal problem: which cost vec-
tor forces the largest competitive ratio? We also give an algorithm
achieving a competitive ratio of

���
- � 	
 �/ ��� � ��� ��� � � for

any cost vector; this exceeds the competitive ratio for the uniform

cost vector only by lower order terms. Whether the uniform cost
vector is in fact extremal remains an interesting open question.
These results are described in Section 4.

Further Directions. Our approach raises a number of other direc-
tions for further work. We now mention some preliminary results
and open questions. Sorting items when each comparison has a
distinct cost appears to be highly non-trivial. Suppose, for exam-
ple, we construct an instance of this problem by partitioning the
items into sets� and � , giving each�-to-� comparison a very
low cost, and giving each�-to-� and � -to-� comparison a very
high cost. We then obtain a very simple non-uniform cost structure
in the spirit of the notoriously difficult problem of “sorting nuts and
bolts.” [8]

Binary search can be viewed as a one-dimensional version of
the problem of searching for a linear separator between “red” and
“blue” points in, dimensions. Determining cheap, query-efficient
strategies for this problem becomes much more challenging in high
dimensions; we have developed one approach that is based on a
VC-dimension analysis, and identified a number of interesting open
questions. This raises the general issue of learning hypotheses from
priced information. We can also generalize the binary search prob-
lem to partially ordered sets. Here it is natural to ask what can be
said about good “splitters” and “central elements” in a poset, when
each item has a cost.

Finally, the problem of selecting the4 �� largest element among
� items — when each comparison has a cost — is also a challeng-
ing direction to explore. Finding the median has some of the flavor
of the sorting problem discussed above; but even finding the maxi-
mum is surprisingly non-trivial. We will report our progress on this
problem in the full version of the paper.

� ��)) ��
��� ��

We first consider functions computed by Boolean AND/OR trees:
each gate may have arbitrary fan-in, but only one output. Without
loss of generality, we may assume that levels of the tree alternate
between AND gates and OR gates. Let such a Boolean tree0 have
� leaves labeled by variables� � �- � � � �� . Variable� � has an
associated non-negative cost�� for reading the value of� �. We say
a �-witness(resp. "-witness) for 0 is a minimal set� of leaves
which when set to� (resp. ") will cause0 to evaluate to� (resp.
"). The cheapest proof which allows one to prove that0 evaluates
to � (resp.") is always some�-witness (resp."-witness).

� � ��
�)�� 	 *������� 	
� �)� ��� � �0 �
We first investigate the competitive ratio� �0 � for any Boolean tree
0 (recall the definition of Equation (1)), where the structureof 0 is
fixed, but leaf prices vary. We propose the following simple lower
bound on� �0 �. For any Boolean tree0 , let 4 be the largest value
for which one can simulate an AND gate of fan-in4 using0 by
hardwiring an appropriate set�� of �� 5 4� leaves of0 to �. (Such
a 4 is also the size of the largest minterm in boolean function com-
puted by0 . One can compute4 by giving all leaves of0 a value
of ", replacing the AND and OR gates of0 by SUM and MAX
functions respectively, and then evaluating the resultingarithmetic
circuit.) Consider the following cost vector�: �� � whenever
� � � �� , else�� ". Clearly, a�-witness for0 would now have
cost exactly", as it would only need to contain one non-zero cost
leaf whose value is�. On the other hand, any deterministic algo-
rithm could easily be made to pay4, simply by setting all but the
last non-zero cost leaf queried to have value". Hence,4 is a lower
bound on� �0 �.

One can similarly show that the largest value� for which0 can
simulate an OR gate of fan-in� (or, equivalently,� is the size of the
largest maxterm in the function computed by0) is also a lower

bound on� �0 �. Thus, " #$�4 �� is a lower bound on� �0 �.�
Somewhat surprisingly this simple lower bound turns out to be
tight, as we show by presenting an algorithm with competitive ratio
" #$�4 �� for anysetting of leaf costs. The idea behind the algo-
rithm, which we call WEAKBALANCE, is the following: At each
node in the tree, webalancethe investment on leaves in each of the
subtrees – scaling this balancing act using the lower bound ideas
above. This ensures that we do not leave a cheap proof unexplored
in any subtree.

Algorithm WEAKBALANCE: Each node� in the tree keeps track
of the total cost��1�� that the algorithm has incurred in the sub-
tree rooted at�. At each step, the algorithm decides which leaf
to read next by a process of passing recommendations up the tree:
Each (remaining) leaf� passes on (to its parent) a recommenda-
tion �� �� � to read� at cost�� . For an internal node�, we will
consider two cases: (a) Suppose� is an AND node with children
� � � � � � � and it receives recommendations�� � ��� � � � � ��� ��� �.
Let 4 � � � � 4 � be the sizes of the largest AND gates that can be in-
duced in the subtrees rooted at� � � � � � �, respectively. Then�
passes upward the recommendation�� � ��� � such that���1��� 	
��� �
4� is minimized; (b) If� is an OR node, then the same pro-
cess occurs with4 � � � � 4 � replaced with the sizes of the largest
inducible OR gates� � � � � � �, and the recommendation passed up-
ward is the one minimizing���1� �� 	 ��� �
� �. Finally, the root of
the tree0 decides on some recommendation�� �� �. This leaf�
is read at cost�� , and all local total costs��1�� ’s are updated, and
the tree is partially evaluated as much as possible from the value of�. When the tree is fully evaluated, the algorithm terminates.

Lemma 2.1 For any Boolean tree0 , let 4 and � be defined (as
above) as the sizes of the largest inducedAND and OR, respec-
tively. If there exists a�-witness (resp."-witness) of cost�, then
WEAKBALANCE will spend at most4� (resp. ��) before finding
this witness.

Proof Sketch: We proceed by induction on the size of the tree
0 . Clearly this holds for trees of size". Consider the case where
the root of the tree is an AND node with children� � � � � � �. Let
4 � � � � 4 � be the sizes of the largest induced AND gates rooted at
each child node, and let� � � � � � � be the sizes of the largest OR
gates. Observe that4 	 � 4 � while � " #$� �� � �.

Any �-witness for0 of cost � consists of a single�-witness
(of cost �) for a subtree rooted at some��. Now suppose that
WEAKBALANCE has spent more than4�, and yet WEAKBAL -
ANCE has spent less than4�� on node� �. This means that for some
�
 � ��, the algorithm has spent more than4
 � on �
 . Consider
the last recommendation��
 ��� � accepted from�
 – it must be
that ���1��� 	 ��� � 4
 �; on the other hand, since there is a�-witness of cost� rooted at� � that has not been found, by in-
duction, the recommendation�� � ��� � from �� must be such that
���1��� 	 ��� � � 4��. This is a contradiction, since the balancing
rule would require the recommendation from� � to take precedence
over the one from�
 . Hence, if WEAKBALANCE spends at least4�
on0 , it will uncover any�-witness of cost�. Now consider the case
of a "-witness for0 of cost�, which must consist of"-witnesses of
cost�� rooted ateverychild node� �, with 	 � �� �. By induc-
tion, we know that as soon as WEAKBALANCE spends at least� �� �
on the subtree rooted at� �, it will uncover the"-witness at� �, upon
which the rest of the subtree rooted at� � will be pruned. Thus,
regardless of the balancing, as soon as WEAKBALANCE spends	 � � � �� on 0 , the entire"-witness will be uncovered. Recall that
� " #$� � � , and thus	 � � �� � � � 	 � �� ��, as desired.

�It is easy to see that����� � � ��� is also a lower bound on the expected
competitive ratio of any randomized algorithm.

An analogous argument holds for the case of an OR node, ex-
cept in this case, balancing is important for finding a"-witness, but
not for finding a�-witness.

Theorem 2.2 Let 4 and � be as in Lemma 2.1. Then,� �0 �
" #$�4 ��, andWEAKBALANCE runs in polynomial time and achieves
a competitive ratio of� �0 �.
Corollary 2.3 Let � � � � � �� (� � � � � ��) be the leaves corre-
sponding to a largest inducedAND (resp. OR) in 0 . Let �� (resp.
� �) be the cost vector that assigns cost" to leaves� � � � � ��
(resp. � � � � � ��) and cost� to all other leaves. If4 �, then
�� is extremal for0 ; otherwise� � is extremal for0 . That is, either��� �0 � or �� � �0 � equals� �0 �.
Corollary 2.4 If 0 is a complete binary tree with� +-. leaves,
then� �0 � /�. Hence, for such trees, the all-ones cost vector is
extremal.

Remark: For any monotone boolean function� �� � �- � � � �� �,
one can prove that the following simple algorithm achieves acom-
petitive ratio of�+ " #$�4 ��� for any cost vector. Pick the cheap-
est minterm and maxterm of� , and read all variables in the cheaper
of the two; if this proves that� evaluates to� or " stop, else replace
� by the function� � obtained by setting the variables just read to
their values, and continue with� �. The key to proving the claimed
bound is that any minterm-maxterm pair of� must share a vari-
able, and hence the algorithm never reads more than� minterms
or 4 maxterms. How do we compute the cheapest minterm and
maxterm? For boolean trees this computation is actually easy, and
this gives a simple polynomial-time�+ " #$�4 ���-competitive al-
gorithm for boolean tree evaluation, for any cost vector. WEAK-
BALANCE does not lose a factor+ in the competitive ratio, and
more importantly, generalizing its approach enables us to devise an
algorithm BALANCE that is optimal for any given cost vector, as is
described in the next Section.

� �� ��� ��	 * � *������� ��� � ��)�
��� �)
���
For a particular vector� of costs, the optimal competitive ratio�� �0 � can be much less than� �0 �, the ratio guaranteed by WEAK-
BALANCE. These observations lead us to more exact lower bounds
and our algorithm BALANCE which, for any tree0 and cost vector
�, achieves the optimal competitive ratio�� �0 �. The key to devel-
oping this algorithm is to define certainlower bound functionsthat
are more refined than the minterm-maxterm based lower bounds
of WEAKBALANCE. For any Boolean tree0 and cost vector�,
we define functions� �� ��� and � �� �� � representing lower bounds
on the cost that any deterministic algorithm must incur in finding
a �-witness (or"-witness, respectively) of� of cost at most�.-
These functions imply that for any tree0 , every deterministic al-
gorithm must have a competitive ratio of at least the maximumof
" #$� �� �� �� �
� � and" #$� �� �� ���
� �.

Lower Bound Functions. For a Boolean tree0 , the functions
� �� and� �� are computed in a bottom-up manner moving from the
leaves to the root of the tree.

 For a leaf� with cost�, we have

� �� �� � � �� �� �
! � if � " �

� if � # � �
-These functions are actually functions of$ as well; we omit this de-

pendence for notational convenience.

 For a subtree� , let �� denote the root of� , and let� � �- � � � � �
be the subtrees rooted at the children of�� . Suppose we al-
ready know the functions� � �� and� � �� , our goal is to compute
� �� and� �� from these functions. There are two cases which
arise now depending upon whether�� is an AND node or an
OR node.

(1) �� is an AND node: Now, a minimal�-witness for�
consists of exactly one�-witness for some subtree. The
adversary can thus choose to “hide” this witness in any
of the subtrees, suggesting the bound we define below.
On the other hand, a minimal"-witness for� consists
of "-witnesses from each of the subtrees. Thus, the ad-
versary’s only choice is to pick such"-witnesses in a
manner that maximizes any deterministic algorithm’s
expenditure, suggesting the other bound we define be-
low. Formally, we define

�
� �� �� �

�
����� � � �� �� � � (2)

� �� �� � " #$��� ������		� ��
�
� �

����� � � �� �� � �� � (3)

(2) �� is an OR node: Here the situation is exactly reversed
from that of an AND node. Thus, we define

� �� �� �
�

����� � � �� �� � � (4)

� �� �� � " #$��� ������		� ��
�
� �

����� � � �� �� � �� � (5)

Remark: It is easy to see that the definitions above imply� �� ���
� (resp.� �� ��� �) if 0 has no�-witness (resp."-witness) of cost
� or less.

Complexity of computing � �� and � �� : The functions� �� and� ��
arestep functionswhen� is a leaf and therefore it is easy to see that
the functions� �� and � �� are also step functions for any Boolean
tree0 . Hence all the functions above have acompact(of complex-
ity polynomial in the number of leaves and the sum of the costs)
representation as a table of values and this representationcan be
computed efficiently: It is clear that the operations of Equations (2)
and (4) can be performed efficiently. For Equations (3) and (5), it
is not difficult to see that by representing all functions as atable
of values, it is possible to calculate them in time polynomial in the
sum of the costs of the leaves.

Later, in the specification of our algorithm, we will also be re-
ferring to the inverse�� �� �� � and�� �� ��� of these functions. Since
these functions are not injective, this is loose notation. By � � � �� �,
we actually mean" &'�� � � �� � � �. In words,� �� �� � is the
minimum element in the inverses image of� under � . Also, for
ease of notation, we sometimes refer to� �� and � �� for a subtree
rooted at a node� also as� �� and� �� respectively.

We now claim that the above are actually lower bound functions
which have some additional nice properties.�

In Equation (3), the��� operator is taken only over those� � such that
there can exist a�-witness in� � of cost at most� �. If no such� � � � � � �
exist for a particular�, then� �� �� � � �. In Equation (5), the��� operator is taken only over those� � such that
a �-witness can exist in� � of cost at most� �. If no such� � � � � � � exist for
a particular�, then� �� �� � � �.

Proposition 2.5 If 0 is an arbitrary tree, then� �� ��� (resp.� �� ���)
is a lower bound on the cost any algorithm must incur in the worst
case in order to find a�-witness of cost at most� (resp. "-witness
of cost at most�). More specifically, there is an adversary strategy
that ensures that, as long as any algorithm has incurred a cost
strictly less than� �� ��� (resp.� �� ���):
(1) It does not find a�-witness (resp."-witness) of cost at most�.
(2) The partial assignment to the leaves that have been read can

be extended so that a�-witness (resp."-witness) of cost at
most � exists, and also be extended so that every�-witness
(resp. "-witness), if any at all, has cost strictly more than�.

Proof: The proof works by inductively moving upward from the
leaves to the root of the entire tree0 . For the leaves, the claim
of the Proposition is clearly satisfied; if� is the cost of the leaf,
then the cost of a�-witness and"-witness are both�. Unless an
algorithm incurs a cost of�, the adversary can always set the leaf to
be � when it is queried thereby creating a�-witness of cost�, and
can instead set it to" in which case there is no�-witness at all (and
therefore trivially every�-witness has cost more than�).

Suppose� is a subtree whose root�� is an AND node with sub-
trees� � �- � � � � � rooted at its� children. We want to prove that,
assuming� ��� and� � �� satisfy the conditions of the Proposition, the
definition of� �� and� �� as per the Equations (2) and (3) above also
satisfies the requirement of the Proposition.

We first consider the case when the algorithm is trying to find
a �-witness of cost at most�. Note that since�� is an AND node,
the �-witness is simply a�-witness of one of the subtrees� �. The
adversary strategy to “hide” a�-witness of cost at most� is as fol-
lows: The basic idea is to use, for each subtree� �, the strategy for� � guaranteed by induction. More specifically, for the first�5 " sub-
trees�
 (excluding� � for some4) for which the algorithm ends up

spending an amount at least� ��� ���, ensure (using part (2) of the
inductive hypothesis) that there is no�-witness for�
 of cost at
most�. For the “last” subtree�� , use the inductive strategy for��
to hide a�-witness of cost� till the algorithm spends� ��� ���.

Now suppose an algorithm has spent a total cost� which is
less than the “lower bound function”� �� ��� 	 � � � �� ��� as per
Equation (2). Hence there exists a4, " � 4 � �, such that the
algorithm has spent less than� ��� ��� on �� , and hence the above
adversary strategy ensures that the algorithm has not founda �-
witness for� . It is also clear that the adversary has the option of
either extending the partial assignment so that a�-witness of cost
at most� exists, or so that every�-witness for� has cost more than
�.

Now we consider the case when the algorithm is trying to find
a "-witness of cost at most�. We may assume that� �� ��� � for
otherwise the statement of the Proposition holds vacuously. Note
that a "-witness of cost� for � consists of"-witnesses for� � of
cost�� for " � � � � with 	 � � � �. Let us pick� � �- � � � �� for
which the maximum in Equation (3) is attained. By our assumption
on Equation (3), there exist"-witnesses for� � of cost at most��
for every � � �" ����. The adversary strategy now is as follows:
for the first �� 5 "� subtrees�
 (excluding �� for some4), for

which the algorithm incurs a cost of at least� ��� ��
 �, the adversary
causes�
 to evaluate to" through a"-witness of cost at most�

(using the strategy for each subtree guaranteed by the induction
hypothesis), and thus it reduces the value of� to the value of�� .
Meanwhile, for�� , the adversary also uses the strategy for� � to
hide a witness of cost�� until the algorithm spends� ��� ��� �. As
long as any algorithm has incurred a cost (strictly) less than � �� ���,
this strategy leaves the adversary with the option of eithercreating
a "-witness of cost at most� or ensuring that every"-witness of�
has cost more than�. This completes the proof for the case when�

is rooted at an AND node; the other case when it is rooted at an OR
node is handled similarly.

The BALANCE Algorithm. We now show how to use the lower
bound functions described above to derive an algorithm, which we
call BALANCE, that achieves the best possible competitive ratio.
The high level idea behind BALANCE is the same as WEAKBAL -
ANCE: At each intermediate node, webalancethe amount spent
on reading leaves in each of the subtrees – by “balancing” we do
not necessarily mean that the exact amounts spent are all nearly
equal, rather we mean that the costs of the possible witnesses that
can still be found in all the subtrees are of nearly equal cost, so
that after spending a huge amount, we do not still leave the possi-
bility of there existing a cheap witness in some unexplored part of
the tree which in turn will imply a poor competitive ratio. BAL -
ANCE actually uses the above lower bound functions� �� and � ��
for the balancing criterion. The algorithm is formally described in
Figure 2.

We want to prove that BALANCE indeed achieves the optimal
competitive ratio�� �0 � for any Boolean tree0 and cost vector�.
For this we prove below that if there is a witness (for0 evaluating
to either� or ") of cost at most�, then BALANCE discovers the wit-
ness by spending a total cost that is at most" #$�� �� ��� � �� ����.
In conjunction with Proposition 2.5, note that this immediately im-
plies that BALANCE achieves the optimum competitive ratio possi-
ble for any deterministic algorithm; indeed any deterministic algo-

rithm has a competitive ratio of at least" #$ �" #$� �� �� �� �
� �,

" #$� �� �� ���
� ��, and BALANCE achieves this competitive ratio.

Theorem 2.6 If BALANCE when running on�0 �� spends an amount
which is greater than� �� ��� (respectively� �� ���), then there exists
no �-witness (respectively"-witness) for0 which has cost at most
�. Or, equivalently, if there exists a�-witness (resp."-witness) for
0 of cost at most�, thenBALANCE proves that0 evaluates to�
(resp. ") by spending at most� �� ��� (resp.� �� ���).
Proof: The proof once again works by inductively moving up the
tree from the leaves to the root. When0 just consists of a leaf�,
the statement of the theorem clearly holds. Now suppose the root �
of 0 is an AND node (the other case can be handled similarly) with
children� � �- � � � � � with subtree0 � rooted at� � for " � � � �.

First, suppose BALANCE spends an amount strictly greater than
� �� ��� when evaluating0 , and yet0 has a"-witness� of cost at
most�. Since� is an AND node,� is a collection of"-witnesses� � of cost �� for 0 �, " � � � �, with � 	��� � ��. By the
definition of � �� ��� in Equation (3), this implies that there exists a
4, " � 4 � �, such that BALANCE spends more than� ��� ��� � on
reading leaves in0 � . By induction, however, this implies that0 �
hasno "-witness of cost�� or less, a contradiction to the existence
of � �. Hence if BALANCE spends more than� �� ���, then it rules
out the possibility of0 having any"-witness of cost� or less.

We now consider the case of�-witnesses. Suppose BALANCE

has spent an amount more than� �� ��� 	��� � � ��� ��� and yet
there is a�-witness� of cost�; we will then arrive at a contradic-
tion. Using the fact that� is an AND node, the witness� is simply
a �-witness� � of cost� for some�, " � � � �, say for definiteness,
it is a �-witness� � for 0 �. By induction, we know that BALANCE

never spends more than� ��� ��� on 0 � (or else there could not be a�-witness� � of cost at most�). Since on the whole BALANCE has
spent more than	��� � � ��� ���, there must exist a� , " � � " �, say
for definiteness� ", such that BALANCE has spent more than
� ��� ��� on 0 �. Now consider the point when BALANCE chose the
recommendation� � �� � ��� � from 0 � and went above� ��� ���
on its expenditure on0 �, so that��1��� 	 ��� � ��� ���. At

this point, it rejected the recommendation� � ��� ��� � from 0 �
which we know satisfies��1� �� 	 ��� � � ��� ���. But we then have
�� ��� �� � ���1��� 	 ��� � � � " �� ��� �� � ���1��� 	 ��� �. Thus
BALANCE would have never chosen the recommendation from0 �
over that of0 � (here we are using the fact at levels where the parent
is an AND node, BALANCE uses the function� �� to decide whose
recommendation to take), a contradiction. Hence there cannot be a�-witness of cost at most� as we supposed, and we are done.

Corollary 2.7 For any boolean tree0 and cost vector�, BAL -
ANCE achieves a competitive ratio of�� �0 �.
� �� �� �)��� *� ��))�
Observe that AND and OR gates are boththreshold gates, i.e., their
output is" provided sufficiently many of its inputs are set to". It
turns out the BALANCE algorithm of the previous sections can be
modified to competitively evaluatethreshold treesas well: a thresh-
old tree is a tree where each internal node is a threshold�� � �-gate
for some values of� � , where the output of a�� � �-gate is" if and
only if at least� of its � inputs are". The values of the threshold� can vary over the nodes of the tree. The algorithm for evaluating
threshold trees is BALANCE with appropriate lower bound func-
tions defined for threshold gates akin to the functions defined for
AND and OR gates. The structure of witnesses is more general than
for Boolean trees, and as a result we need to run two algorithms
in parallel (balancing the costs they incur) one of which uses the
function � � and the other�� for the balancing criterion; this incurs
a factor+ loss in the competitive ratio of the algorithm. We next
specify the lower bound functions for general threshold gates. The
details of the proof on how and why modified BALANCE works for
threshold trees are similar to those given for Boolean treesand are
omitted in this version.

Lower Bound Function for Threshold Gates: Suppose a thresh-
old tree0 has a�� � �-gate at its root� and let� � � � � �� be the
subtrees rooted at the children of�. We define�

� �� �� � " #$� � " #$�� 	

	�� �	� ��
� � � ���� �� �� 	 	 � ���� ��� �

	 	 � ��� � � �� �" #$ �
 ���
(6)

Observe that this equation is equivalent to:

� �� �� � " #$� � " #$�� 	

	���� �	� �� �� � � ���� �� �� 	 	 � � ����� ����� �

	 	 � ��� � � �� �� 5 	
 �
 ���
(7)

The latter equation gives insight into the lower bound argument,
while the former corresponds to the argument for optimalityof the
modified BALANCE algorithm. The equation for� �� is obtained by

� In Equations (6) and (7), the first max operators are taken over choices
of � � �� � � �- � � � � � �� � � ���. In Equation (6), the second��� op-
erator is taken only over choices of� � � � � � ��� such that there can ex-
ist �-witnesses in� �� � � � � � � �� of cost at most� � � � � � � �� , respectively.
If no such� � � � � �� exist for a particular�, then the value of the���
is �. Similarly, in Equation (7), the second��� operator is taken only
over choices of� � � � � � � ��� � such that: (A) there can exist�-witnesses
in � �� � � � � � � � �� ��� of cost at most� � � � � � � ��� �, respectively; (B) there
exists some� �� � such that a�-witness can exist in� � of cost at most� � 	
 �
 . Again, if no such� � � � � ��� � exist for a particular�, then

the value of the��� is �.

Algorithm BALANCE:

Input: A Boolean tree0 with a cost vector� on its� leaves.
Output: The value of the tree0 .

/* For each node�, we keep track of the total cost��1�� incurred on the subtree rooted at�. */

Let ��1�� � for all nodes� in the tree.

Compute the lower bound functions� �� and� �� for all nodes� of 0 . (Actually we will only be
referring to the “inverses” of these functions.)

While 0 is not fully evaluated

1. Moving up the tree from the leaves to the root:

(a) Each leaf� which has not been read or pruned yet passes a recommendation�� �� �� � up to its parent. (�� is the cost of leaf� .)

(b) Each internal node� of the tree that receives recommendations� � � - � � � � �, with� � �� � ��� �, from its � (not yet pruned) children� � �- � � � � � chooses one of its children
as follows:

(i) If � is an AND node, choose the child� � with the minimum value of�� ��� �� � ���� 	 ��1��� �.
(ii) If � is an OR node, choose the child� � with the minimum value of�� ��� �� � ���� 	 ��1��� �.
(ties are broken arbitrarily)

Node� then propagates the recommendation� � from � � up to its parent
(unless� is the root in which case goto Step 2)

/* At this point recommendations have passed upward to the root from the leaves. */

2. /* Now we are at the root� and say it chose a recommendation� � �� �� �. */
The value of the leaf� is read at a cost of�� .

3. For all ancestors� of � in 0 the total cost incurred on their subtree is increased by�� ,
i.e perform��1�� ��1� � 	 �� .

endWhile

Output the value of the tree0 .

Figure 2: The BALANCE Algorithm.

writing the above equation with� � � 5 � 	 " instead of� since
the complement of a�� � �-gate is a�� � 5 � 	 "�-gate.

�

Theorem 2.8 For any threshold tree0 and any cost vector�, there
is a polynomial time algorithm for evaluating0 with competitive
ratio at most twice�� �0 �.
� �� �	�) ��))�
We can in fact generalize BALANCE to competitively evaluategame
trees(also called MIN/MAX trees). A game tree has real values on
its leaves and the internal nodes are MIN and MAX functions; our
goal is to evaluate the value of the root.

For a MIN/MAX tree 0 we use a pair of witnesses, an�-
witness and a� -witness, that prove matching lower and upper
bounds respectively on the value of the tree. One can then de-
fine appropriate lower bound functions� �� � �� similar to the func-
tions � �� � �� (for Boolean trees) respectively, and run two copies
of BALANCE simultaneously (balancing the cost they incur), one
trying to prove a lower bound (on the value of0) and using� �� for
balancing, and the other trying to prove a matching upper bound
(and using� �� for balancing), till these two bounds match.

Theorem 2.9 For any MIN/MAX tree0 and a cost vector�, there
is an efficient algorithm that evaluates0 with a competitive ratio
at most+�� �0 �.
The above theorem also holds for a common generalization of thresh-
old and MIN/MAX trees where the internal nodes are gates that
return the��� largest element for some� (the value of� could be
different for different nodes).� � *� �	�������� ���
)�

Given a Boolean tree0 with � leaves, we ask: how do we “fairly”
price the leaves of0 so that every on-line algorithm achieves the
same competitive ratio? Such a price vector, if one exists, is called
an ultra-uniform price vector. Intuitively, it means that the leaves
are so evenly priced that at every stage it does not matter which
leaf is queried next, from the point of view of the competitive ratio.
(Clearly if a leaf is overpriced, an algorithm will defer reading it
unless absolutely necessary; and similarly, if a leaf is underpriced
it will be read right away). It is far from clear why such a pricing,
which appears to be a very strong requirement, should exist at all.
We show in this section that such a pricing not only exists, but can
also be found efficiently.

Theorem 3.1 Given a Boolean tree0 with � leaves, one can find
an ultra-uniform price vector for0 in polynomial (in�) time.

Proof: The idea is to ensure that the cost of all�-witnesses of0 is
the same, say�� , and similarly that the cost of all"-witnesses of0
is the same, say� � (the costs�� � � need not be equal).

We first claim that any setting of prices satisfying the above
property is in fact an ultra-uniform price vector. To see this, note
that tree functions are evasive and hence any algorithm can be
forced to examine all the leaves, and the final value of the tree can
be set to either� or " after the last leaf is read. If� is the total cost
of all the leaves, any algorithm can thus be forced to have a compet-
itive ratio of �
" &' ��� � ��. Moreover, any algorithm has a com-
petitive ratio at most�
" &' ��� � ��, as the most an algorithm can
spend is the total cost� of all the leaves, and the adversary incurs
a cost at least" &' ��� � �� for both �-witnesses and"-witnesses.
Hence these prices are indeed ultra-uniform.

We now describe how to construct prices that ensure the uni-
formity of the costs of�-witnesses and"-witnesses. It is easy to

�
For our algorithm, it is important that these functions� �� and� �� can

be computed in polynomial time; this turns out to be true.

see that if this property holds for a Boolean tree0 , then it holds for
all subtrees of0 as well, and this actually shows that such a price
vector is unique up to scaling. This motivates the construction of
prices in a bottom-up fashion, appropriately rescaling theprices as
we move up the tree so that when we reach each intermediate node,
the cost of all�-witnesses and"-witnesses of the subtree rooted at
that node have the same cost.

We begin by setting the prices of all leaves to". As we move
up the tree, we maintain, for each node� that has been visited,
quantities� � �� � and� � �� � which represent the uniform costs of all�-witnesses and"-witnesses respectively in the subtree rooted at�
just after � was visited(these quantities will change as we move
further up the tree to� ’s ancestors). Now, suppose we move up the
tree and reach an internal node� (which we assume for definite-
ness to be an AND node) with children� � � - � � � � � (which are
OR nodes). Our goal is to construct an ultra-uniform price vector
for 0	 , the subtree of0 rooted at�, from the ultra-uniform price
vectors

� � of the 0	 � ’s. Since� is an AND node, a�-witness of
0	 is simply a�-witness of one of the0	 � ’s. Hence in order to
make the cost of all�-witnesses of0	 equal, we rescale the prices
of the nodes in the0	 � ’s so that the cost of�-witnesses of0	 � and
0	� for " � � " � � 4 are all the same. We can achieve this,

for instance, by dividing the price vector

� � of the leaves in0	 � by

� � �� � �. After this rescaling, all�-witnesses of0	 have cost", so
we set� � �� � ". A "-witness of0	 is the union of"-witnesses
for 0	 � 0	� � � � 0	� ; after the above rescaling all"-witnesses in
0	 � have the same cost� � �� � �
� � �� � �, and hence all"-witnesses

of 0	 have the same cost� � �� � 	��� � � � �� � �
� � �� � �.
When we reach the root of the tree0 , we have a price vector

with the required property. It is clear that this procedure can be
implemented to run in
 �� - � time, and thus an ultra-uniform price
vector for0 exists and can be found in polynomial time.
� �)	�
� ��� � ��� ���
)�
� � � �)	����� ��	 * 	 *�������
We outline an algorithm for searching an� element array with com-
petitive ratio bounded by

���
- � 	
 ���� -��- � � for any cost vector

on the elements of the array. Later, we will improve the algorithm
to get a competitive ratio bounded by

���
- �	
 �/ ��� � ��� ��� � �.

This proves that the unit price vector isessentiallyan extremal price
vector for binary search, and also that our algorithm is at most off
by lower order terms from the true competitive ratio.

The algorithm is motivated by two goals:(1) We do not exam-
ine costlyelements until we have eliminated the possibility of the
element� lying in an array location occupied bycheaperelements;
and (2) to achieve a competitive ratio close to

���
- �, we mimic

binary search by attempting to halve the search interval with every
comparison. Unfortunately, the two goals could be contradictory
because the only way to halve the search interval might be to ex-
amine an expensive element.

High-level description of the algorithm. Our algorithm uses two
parameters� and �. Initially costs are grouped geometrically by
rounding costs up to the nearest multiple of�; the algorithm con-
siders groups in increasing order of cost. We normalize costs so that
the lowest cost is". Let group� consist of all elements with cost�
 . The algorithm maintains a search interval� , which is the set of
possible (contiguous) locations where� could lie, and splits� into
three (contiguous) intervals� � � where the left and right inter-
vals� � do not contain any element of (the current) group� and
the middle interval� , referred to as theeffective interval, which
begins and ends with an element of group� . The algorithm main-
tains the property that� does not contain any elements of groups
�� 5 "� or lower. We repeatedly compare� with the group� ele-
ment that is closest to the middle of the effective interval� . Such

comparisons are calledregularcomparisons and each such compar-
ison is guaranteed to halve the size of the effective interval. This
certainly makes progress as long as the element� lies within the ef-
fective interval. However, if� does not belong to the current group� , at some point,� could fall outside the effective interval for group� . In such a case, we do not want to spend too much on querying
group � elements. To handle this possibility, after every� regu-
lar comparisons of� with group� elements, we perform anextra
comparison by querying one of the extreme group� elements. This
checks if� lies outside the effective interval. If the current search
interval � does not contain any element of the current group� , we
move on to group� 	 ", and continue the algorithm.

We now give a formal description of the algorithm.

Algorithm Search

1. � � �" � � � � �, � � �,
��� � ��� � �, ��	
 � ��� � �.

2. While � does not contain an element of group�� � � 	 ";
��� � ��� � �; ��	
� ��� � �.

endWhile

3. If
��� � ��� �,��� � ��� � �.

Let � be the leftmost element of group� in � .��� � � � ���. Jump to Step 6.

4. If ��	
 � ��� �,��	
 � ��� � �.
Let � be the rightmost element of group� in � .��� � � � ���. Jump to Step 6.

5. Decompose� as� � � � � � into three intervals� � �
such that the left and right intervals� and� do not contain
any element of group� , while the middle interval� starts
and ends with an element from group� . � is thus the current
effective interval.

Let � be the element in group� that is closest to the middle
of � , breaking ties arbitrarily.��� � � � � ���� .

6. Let � �� � � � �� .

7. Compare� to �.

8. If � � , returnPRESENT
else if� " �,

� � �� ,
if
��� � � � ������� � ��� � ��� � ��� 	 "; ��	
 � ��� � �.

else if� �,
� � �� ,
if
��� � � � ������	
 � ��� � ��	
 � ��� 	 ";

��� � ��� � �.

9. If � is empty, returnNOT PRESENT

10. Goto step 2.

Competitive analysis of the algorithm. The algorithm maintains
an interval� of the array in which the element� being searched for
must lie. It compares� to some element� in the current interval.
Depending on the result of the comparison, the algorithm restricts
its search in the subinterval of� to the left of� (if � " �) or to the
right of � (if � �). This procedure is thus guaranteed to find� if
indeed it is present in the array.

Recall that we distinguish between two kinds of comparisons
made by the algorithm. If the element� compared to is chosen in
Steps 3 or 4, such a comparison is called anextracomparison. On
the other hand, if the element� compared to is chosen in Step 5

such a comparison is called aregular comparison. The following
lemma shows that the algorithm makes progress in performingreg-
ular comparisons.

Lemma 4.1 For all regular comparisons performed on group� the
length of the effective interval goes down by a factor of at least 2.

Proof: Suppose� is the current interval. Let� � � � � �
where� , � and� are the intervals obtained in Step 5. Suppose
� is the element that is chosen to compare with. By choice,� is
the element closest to the middle of� . Let � �� � � � � � .
Without loss of generality, assume that��� � � �� � �. Hence,
��� � � ��� � 5 "�
+. Further, let� � � � � � � where� �
is the smallest interval containing all the elements of group � in� � . Note that� �� � � � � � � � �. By the choice of�,
�� � � � ��� � 	 ". We claim that�� � � � �

- �� �. If ��� � "
��� � 5 "�
+, �� � � � ��� �	 " � �

- �� �. If ��� � ��� � 5 "�
+,
� is exactly the middle element of� . Thus �� � � ��� � 5 "�
+
and �� � � � �� � � " �

- �� �.
If � " �, the effective interval is a subinterval of�� . Suppose� �. In this case, the effective interval is� � . In both cases, the

size of the effective interval drops by a factor of at least+.

Let �
 be the length of the search interval� at the first time that
the algorithm considers group� . If � is the last group examined,
define��� � to be 1. Let�
 be the total number of comparisons
performed with elements of group� .

Lemma 4.2

�
 � �
" 	 "

� � ���
-
� �

�
� � � 	 � 	 +

Proof: Let �
 be the search interval at the first time that the algo-
rithm considers elements of group� . �
� � must have beencreated
by comparisons to the elements immediately to the left and right of
�
� � (say� � and� � respectively). Suppose that� � was compared
to before� � . We will bound separately, the number of comparisons
of group� performed up to the comparison with� � and the number
after the comparison with� �.

Consider the number of comparison steps performed up to the
point that� � was compared with. Throughout this time,�
 � � is
part of the effective interval. Let� � be the length of the effec-
tive interval at the first time that group� is considered and�- be
the length of the effective interval just before� � is compared with.� � � ��
 � �
 and �- # ��
 � � � �
 � �. Since each regular
comparison reduces the length of the effective interval by at least
2, the number of regular comparisons before� � is compared is at
most

���
- �� �
�- � � ���

- ��

�
� ��. Further, the number of ex-
tra comparisons performed during this time is at most"
� times
the number of regular comparisons, since each extra comparison
can be charged to� regular comparisons. Thus the total number of
comparisons including the comparison to� � is at most

" 	
�

" 	 "
� � ���

-
� �

�
� � � �

After the comparison with� �, the search interval is of the form
�
� � � � � � � �. Since�
 � � does not contain any elements of group� , it is no longer part of the effective interval. Since the search gets
narrowed down to�
� � later, it follows that for all group� elements
�� compared to from this point on,� " ��. But there can be at most
� 	 " such comparisons. If within� more comparisons the search
has not already been narrowed down to�
� �, then element� � will
be picked in the next iteration in Step 3 and compared with� . That
will narrow down the search interval to�
� � in at most� 	 " steps.
Adding the two bounds, we get the bound in the statement of the
lemma.

Theorem 4.3 For � " 	 "
 ��� ���
- � and� ��� ���

- �, the com-

petitive ratio of the algorithm is bounded by
���

- � 	
 ���� -��- � �.
Proof: Let group� be the last group examined by the algorithm.
Then the cost of the algorithm is at most��

 �� �
 �
 �

��

�� �
 ��

" 	 "
� � ���

-
� �

�
� � � 	 � 	 +�

�
" 	 "

� � ��

 �� �
 ��� -

� �

�
� � � 	 �� 	 +�

��

 �� �

� �
" 	 "

� � �� ���
- � 	 �� 	 +� ��� �

� 5 "
The optimal proof has cost at least��� �. Hence the competitive
ratio of the algorithm is bounded by�

" 	 "
� � � ��� - � 	 �� 	 +� � -� 5 " �

Setting� " 	 "
 ��� ���
- � and� ��� ���

- �, we get the desired
bound.

We can improve the competitive ratio by modifying the algo-
rithm slightly. The idea is to change the way in which extra com-
parisons are performed. Note that in the algorithm described above,
the number of extra comparisons for group� is of the form � 	
�� ��� -

� ����� � �. The improvement comes from balancing the two

terms in this expression. The modified algorithm does not usethe
parameter�. We keep track of the total number of regular compar-
isons performed so far for the current group. An extra comparison
is performed every time the total number of regular comparisons
equals a perfect square. As before, let�
 be the total number of
comparisons performed with elements of group� . We can prove
that

�
 � ���
-
� �

�
 � � � 	

��

���
-
� �

�
 � � �� �

Setting� " 	 +
� ���
- �, we can prove that the competitive

ratio of the algorithm is bounded by
���

- � 	
 �/ ��� � ��� ��� � �.
We omit the details in this extended abstract.

� �� ��� ��	 * �)	�
� ��� 	 � ��)�
��� �)
���
We now present a dynamic programming algorithm to compute the
optimal algorithm for searching a sorted array of priced elements.
Straightforward dynamic programming would entail considering
all
 �� - � subintervals, and computing the best competitive ratio
possible for each subinterval. This, however, fails, as canbe seen
from the following illustration. Suppose on some particular subin-
terval � of interval � , the adversary could force any algorithm to
pay total cost at least+ to find an element of cost", or pay total
cost at least�� to find an element of cost+�. A strict competitive
ratio analysis would lead us to believe that the adversary should al-
ways force the algorithm to pay at least�� to find an element of
cost +�. However, if on the larger interval� , it was the case that
the adversary could force any algorithm to pay cost at least+ be-
fore reducing the search problem to� , then clearly when the search
focuses on� , the adversary should force the algorithm to pay+
more and find the element of cost", as this would lead to an overall
competitive ratio of# (as opposed to��� 	 +�
+�).

This suggests the following algorithm, which does work: For
every subinterval� , and every�, we will first compute a lower

bound � �� �� for the competitive ratio that any deterministic al-
gorithm can achieve on� , given that the algorithm has already
spent�. For any element� � � , let �� denote the cost of exam-
ining �. For any singleton interval� ���, clearly � ���� ��
�� 	 �� �
�� is an exact bound on the competitive ratio. Also, for
an empty interval, we let� �� �� � for all �. Now for all larger
intervals� , we define:

� �� �� � � � 	� �� " &'��� �" #$� � ��� � � � �� 5 "�� � 	 �� �
�� 	 �� �
��
� ���� 	 "� � � � 	� � 	 �� ���

(8)
A simple inductive argument shows that this gives the desired lower
bound, as the algorithm has choice over which� to examine, and
the adversary can choose to either respond that the element being
searched for is smaller than, equal to, or greater than element �.
Furthermore, we can efficiently pre-compute a table of theselower
bounds for every subinterval and every value for� up to the sum
of all costs. This then yields an optimal algorithm for performing
the binary search, as the optimal first move for interval� having
already spent� is determined by the minimizing choice of� in the
computation of� �� ��.
�

��� *)���)���
We thank Ravi Kumar for useful discussions and for suggesting the
generalization to threshold trees.
()�) �)�
)�

[1] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan
and M. Sudan, “The minimum latency problem,”Proceedings of the 26th
ACM Symposium on the Theory of Computing, 1994, 163–171.

[2] A. Borodin, R. El-Yaniv,On-Line Computation and Competitive Anal-
ysis, Cambridge University Press, 1998.

[3] B. Bollobas,Extremal Graph Theory, Academic Press, 1978.
[4] Clickshare Service Corp., www.clickshare.com.
[5] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O. Madani, O. Waarts, “Ef-

ficient information gathering on the Internet,”Proc. IEEE FOCS1996.
[6] H. Garcia-Molina, S. Ketchpel, N. Shivakumar, “Safeguarding and

Charging for Information on the Internet,”Proc. Intl. Conf. on Data En-
gineering, 1998.

[7] R. Heiman, A. Wigderson, “Randomized vs. DeterministicDecision
Tree Complexity for Read–Once Boolean Functions,”Complexity The-
ory, to appear.

[8] J. Komlós, Y. Ma, E. Szemerédi, “Matching nuts and bolts in� �� �� � � time,” Proc. ACM-SIAM SODA1996.
[9] E. Koutsoupias, C. Papadimitriou, M. Yannakakis, “Searching a fixed

graph,” Proc. Intl. Conf. on Automata, Languages, and Programming
1996.

[10] D. Kreps,A Course in Micro-Economic Theory, Princeton University
Press, 1990.

[11] R. Motwani, P. Raghavan,Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[12] Pricing Economic Access to Knowledge (PEAK) Home Page,
http://www.lib.umich.edu/libhome/peak/papers.html.

[13] S. Sairamesh, C. Nikolaou, D. F. Ferguson and Y. Yemini.Economic
Framework for Pricing and Charging in Digital Libraries. D-Lib Maga-
zine, February 1996.

[14] M. Saks, A. Wigderson, “Probabilistic Boolean decision trees and the
complexity of evaluating game trees,”Proc. IEEE FOCS, 1986.

[15] M. Snir, “Lower bounds on probabilistic linear decision trees,”Theo-
retical Computer Science38(1985), pp. 69-82.

[16] D. Tygar, “NetBill: An Internet Commerce System Optimized for
Network-Delivered Systems,”IEEE Personal Communications2(1995),
pp. 20-25.

[17] “What’s the Value of Digital Information?”, panel atICEE Conf. on
Electronic Commerce: Foundations for the Future, 1999.

[18] Y. Zhang, “On the optimality of randomized alpha-beta search,”SIAM
Journal on Computing24(1995), pp. 138-147.

