
Quantum Property Testing‡

Harry Buhrman§ Lance Fortnow¶ Ilan Newman‖ Hein Röhrig§

November 24, 2003

Abstract

A language L has a property tester if there exists a probabilistic algorithm that given an
input x only asks a small number of bits of x and distinguishes the cases as to whether x is in
L and x has large Hamming distance from all y in L. We define a similar notion of quantum
property testing and show that there exist languages with quantum property testers but no good
classical testers. We also show there exist languages which require a large number of queries
even for quantumly testing.

1 Introduction

Suppose we have a large data set, for example, a large chunk of the world-wide web or a genomic
sequence. We would like to test whether the data has a certain property, but we may not have the
time to look at the entire data set or even a large portion of it.

To handle these types of problems, Rubinfeld and Sudan [23] and Goldreich, Goldwasser and
Ron [17] have developed the notion of property testing. Testable properties come in many varieties
including graph properties, e.g., [17, 3, 13, 14, 1, 18], algebraic properties of functions [8, 23, 11],
and regular languages [4]. Nice surveys of this area can be found in [22] [12].

In this model, the property tester has random access to the n input bits similar to the black-box
oracle model. The tester can query only a small number of input bits; the set of indices is usually
of constant size and chosen probabilistically. Clearly we cannot determine from these small number
of bits whether the input sits in some language L. However, for many languages we can distinguish
the case that the input is in L from the case that the input differs from all inputs in L of the same
length by some constant fraction of input bits.

Since there are many examples where quantum computation gives us an advantage over classical
computation [7, 25, 24, 19] one may naturally ask whether using quantum computation may lead to
better property testers. By using the quantum oracle-query model developed by Beals, Buhrman,
Cleve, Mosca and de Wolf [5] we can easily extend the definitions of property testing to the quantum
setting.

Beals et al. [5] have shown that for all total functions we have a polynomial relationship between
the number of queries required by quantum machine and that needed by a deterministic machine.

‡Research done while all authors were visiting the NEC Research Institute. An earlier version of this paper
appeared in SODA 2003 [10].

§CWI and University of Amsterdam; partially supported by the EU fifth framework project QAIP, IST-1999-11234.
¶NEC Research Institute. Current affiliation: University of Chicago
‖Haifa University and NEC Research Institute

1

For greater separations one needs to impose a promise on the input. The known examples, such
as those due to Simon [25] and Bernstein and Vazirani [7], require considerable structure in the
promise. Property testing amounts to the natural promise of either being in the language or far
from each input in the language. This promise would seem to have too little structure to give a
separation but in fact we can prove that quantum property testing can greatly improve on classical
testing.

We show that every subset of Hadamard codes has a quantum property tester with O(1) queries
and that most subsets would require Θ(log n) queries to test with a probabilistic tester. This shows
that indeed quantum property testers are more powerful than classical testers. Moreover, we also
give an example of a language where the quantum tester is exponentially more efficient.

Beals et al. observed that every k-query quantum algorithm gives rise to a degree-2k polynomial
in the input bits, which gives the acceptance probability of the algorithm; thus, a quantum property
tester for P gives rise to a polynomial that is on all binary inputs between 0 and 1, that is at least
2/3 on inputs with the property P and at most 1/3 on inputs far from having the property P .
Szegedy [27] suggested to algebraically characterize the complexity of classical testing by the mini-
mum degree of such polynomials; however, our separation results imply that there are for example
properties, for which such polynomials have constant degree, but for which the best classical tester
needs Ω(log n) queries. Hence, the minimum degree is only a lower bound, which sometimes is not
tight.

A priori it is conceivable that every language has a quantum property tester with a small number
of queries. We show that this is not the case. We prove that for most properties of a certain size,
every quantum algorithm requires Ω(n) queries. We then show that a natural property, namely,
the range of a d-wise independent pseudorandom generator cannot be quantumly tested with less
than (d+ 1)/2 queries for every odd d ≤ n/ log n− 1.

2 Preliminaries

We will use the following formal definition of property testing from Goldreich [16]:

Definition 1 Let S be a finite set, and P a set of functions mapping S to {0, 1}. A property tester
for P is a probabilistic oracle machine M , which given a distance parameter ε > 0 and oracle access
to a function f : S → {0, 1}, satisfies the following conditions:

1. the tester accepts f if it is in P : if f ∈ P then Pr(Mf (ε) = 1) ≥ 2/3

2. the tester rejects f if it is far from P : if |{x ∈ S : f(x) 6= g(x)}| > ε · |S|, for every g ∈ P ,
then Pr(Mf (ε) = 1) ≤ 1/3.

Here Mf denotes that the machine M is provided with the oracle for f .

Definition 2 The complexity of the tester is the number of oracle queries it makes: A property
P has an (ε, q)-tester if there is a tester for P that makes at most q oracle queries for distance
parameter ε.

We often consider a language L ⊆ {0, 1}∗ as the family of properties {Pn} with Pn the char-
acteristic functions of the length-n strings from L, and analyze the query complexity q = q(ε, n)
asymptotically for large n.

2

To define quantum property testing we simply modify Definition 1 by allowing M to be a quan-
tum oracle machine. We need to be careful to make sure our oracle queries are unitary opera-
tions. If |f(x)| = |g(y)| for all x, y ∈ S and f, g ∈ P , we use the oracle-query model by Beals,
Buhrman, Cleve, Mosca and de Wolf [5]: we define the unitary transformation Uf that maps
the basis state |x, y, z〉 to |x, y ⊕ f(x), z〉 where |x| = dlog |S|e, |y| = |f(x)| and ⊕ denotes bit-
wise exclusive or. In case there are x, y, f, g so that |f(x)| 6= |g(y)|, we define Uf as mapping
|x, l, y, z〉 to |x, l + |f(x)| mod k, y ⊕ 0k−|f(x)|f(x), z〉 where k = max{|f(x)| : f ∈ P and x ∈ S},
|x| = dlog |S|e, |l| = dlog ke, and |y| = k.

We recommend the book of Nielsen and Chuang [21] for background information on quantum
computing.

3 Separating Quantum and Classical Property Testing

We show that there exist languages with (ε,O(1)) quantum property testers that do not have
(ε,O(1)) classical testers.

Theorem 1 There is a language L that is ε-testable by a quantum test with O(1/ε) number of
queries but for which every probabilistic 1/3-test requires Ω(log n) queries.

We use Hadamard codes to provide examples for Theorem 1:

Definition 3 The Hadamard code of y ∈ {0, 1}log n is x = h(y) ∈ {0, 1}n such that xi = y · i where
y · i denotes the inner product of two vectors y, i ∈ Flog n

2 .

Note: the Hadamard mapping h : {0, 1}log n → {0, 1}n is one-to-one. Bernstein and Vazirani [7]
showed that a quantum computer can extract y with one query to an oracle for the bits of x,
whereas a classical probabilistic procedure needs Ω(log n) queries. Based on this separation for a
decision problem we construct for A ⊆ {0, 1}log n the property PA ⊆ {0, 1}n,

PA := {x : ∃y ∈ A s.t. x = h(y)}.

Theorem 1 follows from the following two lemmas.

Lemma 2 For every A, PA has an (ε,O(1/ε)) quantum tester. Furthermore, the test has one-sided
error.

Lemma 3 For most A of size |A| = n/2, PA requires Ω(log n) queries for a probabilistic 1/3-test,
even for testers with two-sided error.

Before we prove Lemma 2 we note that for every A, PA can be tested by a one-sided algorithm with
O(1/ε+ log n) queries even nonadaptively; hence, the result of Lemma 3 is tight. An O(1/ε log n)-
test follows from Theorem 4 below. The slightly more efficient test is the following: First we query
x2i , i = 0, . . . , log n. Note that if x = h(y) then yi = x2i for i = 0, . . . , log n. Thus a candidate y
for x = h(y) is found. If y /∈ A then x is rejected. Then k = O(1/ε) times the following check is
performed: a random index i ∈ {1, . . . , n} is chosen independently at random and if xi 6= y · i, then
x is rejected. Otherwise, x is accepted. Clearly if x is rejected then x /∈ PA. It is easily verified
that if x has Hamming distance more than εn from every z in PA then with constant probability
x is rejected.

3

Proof of Lemma 2. PA can be checked with O(1/ε) queries on a quantum computer: The test is
similar to the test above except that y can be found in O(1) queries: k times query for random i, j
values xi, xj , and xi⊕j . If xi ⊕ xj 6= xi⊕j reject. k = O(1/ε) is sufficient to detect an input x that
is εn-far from being a Hadamard codeword with high probability. Now run the Bernstein-Vazirani
algorithm to obtain y. Accept if and only if y ∈ A. Obviously, if x ∈ PA, the given procedure
accepts, and if x is far from each x′ ∈ PA, then it is either far from being a Hadamard codeword
or it is close to a Hadamard codeword h(y′) for a y′ 6∈ A; note that in this case x is far from every
h(y), y ∈ A as two distinct Hadamard codewords are of Hamming distance n/2. Thus, in this case
the second part of the tester succeeds with high probability in finding y′ and rejects because y′ 6∈ A.
We note also that this algorithm has one-sided error. 2

Proof of Lemma 3. The lower bound makes use of the Yao principle [28]: let D be an arbitrary
probability distribution on positive and negative inputs, i.e., on inputs that either belong to PA or
are εn-far from PA. Then if every deterministic algorithm that makes at most q queries, errs with
probability at least 1/8 with respect to input chosen according to D, then q is a lower bound on
the number of queries of any randomized algorithm for testing PA with error probability bounded
by 1/8.

D will be the uniform distribution over Hadamard codewords of length n, namely, generated by
choosing y ∈ {0, 1}log n uniformly at random and setting x = h(y). Note that for any A ⊂ {0, 1}log n,
D is concentrated on positive and negative inputs as required, as two Hadamard codewords are of
Hamming distance n/2 apart.

The lower bound will be established by a counting argument. We show that for a fixed tester
that makes q ≤ (log n)/2 queries, the probability over random choices of A that the algorithm errs
on at most 1/8 of the inputs is bounded from above by 1/(10T) where T is the number of such
algorithms. By the union bound it follows that for most properties there is no such algorithm.

Indeed, let A ⊆ {0, 1}log n be chosen by picking independently each i ∈ {0, 1}log n to be in A
with probability 1/2; this will not necessarily result in a set A of size n/2 but we can condition
on the event that |A| = n/2 and will not lose much. Let T be any fixed deterministic decision
tree performing at most q queries in every branch. Then let c(T) := {y|T (h(y)) = accept} and let
µ(T) := |c(T)|/n, i.e., µ(T) is the fraction of inputs that T accepts. Assume first that µ(T) ≤ 1/2.
Since for a random y we have Pry[T (h(y)) = accept] = µ(T) ≤ 1/2, it follows by a Chernoff-type
bound that PrA[|A∩c(T)| ≥ 3/4|A|] ≤ 2−n/8. However, if |A∩c(T)| < 3/4|A| then T will be wrong
on at least 1/4 of the positive inputs which is at least n/8 of all inputs. Hence, with probability
at most 2−n/8, T will be correct on at least 7/8 of the inputs. If µ(T) > 1/2 the same reasoning
shows that with probability of at most 1−2−n/8 it will err on at least a 1/4-fraction of the negative
inputs. Hence, in total, for every fixed T , PrA[T is correct on at least 7/8 of the inputs] ≤ 2−n/8.

Now, let us bound from above the number of algorithms that make at most q queries. As an
algorithm may be adaptive, it can be defined by 2q−1 query positions for all queries on all branches
and a Boolean function f : {0, 1}q → {accept, reject} of the decision made by the algorithm for the
possible answers. Hence, there are at most T ≤ (2n)2

q
such algorithms. However, for q < (log n)/2,

we have T · 2−n/8 = o(1), which shows that for most A as above, every ε-test that queries at most
(log n)/2 many queries has error probability of at least 1/8. Standard amplification techniques
then imply that for some constant c every algorithm that performs c log n many queries has error
at least 1/3. 2

4

Theorem 4 Let P ⊆ {0, 1}n be a property with |P | = s > 0. For any ε > 0, P can be ε-tested by
a one-sided classical algorithm using O((log s)/ε) many queries.

Proof. Denote the input by y ∈ {0, 1}n. Consider the following algorithm: query the input y in
k := ln(3s2)/ε random places; accept if there is at least one x ∈ P consistent with the bits from
the input and reject otherwise. Clearly, if y ∈ P , this algorithm works correctly.

If y is ε-far from each x ∈ P , then for every specific x ∈ P , Pr[xi = yi] ≤ 1− ε when choosing
an i ∈ [n] uniformly at random. With k indices chosen independently and uniformly at random,
the probability for no disagreement with x becomes (1− ε)k ≤ 1/(3s2). Therefore, the probability
that there is no disagreement for at least one of the s members of P is at most 1/(3s), so with
probability 2/3 for a y that is far from P , we will rule out every x ∈ P as being consistent with y.

2

4 An Exponential Separation

In this section, we show that a quantum computer can be exponentially more efficient in testing
certain properties than a classical computer.

Theorem 5 There exists a language L that for every ε = Ω(1) is (ε, log n log log n) quantumly
testable but every probabilistic 1/8-test for L requires nΩ(1) queries.

The language that we provide is inspired by Simon’s problem [25] and our quantum testing algorithm
makes use of Brassard and Høyer’s algorithm for Simon’s problem [9]. Simon’s problem is to
find s ∈ {0, 1}n \ {0n} from a function-query oracle for some f : {0, 1}n → {0, 1}n, such that
f(x) = f(y) ⇔ x = y ⊕ s. Simon proved that classically, Ω(2n/2) queries are required on average
to find s, and gave a quantum algorithm for determining s with an expected number of queries
that is polynomial in n; Brassard and Høyer improved the algorithm to worst-case polynomial
time. Their algorithm produces in each run a z with z · s = 0 that is linearly independent to all
previously computed such zs. Essentially, our quantum tester uses this subroutine to try to extract
information about s until it fails repeatedly. Høyer [20] and also Friedl et al. [15] analyzed this
approach in group-theoretic terms, obtaining an alternative proof to Theorem 7.

In the following, let N = 2n denote the length of the binary string encoding a function f :
{0, 1}n → {0, 1}. For x ∈ {0, 1}n let x[j] be the jth bit of x, i.e., x = x[1] . . . x[n]; the inner product
of x, y ∈ {0, 1}n as vectors in Fn

2 is x · y =
∑n

j=1 x[j]y[j] mod 2. We define

L := {f ∈ {0, 1}N : ∃s ∈ {0, 1}n \ {0n} ∀x ∈ {0, 1}n f(x) = f(x⊕ s)}

Theorem 5 follows from the following two theorems.

Theorem 6 Every classical 1/8-tester for L must make Ω(
√
N) queries, even when allowing two-

sided error.

Theorem 7 There is a quantum property tester for L making O(logN log logN) queries. More-
over, this quantum property tester makes all its queries nonadaptively.

Proof of Theorem 6. We again apply the Yao principle [28] as in the proof of Lemma 3: we
construct two distributions, P and U , on positive and at least N/8-far negative inputs, respectively,

5

such that every deterministic adaptive decision tree T has error 1/2−o(1) when trying to distinguish
whether an input is chosen from U or P . Indeed, we will show a stronger statement: Let T be any
deterministic decision tree. Let v be a vertex of T . Let PrP (v) and PrU (v) be the probability the
an input chosen according to P and U , respectively, is consistent with v. We will show that for
every vertex v of T we have |PrP (v)− PrU (v)| = o(1); hence, T has error 1/2− o(1).

The distribution P is defined as follows: We first choose s ∈ {0, 1}n at random. This defines a
matching Ms of {0, 1}n by matching x with x⊕s. Now a function fs is defined by choosing for each
matched pair independently fs(x) = fs(x⊕ s) = 1 with probability 1/2 and fs(x) = fs(x⊕ s) = 0
with probability 1/2. Clearly, this defines a distribution that is concentrated on positive inputs.
Note that it might be that by choosing different s’s we end up choosing the same function, however,
this will be considered different events in the probability space. Namely, the atomic events in P
really are the pairs (s, fs) as described above.

Now let U be the uniform distribution over all functions, namely, we select the function by
choosing for each x independently f(x) = 1 with probability 1/2 and 0 with probability 1/2. Since
every function has a nonzero probability, U is not supported exclusively on the negative instances.
However, as we proceed to show, a function chosen according to U is N/8-far from having the
property with very high probability, and hence U will be a good approximation to the desired
distribution:

Definition 4 For f : {0, 1}n → {0, 1} and s ∈ {0, 1}n we define ns := |{x : f(x) = f(x⊕ s)}|.

Lemma 8 Let f be chosen according to U . Then PrU [∃s ∈ {0, 1}n : ns ≥ N/8] ≤ e−Ω(N).

Proof. Let f be chosen according to U and s ∈ {0, 1}n. By a Chernoff bound we obtain PrU [ns ≥
N/8] ≤ e−Ω(N). Together with the union bound over all s’s this yields PrU [∃s ∈ {0, 1}n : ns ≥
N/8] ≤ 2n · e−Ω(N) ≤ e−Ω(N). 2

In particular, a direct consequence of Lemma 8 is that with probability 1− e−Ω(N) an input chosen
according to U will be N/8-far from having the property.

From the definition of U , we immediately obtain the following:

Lemma 9 Let T be any fixed deterministic decision tree and let v be a vertex of depth d in T .
Then PrU [f is consistent with the path to v] = 2−d.

We now want to derive a similar bound as in the lemma for functions chosen according to P . For
this we need the following definition for the event that after d queries, nothing has been learned
about the hidden s:

Definition 5 Let T be a deterministic decision tree and u a vertex in T at depth d. We denote
the path from the root of T to u by path(u). Every vertex v in T defines a query position xv ∈
{0, 1}n. For f = fs chosen according to P , we denote by Bu the event Bu := {(s, fs) : s 6=
xv ⊕ xw for all v, w ∈ path(u)}.

Lemma 10 Let v be a vertex of depth d in a decision tree T . Then PrP [Bv] ≥ 1−
(
d−1
2

)
/N

Proof. Bv does not occur if for some v, w on the path to v we have s = xv ⊕ xw. As there are
d − 1 such vertices, there are at most

(
d−1
2

)
pairs. Each of these pairs excludes exactly one s and

there are N possible s’s. 2

6

Lemma 11 Let v be a vertex of depth d in a decision tree T and let f be chosen according to P .
Then PrP [f is consistent with v|Bv] = 2−d.

Proof. By the definition of P , f gets independently random values on vertices that are not matched.
But if Bv occurs, then no two vertices along the path to v are matched and hence the claim follows.

2

Now we can complete the proof of the theorem: assume that T is a deterministic decision tree
of depth d = o(

√
N) and let v be any leaf of T . Then by Lemmas 10 and 11, we get that

PrP [f is consistent with v] = (1 − o(1))2−d. On the other hand, let U ′ be the distribution on
negative inputs defined by U conditioned on the event that the input is at least N/8-far from the
property. Then by Lemmas 8 and 9 we get that PrU ′ [f is consistent with v] = (1 − o(1))2−d and
hence T has only o(1) bias of being right on every leaf. This implies that its error probability is
1/2− o(1). 2

Proof of Theorem 7. We give a quantum algorithm making O(logN log logN) queries to the
quantum oracle for input f ∈ {0, 1}N . We will show that it accepts with probability 1 if f ∈ L and
rejects with high probability if the Hamming distance between f and every g ∈ L is at least εN .
Pseudo code for our algorithm is given on page 8; it consists of a classical main program SimonTester
and a quantum subroutine SimonSampler adapted from Brassard and Høyer’s algorithm for Simon’s
problem [9, Section 4]. The quantum gates used are the 2n-dimensional Hadamard transform H2n ,
which applies

1√
2

(
1 1
1 −1

)
individually to each of n qubits, the quantum oracle query Uf , and classical reversible operations
run in quantum superposition.

The following technical lemma captures the operation of the quantum subroutine SimonSampler.

Lemma 12 When SimonSampler is passed k linearly independent vectors z1, . . . , zk so that all
ij := min{i : zj [i] = 1} are distinct for 1 ≤ j ≤ k, then the state |ψ〉 before the measurement is

√
2k

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤k

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zk〉 .

Proof. We follow the steps of subroutine SimonSampler when passed k linearly independent vectors
z1, . . . , zk so that all ij := min{i : zj [i] = 1} are distinct for 1 ≤ j ≤ k.

|0n〉|0〉|0k〉 7→ 1√
N

∑
x∈{0,1}n

|x〉|0〉|0k〉 7→ 1√
N

∑
x∈{0,1}n

|x〉|f(x)〉|0k〉

7→ 1
N

∑
x,y∈{0,1}n

(−1)x·y|y〉|f(x)〉|0k〉

7

Procedure SimonTester
1: for k = 0 to n− 1 do
2: l← 0
3: repeat
4: z ← SimonSampler(z1, . . . , zk)
5: l← l + 1
6: until z 6= 0 or l > 2(log n)/ε2

7: if z = 0 then
8: accept
9: else

10: zk+1 ← z
11: reject

Procedure SimonSampler(z1, . . . , zk)
1: input: z1, . . . , zk ∈ {0, 1}n
2: output: z ∈ {0, 1}n
3: quantum workspace: X ⊗ Y ⊗ Z where
4: X is n qubits X = X1 ⊗ · · · ⊗ Xn, Xi = C2,
5: Y = C2 is one qubit, and
6: Z is k qubits Z = Z1 ⊗ · · · ⊗ Zk, Zj = C2

7: initialize the workspace to |0n〉|0〉|0k〉
8: apply H2n to X
9: apply Uf to X ⊗ Y

10: apply H2n to X
11: for j = 1 to k do
12: i← min{i : zj [i] = 1}
13: apply CNOT with control Xi and target Zj

14: apply |x〉 7→ |x⊕ zj〉 to X conditional on Zj

15: apply H2 to Zj

16: return measurement of X

8

This is the state before the for loop is entered. We claim and proceed to show by induction that
after the Jth execution of the loop body, the state is

√
2J

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤J

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|0k−J〉 .

Executing the body of the loop for j = J + 1,
√

2J

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤J

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|0〉|0k−J−1〉

7→
√

2J

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤J

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉|y[ij+1]〉|0k−J−1〉

=

√
2J

N

∑
x∈{0,1}n

∑
b∈{0,1}

∑
y∈{0,1}n

y[ij]=0 ∀j≤J+1

(−1)x·(y⊕bzJ+1)|y ⊕ bzJ+1〉

|f(x)〉|x · z1〉 · · · |x · zJ〉|b〉|0k−J−1〉

7→
√

2J

N

∑
x∈{0,1}n

∑
b∈{0,1}

∑
y∈{0,1}n

y[ij]=0 ∀j≤J+1

(−1)x·(y⊕bzJ+1)|y〉

|f(x)〉|x · z1〉 · · · |x · zJ〉|b〉|0k−J−1〉

=

√
2J+1

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤J+1

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ〉

1√
2

∑
b∈{0,1}

(−1)x·(bzJ+1)|b〉|0k−J−1〉

7→
√

2J+1

N

∑
x∈{0,1}n

∑
y∈{0,1}n

y[ij]=0 ∀j≤J+1

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zJ+1〉|0k−J−1〉 .

2

As an immediate consequence, we can establish the invariant that in SimonTester {z1, . . . , zk} is
always linearly independent with ij = min{i : zj [i] = 1} distinct for 1 ≤ j ≤ k; moreover, if f ∈ L,
then just as in Simon’s algorithm, a nonzero z is orthogonal to the hidden s:

Lemma 13 If measuring the first register, X , yields a nonzero value z, then

1. {z1, . . . , zk, z} is linearly independent,

2. min{i : z[i] = 1} is distinct from ij for 1 ≤ j ≤ k, and

9

3. if f ∈ L, then z · s = 0 for every s such that f(x) = f(x⊕ s) for all x.

Next, we want to assess the probability of obtaining z = 0 in SimonTester Line 4. We let P0 denote
the projection operator mapping |0〉|y〉|z〉 7→ |0〉|y〉|z〉 and |x〉|y〉|z〉 7→ 0 for x 6= 0; hence, ‖P0|ψ〉‖2
is the probability of obtaining 0 when measuring subspace X of the quantum register in state |ψ〉.
We can characterize the probability for outcome z = 0 in terms of the following definition and
lemma:

Definition 6 For c ∈ {0, 1}k and z1, . . . , zk ∈ {0, 1}n we define Dc := {x ∈ {0, 1}n : x · z1 =
c[1], . . . , x · zk = c[k]}.

Lemma 14 Let |ψ〉 be the state before the measurement in SimonSampler, when SimonSampler is
passed k linearly independent vectors z1, . . . , zk so that all ij := min{i : zj [i] = 1} are distinct for
1 ≤ j ≤ k.

1. ‖P0|ψ〉‖2 = 1 if and only if for every c ∈ {0, 1}k, f is constant when restricted to Dc.

2. If ‖P0|ψ〉‖2 ≥ 1 − ε2/2, then f differs in at most εN points from some function g that is
constant when restricted to Dc for every c ∈ {0, 1}k.

Proof. For b ∈ {0, 1} let Db,c := Dc ∩ f−1{b} = {x : f(x) = b and x · z1 = c[1], . . . , x · zk = c[k]}.
Note that the Db,c and Dc also depend on z1, . . . , zk and the Db,c depend on f . Let

|ψ0〉 :=

√
2k

N

∑
x∈{0,1}n

|0〉|f(x)〉|x · z1〉 · · · |x · zk〉

=

√
2k

N

∑
b∈{0,1}

∑
c∈{0,1}k

|Db,c||0〉|b〉|c[1]〉 · · · |c[k]〉 .

By Lemma 12, at the end of SimonSampler the system is in state

|ψ〉 = |ψ0〉+
√

2k

N

∑
x∈{0,1}n

∑
y∈{0,1}n\{0}
y[ij]=0 ∀j≤k

(−1)x·y|y〉|f(x)〉|x · z1〉 · · · |x · zk〉 .

We consider the case ‖P0|ψ〉‖2 = 1. Then the register X must be in state |0〉 and thus |ψ〉 = |ψ0〉.
Since the state has norm 1, we know that∑

b∈{0,1}

∑
c∈{0,1}k

|Db,c|2 =
N2

2k
. (1)

The Db,c partition {0, 1}n and the Dc = D0,c ∪D1,c have the same size for all c ∈ {0, 1}k because
they are cosets of D0. Therefore,∑

b∈{0,1}

∑
c∈{0,1}k

|Db,c| = N and |D0,c|+ |D1,c| =
N

2k
for all c ∈ {0, 1}k . (2)

|D0,c|2 + |D1,c|2 ≤ N2/22k, but in order for equation (1) to hold, |D0,c|2 + |D1,c|2 must be exactly
N2/22k. This can only be achieved if either D0,c or D1,c is empty. So f must be constant when

10

restricted to Dc for any c ∈ {0, 1}k. Conversely, if f is constant when restricted to Dc for any
c ∈ {0, 1}k, then equation (1) holds, therefore ‖|ψ0〉‖ = 1 and |ψ〉 = |ψ0〉. This concludes the proof
of case 1 of the lemma.

If ‖P0|ψ〉‖2 = ‖|ψ0〉‖2 ≥ 1− δ, then

∑
b∈{0,1}

∑
c∈{0,1}k

|Db,c|2 ≥ (1− δ) N
2

2k
. (3)

Still, the constraints (2) hold; let r2k be the number of c ∈ {0, 1}k so that min{|D0,c|, |D1,c|} ≥
γN/2k. Then ∑

b∈{0,1}

∑
c∈{0,1}k

|Db,c|2 ≤ r2k(γ2 + (1− γ)2)N
2

22k
+ (1− r)2kN

2

22k
,

and using (3), we obtain r ≤ δ/(1− γ2 − (1− γ)2). With δ = ε2/2 and γ = ε/2, this implies r ≤ ε.
But then ∑

c∈{0,1}k

min {|D0,c|, |D1,c|} ≤ r2k N

2k+1
+ (1− r)2kγ

N

2k
≤ εN .

2

We need to relate these two cases to membership in L and bound the number of repetitions needed
to distinguish between the two cases. This is achieved by the following two lemmas.

Lemma 15 Let k be the minimum number of linearly independent vectors z1, . . . , zk so that for
each c ∈ {0, 1}k, f is constant when restricted to Dc. Then f ∈ L if and only if k < n.

Proof. If k < n, then there exists an s with s · z1 = 0, . . . , s · zk = 0. For each such s and all x, we
have x ·z1 = (x⊕s) ·z1, . . . , x ·zk = (x⊕s) ·zk and x ∈ Df(x),x·z1,...,x·zk

and x⊕s ∈ Df(x⊕s),x·z1,...,x·zk
,

therefore f(x) = f(x ⊕ s). Conversely, for f ∈ L, S := {s : ∀xf(x) = f(x ⊕ s)} is a nontrivial
subspace of {0, 1}n, therefore S⊥ = {z : z · s = 0∀s ∈ S} is a proper subspace of {0, 1}n. Let z1,
. . . , zk be an arbitrary basis of S⊥. 2

Lemma 16 Let 0 < q < 1, and |ϕ1〉, . . . , |ϕm〉 be quantum states satisfying ‖P0|ϕj〉‖2 < 1− δ for
1 ≤ j ≤ m. If m = log q/ log(1− δ) = Θ(− log q/δ), then with probability at most q measuring the
X register of |ϕ1〉, . . . , |ϕm〉 will yield m times outcome 0.

Proof.

Pr
[
m times 0

∣∣∀j : ‖P0|ϕj〉‖2 < 1− δ
]
< (1− δ)m = (1− δ)log q/ log(1−δ) = q .

2

Now all the ingredients for wrapping up the argument are at hand; first consider f ∈ L. Let
S := {s : f(x) = f(x⊕s) ∀x} be the set of all “Simon promises” of f , and S⊥ := {z : z·s = 0 ∀s ∈ S}
the vectors that are orthogonal to all such promises. By Lemma 13 the nonzero z computed by
the algorithm lie in S⊥ and are linearly independent, therefore after dimS⊥ rounds of for loop in
SimonTester, we measure z = 0 with certainty. Since f ∈ L, dimS > 0 and thus dimS⊥ < n.

11

If f is εn-far from being in L, then by Lemma 15 f is εn-far from being close to a function
for which a k < n and z1, . . . , zk exist so that f is constant when restricted to Dc for any of
the c ∈ {0, 1}k. Therefore, by Lemma 14 case 2, for all k < n, ‖P0|ψ〉‖2 < 1 − ε2/2. Thus,
Lemma 16 guarantees that we accept with probability at most 1/3 if we let q = 1/(3n) and thus
m ≤ 2(log n)/ε2.

This concludes the proof of Theorem 7. 2

5 Quantum Lower Bounds

In this section we prove that not every language has a fast quantum property tester.

Theorem 17 Most properties containing 2n/20 elements of {0, 1}n require quantum property testers
using Ω(n) queries.

Proof. Fix n, a small ε, and a quantum algorithm A making q := n/400 queries. Pick a property
P as a random subset of {0, 1}n of size 2n/20. Let

Pε := {y : d(x, y) < εn for some x ∈ P} ;

using
∑εn

k=0

(
n
k

)
≤ 2H(ε)n, where

H(ε) := −ε log ε− (1− ε) log(1− ε) ,

we obtain |Pε| ≤ 2(1/20+H(ε))n. In order for A to test properties of size 2n/20, it needs to reject
with high probability on at least 2n−2(1/20+H(ε))n inputs; but then, the probability that A accepts
with high probability on a random x ∈ {0, 1}n is bounded by 2(1/20+H(ε))n/2n and therefore the
probability that A accepts with high probability on |P | random inputs is bounded by

2−(1−1/20−H(ε))n|P | = 2−2n/20+Θ(log n)
.

We would like to sum this success probability over all algorithms using the union bound to
argue that for most properties no algorithm can succeed. However, there is an uncountable number
of possible quantum algorithms with arbitrary quantum transitions. But by Beals et al. [5], the ac-
ceptance probability of A can be written as a multilinear polynomial of degree at most 2q where the
n variables are the bits of the input; using results of Bennett, Bernstein, Brassard, and Vazirani [6]
and Solovay and Yao [26], every quantum algorithm can be approximated by another algorithm
such that the coefficients of the polynomials describing the accepting probability are integers of
absolute value less than 2nO(1)

over some fixed denominator. There are less than 2nH(2q/n) degree-
2q polynomials in n variables, thus we can limit ourselves to 2nO(1)2nH(2q/n) ≤ 22n/20·91/100+Θ(log n)

algorithms.
Thus, by the union bound, for most properties of size 2n/20, no quantum algorithm with q

queries will be a tester for it. 2

We also give an explicit natural property that requires a large number of quantum queries to
test.

Theorem 18 The range of a d-wise independent pseudorandom generator requires (d+1)/2 quan-
tum queries to test for any odd d ≤ n/ log n− 1.

12

We will make use of the following lemma:

Lemma 19 (see [2]) Suppose n = 2k − 1 and d = 2t + 1 ≤ n. Then there exists a uniform
probability space Ω of size 2(n + 1)t and d-wise independent random variables ξ1, . . . , ξn over Ω
each of which takes the values 0 and 1 with probability 1/2.

The proof of Lemma 19 is constructive and the construction uniform in n; for given n and d,
consider the language P of bit strings ξ(z) := ξ1(z) . . . ξn(z) for all events z ∈ Ω = {1, . . . , 2(n+1)t}.
Classically, deciding membership in P takes more than d queries: for all d positions i1, . . . , id and
all strings v1 . . . vd ∈ {0, 1}d there is a z such that ξi1(z) . . . ξid(z) = v1 . . . vd. On the other hand,
blog |Ω|c+ 1 = O(d log n) queries are always sufficient.

Proof of Theorem 18. A quantum computer deciding membership for x ∈ {0, 1}n in P := {ξ(z) :
z ∈ Ω} with T queries gives rise to a degree 2T multilinear n-variable approximating polynomial
p(x) = p(x1, . . . , xn) [5]. We show that there must be high-degree monomials in p by comparing
the expectation of p(x) for randomly chosen x ∈ {0, 1}n with the expectation of p(x) for randomly
chosen x ∈ P .

For uniformly distributed x ∈ {0, 1}n, we have E[p(x)|x ∈ P] ≥ 2/3 and E[p(x)|x /∈ P] ≤ 1/3.
Since |P | = o(2n), E[p(x)] ≤ 1/3 + o(1) and thus ∆ := E[p(x)|x ∈ P] − E[p(x)] ≥ 1/3 − o(1).
Considering p(x) =

∑
i αimi(x) as a linear combination of n-variable multilinear monomials mi,

we have by the linearity of expectation E[p(x1, . . . , xn)] =
∑

i αi E[mi(x1, . . . , xn)]. Because of the
d-wise independence of the bits of each x ∈ P , for every mi of degree at most d holds E[mi(x)] =
E[mi(x)|x ∈ P]. Since ∆ > 0, p must comprise monomials of degree greater than d. Hence, the
number of queries T is greater than d/2.

This proof extends in a straightforward manner to the case of testing the property P : let again
Pε := {y : d(x, y) < εn for some x ∈ P}. Then

|Pε| ≤ 2H(ε)n|P | = O(2H(ε)n+d log n) ,

so

E[p(x)] =
|Pε|
2n

E[p(x)|x ∈ Pε] +
(

1− |Pε|
2n

)
E[p(x)|x /∈ Pε] ≤ 1/3 + o(1)

for every d = n/ log n− ω(1/ log n) and every ε with H(ε) = 1− ω(1/n). 2

6 Further Research

Our paper opens the door to the world of quantum property testing. Several interesting problems
remain including

• Can one get the greatest possible separation of quantum and classical property testing, i.e., is
there a language that requires Ω(n) classical queries but only O(1) quantum queries to test?

• Are there other natural problems that do not have quantum property testers? We conjecture
for instance that the language {uuvv : u, v ∈ Σ∗} does not have a quantum property tester.

• Beals et al. [5] observed that any k-query quantum algorithm gives rise to a degree-2k poly-
nomial in the input bits, which gives the acceptance probability of the algorithm; thus, a
quantum property tester for P gives rise to a polynomial that is on all binary inputs between

13

0 and 1, that is at least 2/3 on inputs with the property P and at most 1/3 on inputs far
from having the property P . Szegedy [27] suggested to algebraically characterize the com-
plexity of classical testing by the minimum degree of such polynomials; as mentioned in the
introduction, our results imply that this cannot be the case for classical testers. However, it
is an open question whether quantum property testing can be algebraically characterized in
this way.

We hope that further research will lead to a greater understanding of what can and cannot be
tested with quantum property testers.

Acknowledgments

We thank Ronitt Rubinfeld for discussions and pointers on property testing.

References

[1] N. Alon. Testing subgraphs in large graphs. In Proceedings of 42nd IEEE FOCS, pages
434–441. IEEE, 2001.

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.

[3] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. In
Proceedings of 40th IEEE FOCS, pages 656–666. IEEE, 1999.

[4] N. Alon, I. Newman, M. Krivelevich, and M. Szegedy. Regular languages are testable with a
constant number of queries. In Proceedings of 40th IEEE FOCS, pages 645–655, 1999.

[5] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS 98.

[6] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997, quant-ph/9701001.

[7] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. Earlier version in STOC’93.

[8] M. Blum, M. Luby, and R. Rubinfeld. Self-testing and self-correcting programs, with applica-
tions to numerical programs. Journal of Computer and System Sciences, 47:549–595, 1993.

[9] G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Simon’s problem.
In Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems (ISTCS’97),
pages 12–23, 1997, quant-ph/9704027.

[10] H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig. Quantum property testing. In Proceed-
ings of 14th SODA, pages 480–488, 2003, quant-ph/0201117.

[11] F. Ergün, S. Kannan, S. Kumar, R. Rubinfeld, and M. Vishwanathan. Spot-checkers. Journal
of Computer and System Sciences, 60(3):717–751, 2000.

14

http://doi.acm.org/10.1145/502090.502097
http://arxiv.org/abs/quant-ph/9701001
http://arxiv.org/abs/quant-ph/9704027
http://arxiv.org/abs/quant-ph/0201117
http://dx.doi.org/10.1006/jcss.1999.1692

[12] E. Fischer. The art of uninformed decisions: A primer to property testing. The Bulletin of
the European Association for Theoretical Computer Science, 75:97–126, 2001.

[13] E. Fischer. Testing graphs for colorability properties,. In Proceedings of 12th SODA, pages
873–882, 2001.

[14] E. Fischer and I. Newman. Testing of matrix properties. In Proceedings of 33rd ACM STOC,
pages 286–295, 2001.

[15] K. Friedl, F. Magniez, M. Santha, and P. Sen. Quantum testers for hidden group properties. In
Proceedings of the 28th International Symposium on Mathematical Foundations of Computer
Science, 2003, quant-ph/0208184.

[16] O. Goldreich. Combinatorial property testing (a survey), 1998. Manuscript.

[17] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998.

[18] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. In Proceed-
ings of 42nd IEEE FOCS, pages 460–469. IEEE, Nevada, 2001.

[19] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
28th ACM STOC, pages 212–219, 1996, quant-ph/9605043.

[20] P. Høyer. Fourier sampling. Private communication, 2001.

[21] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[22] D. Ron. Property testing. In S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. D. P.
Rolim, editors, Handbook of Randomized Computing, volume 9 of Combinatorial Optimization.
Kluwer, 2001.

[23] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, April 1996.

[24] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997, quant-ph/9508027.
Earlier version in FOCS’94.

[25] D. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–
1483, 1997. Earlier version in FOCS’94.

[26] R. Solovay and A. Yao, 1996. Manuscript.

[27] M. Szegedy. Private communication. 1999.

[28] A. C-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Pro-
ceedings of 18th IEEE FOCS, pages 222–227, 1977.

15

http://doi.acm.org/10.1145/380752.380812
http://arxiv.org/abs/quant-ph/0208184
http://www.wisdom.weizmann.ac.il/~oded/PS/testSU.ps
http://doi.acm.org/10.1145/285055.285060
http://doi.acm.org/10.1145/237814.237866
http://doi.acm.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9508027

	Introduction
	Preliminaries
	Separating Quantum and Classical Property Testing
	An Exponential Separation
	Quantum Lower Bounds
	Further Research

