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Abstract We describe the role of generalized support vector machines in sep-
arating massive and complex data using arbitrary nonlinear kernels.
Feature selection that improves generalization is implemented via an ef-
fective procedure that utilizes a polyhedral norm or a concave function
minimization. Massive data is separated using a linear programming
chunking algorithm as well as a successive overrelaxation algorithm,
each of which is capable of processing data with millions of points.
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1. INTRODUCTION

We address here the problem of classifying data in n-dimensional
real (Euclidean) space R™ into one of two disjoint finite point sets (i.e.
classes).

The support vector machine (SVM) approach to classification [57, 2,
25, 58, 13, 54, 55] attempts to separate points belonging to two given
sets in R™ by a nonlinear surface, often only implicitly defined by a
kernel function. Since the nonlinear surface in R" is typically linear
in its parameters, it can be represented as a linear function (plane)
in a higher, often much higher, dimensional space, say R¥. Also, the
original points of the two given sets can also be mapped into this higher
dimensional space. If the two sets are linearly separable in R¥, then it
is intuitively plausible to generate a plane mid-way between the furthest
parallel planes apart that bound the two sets. Using a distance induced
by the kernel generating the nonlinear surface in R", it can be shown [57]
that such a plane optimizes the generalization ability of the separating
plane. If the two sets are not linearly separable, a similar approach can
be used [15, 57] to maximize the distance between planes that bound
each set with certain minimal error.

The feature selection problem addressed here is that of discriminat-
ing between the two point sets in R"™ by a separating plane utilizing
as few of the n original problem features as possible. We focus on two
approaches. The first approach is motivated by formulating the feature
selection problem as the minimization of a concave function over a poly-
hedral region. A stationary point to this problem is efficiently computed
by solving a sequence of linear programs in a successive linearization al-
gorithm. The second approach results from an investigation of the SVM
problem formulated as maximizing the margin of separation measured
in the 1-norm and co-norm.

We also consider a linear programming approach [6, 1] to SVMs
[57, 58, 15] for the discrimination between two possibly massive datasets.
A proposed approach consists of a novel method for solving linear pro-
grams with an extremely large number of constraints that is proven to be
monotonic and finite. In the standard SVM formulation [50, 49, 52] very
large quadratic programs are solved. In contrast, the formulation here
consists of solving a linear program which is considerably less difficult.
For simplicity, our results are given here for a linear discriminating sur-
face, i.e. a separating plane. However, extension to nonlinear surfaces
such as quadratic [32] or more complex surfaces [12] is straightforward.

We next consider the successive overrelaxation (SOR) method for solv-
ing massive quadratic programming SVMs. A conventional SVM in its
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dual formulation contains bound constraints, as well as an equality con-
straint that requires special treatment in iterative procedures. A very
simple convex quadratic program with bound constraints only can be ob-
tained by taking the dual of the quadratic program associated with an
SVM that maximizes the margin (distance between bounding separat-
ing planes) with respect to all the parameters determining the bounding
planes [41]. This quadratic program can be solved for massive datasets
by successive overrelaxation to obtain a linear or nonlinear separating
surface [42].

1.1 NOTATION AND BACKGROUND

m  All vectors will be column vectors unless transposed to a row vector
by a prime superscript ’. The scalar (inner) product of two vectors
z and y in R™ will be denoted as z'y.

» For a vector z in the n-dimensional real space R", |z| will denote
a vector of absolute values of the components z;, ¢ = 1,... ,n of
x.

s For a vector x in R", x denotes the vector in R” with components
max{0, z; }.

s For a vector = in R", z, denotes the vector in R™ with components
(z4); equal 1 if z; > 0 and 0 otherwise (i.e. z, is the result of
applying the step function to the components of z).

m  The base of the natural logarithm will be denoted by ¢, and for a
vector y € R", €Y will denote a vector in R" with components
e ¥ i=1,...,n.

m Forz € R" and 1 < p < o0, the norm ||z||, will denote the p-norm:

2l = (g Iwil”)

1
P
)

and
felle = pma: o
» For a general norm || || on R™, the dual norm ||-||' on R"™ is defined
as

lz||" = max z'y.
llyll=1



The 1-norm and oo-norm are dual norms, and so are a p-norm and
a g-norm for which 1 <p, ¢ < co and ]—1) + % = 1.

m  The notation A € R™*" will signify a real m x n matrix. For such
a matrix A’ will denote the transpose of A, A; will denote the i-th
row of A, and A.; will denote the jth column of A.

m A vector of ones in a real space of arbitrary dimension will be
denoted by e. A vector of zeros in a real space of arbitrary dimen-
sion will be denoted by 0. The identity matrix in a real space of
arbitrary dimension will be denoted by 1.

= The notation arg mi;l f(x) will denote the set of minimizers of f(x)
Te

on the set S.

»  We shall employ the MATLAB “dot” notation [44] to signify ap-
plication of a function to all components of a matrix or a vector.
For example if A € R™*", then A2 € R™*" will denote the matrix
of elements of A squared.

2. GENERALIZED SUPPORT VECTOR
MACHINES FOR MASSIVE DATA
DISCRIMINATION

We start with a nonlinear separating surface (1.1), implicitly defined
by some chosen kernel and by some linear parameters u € R™ to be de-
termined. These parameters turn out to be closely related to some dual
variables. Based on this surface we derive a general convex mathemat-
ical program (1.5) that attempts separation via the nonlinear surface
(1.1) while minimizing some function f of the parameters u. The func-
tion f which attempts to suppress u can be interpreted as minimizing
the number of support vectors, or under more conventional assumptions
as maximizing the distance between the separating planes in R¥. The
choice of f leads to various SVMs. We consider two classes of such ma-
chines based on whether f is quadratic or piecewise linear. If we choose f
to be a quadratic function generated by the kernel defining the nonlinear
surface (1.1), then we are led to the conventional dual quadratic program
(1.9) associated with an SVM which requires positive definiteness of this
kernel. However the quadratic function choice for f can be divorced from
the kernel defining the separating surface and this leads to other convex
quadratic programs such as (1.10) without making any assumptions on
the kernel. Another class of SVMs is generated by choosing a piecewise
linear convex function for f and this leads to linear programs such as
(1.11) and (1.12), both of which make no assumptions on the kernel.
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We begin by defining a general kernel function as follows.

Definition 1 Let A € R™*" and B € R™"*¢. The kernel K (A, B) maps
R™*™ x R™*E jnto R™*,

In particular if z and y are column vectors in R", then K(z/, A") is a
row vector in R™, K(z',y) is a real number and K (A4, A’) is an m x m
matrix. Note that for our purposes here K (A, A’) need not be symmetric
in general. Examples of kernels follow, where a € R™, b € R, u € R
and d is an integer.

Example: Polynomial Kernel (degree d) (AB + pab')¢

Example: Neural Network Kernel (AB + pab), .

Example: Radial Basis Kernel 6”“‘||A'FB'J'”2, L, =1,...,m, £ =
m.

Note that our approach allows discontinuous kernels such as the neural
network kernel with a discontinuous step function without the need for
a smoothing approximation such as the sigmoid or hyperbolic tangent
approximation as is usually done [57, 13].

2.1 GSVM: THE GENERAL SUPPORT
VECTOR MACHINE

We consider a given set A of m points in the n-dimensional real feature
space R™ represented by the matrix A € R™*". Each point A;, i =
1,...,m, belongs to class 1 or class -1 depending on whether D;; is 1
or -1, where D € R™*™ is a given diagonal matrix of plus or minus
ones. We shall attempt to discriminate between the classes 1 and -1
by a nonlinear separating surface, induced by some kernel K (A, A'), as
follows:

K(z',A")Du = ~, (1.1)

where K(z', A’) € R™, according to Definition 1. The parameters u €
R™ and v € R are determined by solving a mathematical program,
typically quadratic or linear. A point x € R" is classified in class 1 or
-1 according to whether the decision function

(K (z', A"YDu — 7),, (1.2)

yields 1 or 0 respectively. The kernel function K (z’, A") implicitly defines
a nonlinear map from = € R" to some other space z € RF where k
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may be much larger than n. In particular if the kernel K is an inner
product kernel under Mercer’s condition [16, pp 138-140],[57, 13, 12] (an
assumption that we will not make) then for  and y in R":

K(z,y) = h(z)'h(y), (1.3)
and the separating surface (1.1) becomes:
h(z)'h(A")Du = ~, (1.4)

where h is a function, not easily computable, from R" to R¥, and
h(A") € R¥*™ results from applying h to the m columns of A’. The
difficulty in computing h and the possible high dimensionality of RF
have been important factors in using a kernel K as a generator of an
implicit nonlinear separating surface in the original feature space R™ but
which is linear in the high dimensional space R¥. Our separating surface
(1.1) written in terms of a kernel function retains this advantage and is
linear in its parameters, u,y. We now state a mathematical program
that generates such a surface for a general kernel K as follows:

min ve'y + f(u)
uyY,Y
st. D(K(A,A")Du—ey)+y
Yy

e (1.5)
0.

VIV

Here f is some convex function on R™, typically some norm or seminorm,
and v is some positive parameter that weights the separation error e’y
versus suppression of the separating surface parameter u. Suppression
of u can be interpreted in one of two ways. We interpret it here as
minimizing the number of support vectors, i.e. constraints of (1.5) with
positive Lagrange multipliers. A more conventional interpretation is
that of maximizing some measure of the distance or margin between the
bounding parallel planes in R¥, under appropriate assumptions, such as
f being a quadratic function induced by a positive definite kernel K as
in (1.9) below. As is well known, this leads to improved generalization
by minimizing an upper bound on the VC dimension [57, 54].

We term a solution of the mathematical program (1.5) and the result-
ing decision function (1.2) a generalized support vector machine (GSVM).
In the following section we derive a number of special cases, including
the standard SVM. First, however, we note that the mathematical pro-
gram (1.5) has a solution whenever f is a piecewise-linear or quadratic
function bounded below on R™ [38, Proposition 2.1]. Note that no con-
vexity of f is required for this existence result. However in applications
where duality theory will be invoked, f will need to be convex.
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2.2 QUADRATIC PROGRAMMING
SUPPORT VECTOR MACHINES

We consider specific formulations of the SVM problem, including the
standard ones [57, 13, 12] and those obtained by setting f of (1.5) to be
a convex quadratic function f(u) = %u’H u, where H € R™*™ is some
symmetric positive definite matrix. The mathematical program (1.5)
becomes the following convex quadratic program:

min ve'y + su'Hu
U,y
st. D(K(A,A)Du—ey)+y>e (1.6)
y > 0.

The Wolfe dual [59, 34] of this convex quadratic program is:

min 37" DK(A,A")DH DK (A, A")Dr —¢€'r

reER™
s.t. e'Dr 0 (1.7)
0<r ve.

IA

Furthermore, the primal variable u is related to the dual variable r by:
u=H 'DK(A, A" Dr. (1.8)

If we assume that the kernel K (A, A') is symmetric positive definite and
let H = DK(A,A")D, then our dual problem (1.7) degenerates to the
dual problem of the standard SVM [57, 13, 12] with u = r:

min u/'DK(A, A')Du — €'u

ueER™
s.t. e'Du 0 (1.9)
0 < u ve.

IA

The positive definiteness assumption on K (A4, A’) in (1.9) can be relaxed
to positive semidefiniteness while maintaining the convex quadratic pro-
gram (1.6), with H = DK (A, A")D, as the direct dual of (1.9) without
utilizing (1.7) and (1.8). The symmetry and positive semidefiniteness
of the kernel K (A, A’) for this version of an SVM is consistent with the
SVM literature. The fact that » = u in the dual formulation (1.9), shows
that the variable u appearing in the original formulation (1.6) is also the
dual multiplier vector for the first set of constraints of (1.6). Hence the
quadratic term in the objective function of (1.6) can be thought of as
suppressing as many multipliers of support vectors as possible. This is
another interpretation of the standard SVM that is usually interpreted
as maximizing the margin or distance between parallel separating planes.



This leads to the idea of using other values for the matrix H other
than DK (A, A")D that will also suppress u. One particular choice is
interesting because it puts no restrictions on K: no symmetry, no positive
definiteness or semidefiniteness and not even continuity. This is the
choice H = I in (1.6) which leads to a dual problem (1.7) with H = I
and u = DK (A, A")' Dr as follows:

min 3r'DK(A, A')K(A, A')'Dr —e'r
reRm™

s.t. e'Dr

0 <r

(1.10)

ve.

IA I

We note immediately that K(A, A")K (A, A") is positive semidefinite
with no assumptions on K (A, A'), and hence the above problem is an
always solvable convex quadratic program for any kernel K (A, A"). In
fact by [38, Proposition 2.1] the quadratic program (1.6) is solvable for
any symmetric positive definite matrix H, and by quadratic program-
ming duality so is its dual problem (1.7), the solution r of which can
be immediately used to generate a decision function (1.2). Thus we are
free to choose any symmetric positive definite matrix H to generate an
SVM. Experimentation determines the most appropriate choices for H.
We turn our attention to linear programming SVMs.

2.3 LINEAR PROGRAMMING SUPPORT
VECTOR MACHINES

In this section we consider problems generated from the mathematical
program (1.5) by using a piecewise linear function f in the objective
function thus leading to linear programs.

An obvious choice for f is the 1-norm of u, which leads to the following
linear programming formulation:

min  vely +e€'s
U,Y,Y,8
S.t. D(K(A, A,)DU — 6’7) + Yy Z e (111)
—s < u < s
y > 0.

A solution (u, 7, y, s) to this linear program for a chosen kernel K(A, A’)
will provide a decision function as given by (1.2). This linear program
parallels the quadratic programming formulation (1.10) that was ob-
tained as the dual of (1.5) by setting f(u) therein to half the 2-norm
squared of u whereas f(u) is set to the I-norm of w in (1.11). Another
linear programming formulation that somewhat parallels the quadratic
programming formulation (1.9), which was obtained as the dual of (1.5)
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by setting f(u) therein to half the 2-norm squared of K(A,A’)%Du, is
obtained by setting f to be the 1-norm of K(A, A’)Du. This leads to
the following linear program:
min ve'y +€'s
U,Y,Y,8
s.t. D(K(A,A"Du—ey)+
—-s < K(A,A"Du
y 2 0.

y = e (1.12)
< s

No assumptions of symmetry or positive definiteness on K (A, A’) are
needed in either of the above linear programming formulations as was
the case in the quadratic program (1.9).

It is interesting to note that if the linear kernel K (A, A") = AA’ is
used in the linear program (1.11) we obtain the high-performing 1-norm
linear SVM proposed in [11] and utilized successfully in [10, 3, 6]. Hence,
if we set w = A'Dwu in (1.11) we obtain (1.26) and (1.28).

This linear programming SVM was implemented in [42] with nonlinear
kernels. A quadratic kernel resulted in better testing set results than a
linear kernel did on the liver-disorders dataset from the UCI repository
[45]. Figure 1.1 depicts a rather complex “checkerboard” example for
which no linear classifier can give good separation. Figure 1.2 shows the
sharp nonlinear separation obtained by a nonlinear polynomial kernel of
degree 6 (d = 6):

Polynomial Kernel: K(A,A') = ((% — )(% —p) = p)d

The parameter values for A, p, and p are shown in the caption for
Figure 1.2.

We next focus on the feature selection problem in classification.

3. FEATURE SELECTION VIA CONCAVE
MINIMIZATION AND SUPPORT VECTOR
MACHINES

We consider in this section the problem of discriminating between two
finite point sets in R™ by a separating plane that utilizes as few of the
n features as possible. Two approaches are described.

The first approach [37, 9], described in Section 3.1, involves the min-
imization of a concave function on a polyhedral set and is based on the
following considerations. A plane is constructed such that a weighted
sum of distances of misclassified points to the plane is minimized, uti-
lizing as few dimensions of the original feature space R™ as possible.
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Figure 1.1 Checkerboard training dataset
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Figure 1.2 Indefinite sixth degree polynomial kernel separation of the checker-
board dataset (v = 10,000, A =100, p=1, d =6, u = 0.5)
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This is achieved by constructing two parallel bounding planes, utilizing
a minimal number of dimensions. The two planes determine two oppo-
site halfspaces. Each halfspace mostly contains points of one set. These
planes are determined so as to minimize the sum of weighted distances to
the bounding plane from points lying in the wrong halfspace. This leads
to the minimization of a concave function on a polyhedral set (problems
(1.19) and (1.21) below) for which a stationary point can be obtained
by solving a few (typically 5 to 7) linear programs in a successive lin-
earization algorithm (Algorithm 2 below). The final separating plane is
taken midway between the two bounding parallel planes.

The second approach, that of an SVM [57, 2, 25, 58] (described in
Section 3.2), constructs the two parallel bounding planes in the full n-
dimensional space R™ as in the first approach outlined above, but in
addition attempts to push these planes as far apart as possible. The
justification for this is to improve the VC dimension [57], which in turn
improves generalization. The typical formulation of the SVM problem
uses the 2-norm to measure the distance between the two bounding
planes and leads to a quadratic programming problem [57]. We use
here instead the 1-norm and the oo-norm that lead to the single linear
programs (1.25) and (1.26) below, respectively. Although improved gen-
eralization is the primary purpose of the SVM formulation, it turns out
that the linear program (1.26) resulting from employing the co-norm to
measure the distance between the two bounding planes leads also to a
feature selection method, whereas the linear program (1.25) resulting
from the use of the 1-norm does not lead to a feature selection method.
Note that the norms on w used in (1.25) and (1.26) are dual to those
used to measure the distance between the separating planes [39].

3.1 FSV: FEATURE SELECTION VIA
CONCAVE MINIMIZATION

We consider a feature selection procedure that has been effective in
medical and other applications [9, 37].

Given m points in R™ represented by the m x n matrix A and the
m x m diagonal matrix D with Dy = 1 if the i-th data point A; belongs
to class 1 and D;; = —1 if the i-th data point belongs to class —1, we
wish to discriminate between them by a separating plane:

P={z|z€R"2'w=1}, (1.13)

with normal w € R™ and 1-norm distance to the origin of || hHl [39]. We
W||oo
shall attempt to determine w and  so that the separating plane P de-

fines two open halfspaces {z | * € R™, z'w > v} containing mostly points
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A; from class 1, and {z | z € R",z'w < } containing mostly points 4;
from class —1. Hence we wish to satisfy

A;w >~ if Dy =1,

to the extent possible. Upon normalization, these inequalities can be
equivalently written as:

D(Aw — ey) > e. (1.15)

Conditions (1.14) or equivalently (1.15) can be satisfied if and only if the
convex hulls of the data points belonging to class 1 and the data points
belonging to class —1 are disjoint. This is not the case in many real-
world applications. Hence, we attempt to satisfy (1.15) in some “best”
sense, for example, by minimizing some norm of the violations of (1.15)
such as
min f(w,v) = min || (D(Aw —ey) —e), [|1. (1.16)
w,y wyy
Recall that for a vector x, x4 denotes the vector with components

max{0,z;}. Two principal reasons for choosing the 1-norm in (1.16)
are:

(i) Problem (1.16) is then reducible to a linear program (1.17) with
many important theoretical properties making it an effective com-
putational tool [4].

(ii) The 1-norm is less sensitive to outliers such as those occurring when
the underlying data distributions have pronounced tails, hence
(1.16) has a similar effect to that of robust regression [27],[26, pp
82-87].

The formulation (1.16) is equivalent to the following robust linear
programming formulation (RLP) proposed in [4] and effectively used to
solve problems from real-world domains [43]:

!

min €'y
W,y
st. D(Aw—ey)+y>e (1.17)

y > 0.

The linear program (1.17) or, equivalently, the formulation (1.16) define
a separating plane P that approximately satisfies the conditions (1.15) in
the following sense. For each positive value of y;, the corresponding data
point A; is in error. Thus, if D;; = 1, then the data point A; lies on the
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wrong side of the bounding plane z'w = y+1 for class 1; if D;; = —1, the
data point A; lies on the wrong side of the bounding plane z'w = v — 1
for class —1. Hence the objective function of the linear program (1.17)
minimizes the sum of distances, weighted by ||w]|’, of misclassified points
to their respective bounding planes. The separating plane P (1.13) is
midway between the two bounding planes and parallel to them.

We now introduce a feature selection idea [37, 9] by attempting to
suppress as many components as possible of the normal vector w to
the separating plane P that is consistent with obtaining an acceptable
separation between the points with class 1 and class —1. We achieve this
by introducing an extra term into the objective of (1.17) while weighting
the original objective by v > 0 as follows:

min ve'y + e'|wls

w,y
st. D(Aw—ey)+y>e (1.18)

y > 0.

Note that the vector |w|, € R™ has components which are equal to 1 if
the corresponding components of w are nonzero and components equal
to zero if the corresponding components of w are zero. Recall that e is
a vector of ones and ¢'|w|, is simply a count of the nonzero elements in
the vector w. Problem (1.18) balances the error in separating the points
from class 1 and —1 (the term e’y), and the number of nonzero elements
of w (the term, €'|w|,). Further, note that if an element of w is zero,
the corresponding feature is removed from the problem.

By introducing the variable v we are able to eliminate the absolute
value from problem (1.18) which leads to the following equivalent para-
metric program for v > 0:

min ve'y + e'v,

w,Y,Y,v
S.t. D(Aw — 6’7) + y Z e (119)
—v<w<w
y > 0.

Since v appears positively weighted in the objective and is constrained by
—v < w < v, it effectively models the vector |w|. This feature selection
problem will be solved for a value of v > 0 for which the resulting
classification obtained by the midway separating plane (1.13) generalizes
best, estimated by a cross-validation tuning procedure. Typically this
will be achieved in a feature space of reduced dimensionality, that is
€'v, < n (i.e. the number of features used is less than n).

Because of the discontinuity of the step function term e’v,, we approx-
imate it by a concave exponential on the nonnegative real line [37]. The
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approximation of the step vector v, of (1.19) by the concave exponential:
v R tv,a) =e—e *,a>0, (1.20)

leads to the smooth problem (FSV:Feature Selection Concayve), for v >
0:

min ve'y+e' (e —e*)
w!’Y!y)v
sS.t. D(Aw — 6’7) + y Z e (121)
—v<w<w
y > 0.

It can be shown [8, Theorem 2.1] that for a finite value of a (appearing in
the concave exponential) the smooth problem (1.21) generates an exact
solution of the nonsmooth problem (1.19). We note that this problem
is the minimization of a concave objective function over a polyhedral
set. Even though it is difficult to find a global solution to this problem,
a fast successive linear approximation (SLA) algorithm [9, Algorithm
2.1] terminates finitely (usually in 5 to 7 steps) at a stationary point
which satisfies the minimum principle necessary optimality condition for
problem (1.21) [9, Theorem 2.2]. This solution also leads to a sparse w
with good generalization properties. We state the SLA algorithm below.

Algorithm 2 Successive Linearization Algorithm (SLA) for FSV
g g

(1.21). Choose v > 0. Start with a random (w, 72, 4%, v°). Having
(w*, v*, y*, v*) determine the next iterate by solving the linear program:

(wi—f—l, ,yi—f—l, yi—f-l’ UH—I) €
arg verter min  ve'y + a(e=*") (v — v')
777y7

st. D(Aw—ey)+y>e (1.22)

—v<w<w

y > 0.

Stop when

v (e (g — ) + ale ) (v — ') = 0. (1.23)

Comment: It was empirically determined that a value of a =5 produced
satisfactory solutions. The parameter v is usually chosen so as to maxi-
mize the generalization ability of the resulting classifier (as measured by
cross-validation [56], for instance).
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3.2 FEATURE SELECTION VIA SUPPORT
VECTOR MACHINES

The SVM idea [57, 2, 25, 58], although not originally intended as a
feature selection tool, does in fact indirectly suppress components of the
normal vector w to the separating plane P (1.13) when an appropri-
ate norm is used for measuring the distance between the two parallel
bounding planes for the sets being separated. The SVM approach con-
sists of adding another term, ||w]||’, to the objective function of the RLP
(1.17) in a similar manner to the appended term €’|w|, of problem (1.18).
Here, || - ||’ is the dual of some norm on R"™ used to measure the distance
between the two bounding planes. The justification for this term is as
follows. The separating plane P (1.13) generated by the RLP linear pro-
gram (1.17) lies midway between the two parallel planes w'z = v+ 1 and
w'z = y— 1. The distance, measured by some norm || || on R", between
these planes is precisely W [39, Theorem 2.1]. The appended term to

the objective function of the RLP (1.17), ||lwl||’, is twice the reciprocal
of this distance, which has the effect of driving the distance between
these two planes up to obtain better separation. This results then in the
following mathematical programming formulation for the SVM problem:

min ve'y + |Jw]/’
b

st. D(Aw—ey)+y>e (1.24)
y > 0.

Points A; appearing in active constraints of the linear program (1.24)
with positive dual variables constitute the support vectors of the problem.
These points are the only data points that are relevant for determining
the optimal separating plane. Their number is usually small and it is
proportional to the generalization error of the classifier [50].

If we use the 1-norm to measure the distance between the planes, then
the dual to this norm is the co-norm and accordingly ||w|" = ||w|/e in
(1.24) which leads to the following linear programming formulation:

min  ve'y+o
w,’y,yﬂg

st. D(Aw—ey)+y>e (1.25)
—eoc <w<eo
y > 0.

Similarly if we use the co-norm to measure the distance between the
planes, then the dual to this norm is the 1-norm and accordingly ||w|’ =
|lwl|]y in (1.24) which leads to the following linear programming formu-
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lation:

min ve'y +¢€'s
wa')/ayas
s.t. D(Aw - 6’)/) + y Z e (126)
—s<w<s

y > 0.

We note that the first paper on the multisurface method on pattern
separation [33] also proposed and implemented the idea of separating
the bounding planes, just as the SVM approach does.

Usually the SVM problem is formulated using the 2-norm in the ob-
jective [57, 2]. Since the 2-norm is dual to itself, it follows that the
distance between the parallel planes defining the separating surface is
also measured in the 2-norm when this formulation is used.

An experimental comparison between the linear classifiers obtained
by solving the FSV problem (1.21), the SVM formulation with a 1-norm
minimization of w (1.26), the SVM formulation with an co-norm mini-
mization of w (1.25) and the RLP (1.17) is given in [6]. The FSV (1.21)
and the SVM 1-norm (1.26) were the only methods tested that computed
classifiers utilizing fewer than the original number of problem features.
There was no significant difference in the generalization performance of
these classifiers on 6 publicly available datasets [45].

Classifiers obtained by solving the SVM oco-norm (1.25) suppressed
none of the original problem features for all but the smallest values of v
(near 0), which in general is of little use because it is often accompanied
by poor set separation.

4. MASSIVE DATA DISCRIMINATION VIA
LINEAR SUPPORT VECTOR MACHINES

We consider in this section the problem of discriminating between
two massive finite point sets in R™ by a linear programming approach
to SVMs. In the standard SVM formulation [50, 49, 52] large quadratic
programs are solved. In contrast, the formulation here consists of solving
a linear program which is considerably less difficult. The algorithm
creates a succession of sufficiently small linear programs that separate
chunks of the data at a time. The key idea is that a small number of
support vectors, corresponding to linear programming constraints with
positive dual variables, are carried over between the successive small
linear programs, each of which contains a chunk of the data. We prove
that this procedure is monotonic and terminates in a finite number of
steps at an exact solution that leads to an optimal separating plane for
the entire dataset.
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4.1 LSVM: THE LINEAR SUPPORT
VECTOR MACHINE

Given m points in R" represented by the matrix A € R™*" with the
class label for data point A; given by the corresponding diagonal element
D;; of the diagonal matrix D € R™*™ we wish to discriminate between
points A; with D;; = 1 from those A; with D;; = —1. A separating
plane may be efficiently computed by solving the robust linear program
(RLP) (1.17) [4]:

min €'y
W,y
st. D(Aw—ey)+y>e (1.27)

y > 0.

The objective function of (1.27) minimizes the sum of distances, weighted
by ||w]|’, of misclassified points to the bounding planes: z'w = v+ 1 for
points A; with D;; = 1 and z'w = v — 1 for points A; with D;; = —1.
The linear support vector machine (LSVM) consists of parametrically
adding another term, ||w||’, to the objective function of (1.27). Sections
1 and 2 provide detailed justification for this additional term.

Thus, appending ||w||; to v times the objective function of (1.27) with
v > 0 leads to the following LSVM where ¢’'s = ||w||; at optimality:

min  ve'y +€'s

w,Y,Y,8
s.t. D(Aw - 6’7) + vy >e (128)
—s<w<s
y > 0.

4.2 LPC: LINEAR PROGRAM CHUNKING

We consider a general linear program

. ’
Irgn{0$|Hm >b}, (1.29)

where c € R", H € R™*™ and b € R™. We state now our chunking algo-
rithm and establish its finite termination for the linear program (1.29)
where m may be orders of magnitude larger than n. In its dual form
our algorithm can be interpreted as a block-column generation method
related to column generation methods of Gilmore-Gomory [24], Dantzig-
Wolfe [18], [14, pp 198-200,428-429] and others [46, pp 243-248], but it
differs from active set methods [30, pp 326-330] in that it does not require
the satisfaction of a working set of constraints as equalities.
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Algorithm 3 LPC: Linear Programming Chunking Algorithm
for (1.29) Let [H b] be partitioned into ¢ blocks, possibly of different
sizes, as follows:

Hl bl
HY b
Assume that (1.29) and all subproblems (1.30) below, have vertez solu-
tions. At iteration j = 1,... compute x? by solving the following linear
program:
) ' .| HU mod ¢) , > bl mod £)
x! € arg vertex min {cw gUmodo-1 , > pimodo-1 (° (1.30)

where [H® 0°] is empty and [H?  b'] is the set of active constraints
(that is all inequalities of (1.29) satisfied as equalities by x7 ) with positive
optimal Lagrange multipliers at iteration j. Stop when c'zd = I+ for
some input integer 7. Typically T = 4.

Theorem 4 Finite Termination of LPC Algorithm The sequence
{x?} generated by the LPC Algorithm 3 has the following properties:

(i) The sequence {dx7} of objective function values is nondecreasing
and is bounded above by the minimum of min {c'ac |Hzx > b}.
x

(i) The sequence of objective function values {c’@j} becomes constant,
that is: 27t = 'z for all j > j for some j > 1.

(iii) For j > j, active constraints of (1.30) at =7 with positive multipli-
ers remain active for iteration j + 1.

(iv) For all j > g, for some j >3, 20 isa solution of the linear program
(1.29) provided all active constraints at x’ have positive multipliers
forj>j.

This theorem is significant not only for the support vector application
presented here, but also as a fundamental computational approach for
handling linear programs with massive constraints for which the sub-
problems (1.30) of the LPC Algorithm 3 have vertex solutions. To es-
tablish its validity we first prove a lemma.

Lemma 5 If T solves the linear program (1.29) and (Z,u) € R"™™ is a
Karush-Kuhn-Tucker (KKT) [34] point (i.e. a primal-dual optimal pair)
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such that uy > 0 where I C {1,...,m} and uy =0, J C {1,... ,m},
ITuJ={1,...,m}, then

T € argmin{c'z |H;x > bs} (1.31)

where Hy consists of rows H;, i € I of H, and by consists of elements
b, 1€1.

Proof The KKT conditions [34] for (1.29) satisfied by (Z,u) are:
c=H'u, u>0, u'(Hz —b) =0, Ht — b > 0,
which under the condition %; > 0 imply that
Hiz=by, uy=0, Hyz > by.

We claim now that Z is also a solution of (1.31) because (Z,uy) satisfy
the KKT sufficient optimality conditions for (1.31):

c= H],’a[, ur >0, Hrx = br.o
Proof of Theorem 4

(i) By Lemma 5, ¢z’ is a lower bound for ¢'z/*!. Hence the se-
quence {c'z’} is nondecreasing. Since the the constraints of (1.30)
form a subset of the constraints of (1.29), it follows that c'z/ <
n}cin{c'a: |Hz >b}.

(ii) Since there are a finite number of (feasible and infeasible) vertices
to the original linear program (1.29) as well as of the subproblems
(1.30), it follows that from a certain j onward, a finite subset of
these vertices will repeat infinitely often. Since a repeated ver-
tex gives the same value for 'z, it follows, by the nondecreasing
property of {c'z/} just established, that all vertices between re-
peated vertices also have the same objective value 'z and hence:
dod =it < mwin {dz|Hz >b}, Vj>j.

(iii) Let j be as defined in the theorem. Let the index ¢ € {1,... ,m} be
that of some active constraint at iteration j with positive multiplier

(Ht.qc; = by, ug > 0) which has become inactive at the next step,

that is: Htar:j*'1 > b;. We then obtain the following contradiction
by part (ii) above and the KKT saddlepoint condition:

- - =l _= = = = -
0=c2/t —dad >/ (AT — 7)) > ul (Hx? ™ — b)) > 0.



20

(iv) By (ii) a finite number of vertices repeat infinitely for j > j all with
constant ¢/z?. Since active constraints with positive multipliers at
iteration j remain active at iteration j + 1 by (iii) and hence have
a positive multiplier by assumption of part (iv), the set of active
constraints with positive multipliers will remain constant for j > s
for some j > j (because there are a finite number of constraints)
and hence 27 will remain a fixed vertex Z for 7 > j. The point Z will
satisfy all the constraints of problem (1.29) because all constraints
are eventually imposed on the infinitely repeated vertex z. Hence
'z which lower-bounds the minimum of (1.29) is also a minimum of
(1.29) because 7 is feasible. Hence the algorithm can be terminated
at j=7. ¢

Remark 6 We have not excluded the possibility (never observed com-
putationally) that the objective function remains constant over a finite
number of iterations then increases. Theorem 4 asserts that eventually
the objective function will be constant and equal to the minimum for all
iterates j > j. Of course, one can check the satisfaction of the KKT
conditions for optimality, although this does not seem to be needed in
practice.

Remark 7 In order to handle degenerate linear programs, i.e. those
with active constraints with zero multipliers at a solution, we have mod-
ified the computational implementation of the LPC Algorithm 3 slightly
by admitting into [H? 7] all active constraints at iteration j even if
they have zero multipliers. We note that the assumption of part (iv)
of Theorem 4 is required to prove that 2’ is a solution of (1.29) for all

>3-

The LPC Algorithm 3 was experimentally evaluated in [7] and some
results are summarized here. Applied to a separation task of 200,000
points in R3?, the LPC algorithm computed a solution in 1.75 hours
while 6.94 hours were required to solve the full dataset linear program.
The chunk size corresponding to this running time was 25,000 rows (1/8
total dataset size). Separation of 500,000 data points via LPC required
25.91 hours and separation of 1 million data points in R3? required 231.32
hours.

We note that there exists a chunk size which is empirically best in the
sense that it balances the computational overhead of constructing the
LPC subproblems (1.30) with the computational overhead of solving the
LPC subproblems. For small chunk sizes, the computational burden is
dominated by subproblem construction since there are many and solving
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them is not expensive. For large chunk sizes, the computational burden
is dominated by solving large subproblem LPs.

5. SUCCESSIVE OVERRELAXATION FOR
SUPPORT VECTOR MACHINES

Successive overrelaxation, originally developed for the solution of large
systems of linear equations [48, 47] has been successfully applied to math-
ematical programming problems [17, 35, 36, 51, 40, 29], some with as
many 9.4 million variables [20]. By taking the dual of the quadratic pro-
gram associated with an SVM [57, 13] for which the margin (distance
between bounding separating planes) has been maximized with respect
to both the normal to the planes as well as their location, we obtain
a very simple convex quadratic program with bound constraints only.
This problem is equivalent to a symmetric mixed linear complementar-
ity problem (i.e. with upper and lower bounds on its variables [21]) to
which SOR can be directly applied. This corresponds to solving the
SVM dual convex quadratic program for one variable at a time, that is
computing one multiplier of a potential support vector at a time.

We again consider the problem of discriminating between m points
in the n dimensional real space R", represented by the m x n matrix
A, according to membership of each point A; in the classes 1 or -1 as
specified by a given m X m diagonal matrix D with ones or minus ones
along its diagonal. For this problem the standard linear SVM with a
linear kernel AA’ [57, 13] is given by the following for some v > 0:

min ve'y + tw'w
w7,y
st. D(Aw—ey)+y > e (1.32)
y > 0.

Note that this is a special case of problem (1.6), with w = A'Du,
H = DK(A,A")D, and K(A,A") = AA’. Here w is the normal to
the bounding planes:

gdw — v = +1

e 0T (1.33)

The first plane above bounds the class 1 points and the second plane
bounds the class -1 points, if the two classes are linearly separable and
y = 0. If the classes are linearly inseparable then the two planes bound
the two classes with a “soft margin” determined by a slack variable
y > 0, that is:

+1, for x = A; and D;; = +1,

w o~ 7+ oy
1 —1, fOI“.TZAZ' andDii:—l.

tw — oy =y

>
g (1.34)
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The one-norm of the slack variable y is minimized with weight v in
(1.32). The quadratic term in (1.32), which is twice the reciprocal of
the square of the 2-norm distance W between the two planes of (1.33)
in the n-dimensional space of w € R™ for a fired v, maximizes that
distance. In our approach here, which is similar to that of [5, 23, 22|, we
measure the distance between the planes in the (n+1)-dimensional space
of [w; 7] € R which is j—2—, instead of m Using this measure of

w12
distance instead results in our modification of the SVM problem:

min  ve'y + 5 (w'w + v
w7y

%)
s.t. D(Aw —ey)+y (1.35)
)

(AVAYS
S

The Wolfe duals [34, Section 8.2] to the quadratic programs (1.32) and
(1.35) are as follows.

1
max — §u'DAA'Du +eu, s.t. €Du=0, 0<u<ve
u

(w = A'Du). (1.36)

1 1
max — Eu'DAA'Du — iu'Dee'Du +eu, st.0<u<ve
u

(1.37)
(w= A'Du, vy = —e'Du, y = (e — D(Aw — ey))+).

The principal difference between these duals is that (1.37) has simple
bound constraints only, whereas (1.36) has in addition a computation-
ally complicating equality constraint. We also note that the variables
(w,7,y) of the primal problem (1.35) can be directly computed from
the solution u of its dual (1.37) as indicated. However, only the vari-
able w of the primal problem (1.32) can be directly computed from the
solution u of its dual (1.36) as shown. The remaining variables (v, y)
of (1.32) can be computed by setting w = A'Du in (1.32), where u is a
solution of its dual (1.36), and solving the resulting linear program for
(7,y). Alternatively, v can be determined by minimizing the expression
for 'y = €'(e — D(Aw — e))+ as a function of the single variable ~y after
w has been expressed as a function of the dual solution u as indicated
in (1.36), that is:

min €' (e — D(AA'Du — ey))4). (1.38)
YER
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We note that formulations (1.36) and (1.37) can be extended to a general
nonlinear kernel K (A, A") : R™*™ x R"*™ — R™*™ by replacing AA’
by the kernel K (A, A"). (For more details about kernel function choices,
see Section 2.) Thus the conventional SVM with a positive semidefinite
kernel K (A, A") [57, 13] is given by the following dual convex quadratic
program for some v > 0 which is obtained from (1.36) by replacing AA’
by K(A,A"):

min 2u'DK(A, A")Du — €'u

u€eER™
st. eDu = 0 (1.39)
0<u < ve

A solution u of this quadratic program leads to the nonlinear separating
surface

K(2',A")Du = v, (1.40)
where v is defined in a similar manner to (1.38) above by a solution of:

]%Iéiﬁ e'(e — D(K(A, A" Du — e7))+. (1.41)

Note that the explicit definition of the nonlinear surface (1.40) in R" in
terms of u and 7y obviates the need for computing w, since w is defined
only in the higher dimensional space in which the nonlinear surface (1.40)
is mapped into a plane.

By a similar approach we obtain the following quadratic dual with
bound constraints only and a nonlinear kernel K (A, A’) by replacing
AA" in (1.37) by K(A, A"):

1
min §u'D[K(A,A') + e€'|Du — €'u, s.t. 0 <u < ve
Uu

1.42
(y= —¢'Du), (42

with an explicit expression for v and the same separating surface (1.40).
The formulation (1.42) allows a direct use of the SOR algorithm to solve
very large problems.

We mention in passing that another possible change in (1.39) allows
the use of possibly indefinite kernels. One particular formulation moti-
vated by (1.10) is the following one which, as in (1.42), incorporates the
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equality e’ Du = 0 into the objective function:

1
min iu'D[K(A,A')K(A, A +ee'|Du — €'u, s.t. 0 <u < ve
u

(1.43)
(= —¢'Du),
with a separating surface different from (1.40):
K(z',AK(A,A") Du = +. (1.44)

Note that the kernel K(A,A’) in the formulation (1.43) is completely
arbitrary and need not satisfy any positive semidefiniteness condition in
order for the objective function of (1.43) to be convex. This makes the
separating surface (1.44) quite general.

It is interesting to note that for a linear kernel, the standard SVM
problem (1.36) and our modification (1.37) frequently give the same w.
For 1,000 randomly generated problems with A € R***® and the same
v, only 34 cases had solution vectors w that differed by more than 0.001
in their 2-norm.

The main reason for introducing our modification (1.35) of the SVM
is that its dual (1.37) does not contain an equality constraint as does
the dual (1.36) of (1.32). This enables us to apply in a straightforward
manner the effective matrix splitting methods such as those of [35, 36, 31]
that process one constraint of (1.35) at a time through its dual variable,
without the complication of having to enforce an equality constraint at
each step on the dual variable w. This permits us to process massive
data without bringing it all into fast memory. We thus apply the SOR
algorithm to the nonlinear SVMs (1.42) and (1.43). Note that the linear
SVM is simply the special case of (1.42) where K (A, A") = AA’. These
problems can be stated as:

1
min iu'Mu —€u,st.ueS={u|0<u<re}, (1.45)
u

with the symmetric matrix M defined as D(K (A, A") + ee’)D and
D(K(A,A")K (A, A") + ee') D respectively for these two problems. Thus
M will be positive semidefinite if we assume that K (A, A’) is positive
semidefinite in the former case and under no assumptions in the latter
case. If we decompose M as follows:

M=L+E+1L, (1.46)

where L € R™*™ is the strictly lower triangular part of the symmetric
matrix M, and E € R™*™ is the positive diagonal of M, then a necessary
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and sufficient optimality condition for (1.45) for positive semidefinite M
is the following gradient projection optimality condition [53, 31]:

u=(u—wE " (Mu—e))y, w>0, (1.47)

where (-)# denotes the 2-norm projection on the feasible region S of
(1.45), that is:

0 ifu; <0
(Wg)i=1 wi if0<u;<v 3,i=1,...,m. (1.48)
v ifu; >v

Our SOR method, which is a matrix splitting method that converges
linearly to a point @ satisfying (1.47), consists of splitting the matrix M
into the sum of two matrices as follows:

M =w 'E(B + 0), s.t. B — C is positive definite. (1.49)
For our specific problem we take:
B=(I+wE'L), C=((w-D)I+wE™'L), 0<w<2  (1.50)

This leads to the following linearly convergent [31, Equation (3.14)] ma-
trix splitting algorithm:

u = (W — Byt — Oul + wEle)y, (1.51)
for which
B+C=wE'M,B-C=(2-wIl+wE Y (L-T). (1.52)

Note that for 0 < w < 2, the matrix B + C' is positive semidefinite and
matrix B — C is positive definite. The matrix splitting algorithm (1.51)
results in the following easily implementable SOR algorithm once the
values of B and C given in (1.50) are substituted in (1.51).

Algorithm 8 SOR Algorithm Choose w € (0,2). Start with any u® €
R™. Having u' compute u't! as follows:

't = (v — wE TN (Mu' — e+ L(u™! —u'))) 4, (1.53)
until [|[u'Tt — u?|| is less than some prescribed tolerance.

Remark 9 The components of ut! are computed in order of increasing
component indez. Thus the SOR iteration (1.53) consists of computing

ué-“ using (utt ... it ul t.)- That is, the latest computed

5 ]71’ j,...,um.
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components of u are used in the computation of ué“. The strictly lower
triangular matriz L in (1.53) can be thought of as a substitution operator,

substituting (u}™, ... ,u;tll) for (ul, ... 7”3‘—1)'

We have immediately from [31, Proposition 4.21] the following linear
convergence result.

Theorem 10 SOR Linear Convergence The iterates {u'} of the
SOR Algorithm 8 converge R-linearly to a solution of u of the dual prob-
lem (1.42), and the objective function values {f(u')} of (1.42) converge
Q-linearly to f(u). That is for i > i for some i:

|lut — )| < wpét, for someyu >0, 5 € (0,1),
fth) —f@ < 7(f(’) — f(@), for somet € (0,1).

Remark 11 A significant simplification can be made when a linear ker-
nel is used in (1.45) with M = D(AA' + e€’)D. The matriz M can be
rewritten as HH', where H = D[A  — e]. Even though our SOR iter-
ation (1.53) is written in terms of the full m x m matriz HH', it can
easily be implemented one row at a time without bringing all of the data
into memory as follows for j =1,...,m:

(1.54)

j—1 m
utl = (uf - wEGNH( Y Huft' + ) Huf—1))u.  (1.55)
0=1,5>1 l=j

A simple interpretation of this step is that one component of the mul-
tiplier u; is updated at a time by bringing one constraint of (1.35) at a
time.

We benchmarked the SOR algorithm with a linear kernel against the
SMO [52] and SVM!9"* [28] algorithms using subsets of the UCI Adult
dataset [45]. For larger versions of the dataset, SOR ran almost twice as
fast as SMO, and more than an order of magnitude faster than SVM!9,
SOR produced similar test set accuracies to the other two algorithms.
See [41] for more details.

SOR was also used with a linear kernel on synthetic highly separable
massive datasets [41]. The algorithm terminated in 9.7 hours on a one
million point dataset, and reached 95% of true separability on a 10
million point dataset in only 14.3 hours. Finally, SOR with a nonlinear
kernel was used on a synthetic Gaussian dataset [42]. Both a linear and
quadratic kernel were used, with the quadratic kernel showing improved
test set accuracy over the linear kernel. The quadratic kernel yielded a
test set accuracy of 93.4%, whereas the linear kernel produced a test set
accuracy of only 81.7% under tenfold cross-validation.
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6. CONCLUSION

We have proposed a direct mathematical programming framework for
general SVMs that makes essentially no or few assumptions on the ker-
nel employed. We have derived new kernel-based linear programming
formulations (1.11) and (1.12), and a new quadratic programming for-
mulation (1.10) that require no assumptions on the kernel K. These
formulations can lead to different but equally satisfactory decision func-
tions as that obtained by the quadratic programming formulation (1.9)
for a conventional SVM that requires symmetry and positive definiteness
of the kernel. Even for negative definite kernels these new formulations
can generate decision functions that separate the given points whereas
the conventional SVM does not.

Feature selection that improves generalization was achieved by para-
metrically minimizing a polyhedral norm or a concave function that
suppresses as many components of the features as possible, while gen-
erating a separating surface that discriminates effectively between the
points of a given set containing two categories of points.

We have described a linear programming chunking algorithm for dis-
criminating between massive datasets. The algorithm, significant in its
own right as a linear programming decomposition algorithm, is very ef-
fective for discrimination problems with large datasets that may not fit
in machine memory and for problems taking excessive time to process.
The algorithm uses support vector ideas by keeping only essential data
points needed for determining a separating plane. The algorithm can
handle extremely large datasets because it deals with small chunks of
the data at a time and is guaranteed to terminate in a finite number
of steps. Although we have not discussed parallelization here, this can
be easily implemented by splitting the data among processors and shar-
ing only support vectors among them. This would allow one to handle
problems with extremely large datasets on a network of workstations or
PCs.

We have described a powerful iterative method, successive overrelax-
ation, for the solution of extremely large discrimination problems using
SVMs. The method converges considerably faster than other methods
that require the presence of a substantial amount of the data in memory.
We have solved problems that cannot be directly handled by conven-
tional methods of mathematical programming. The proposed method
scales up with no changes and can be parallelized by using techniques
already implemented [19, 20]. We have also described how use successive
overrelaxation in conjunction with nonlinear kernels to generate nonlin-
ear separating surfaces.
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