Self-Testing /Correcting
with Applications to Numerical Problems

Manuel Blum *

Abstract

Suppose someone gives us an extremely
fast program P that we can call as
a black box to compute a function f.
Should we trust that P works correctly?
A self-testing/correcting pair allows us
to: (1) estimate the probability that
P(z) # f(z) when z is randomly cho-
sen; (2) on any input z, compute f(z)
correctly as long as P is not too faulty
on average. Furthermore, both (1) and
(2) take time only slightly more than

*Computer Science Division, U.C. Berke-
ley, Berkeley, California 94720, Supported by
NSF Grant No. CCR 88-13632.

tInternational Computer Science Institute,
Berkeley, California 94704

tComputer Science Division, U.C. Berke-
ley, Berkeley, California
94720, Supported by an IBM Graduate Fel-
lowship and NSF Grant No. CCR 88-13632.

Michael Luby |

Ronitt Rubinfeld ?

the original running time of P.

We present general techniques for
constructing simple to program self-
testing/correcting pairs for a variety of
numerical problems, including integer
multiplication, modular multiplication,
matrix multiplication, inverting matri-
ces, computing the determinant of a
matrix, computing the rank of a ma-
trix, integer division, modular exponen-
tiation and polynomial multiplication.

1 Introduction

Consider the task of writing a program
P to evaluate a function f. One of the
main difficulties is that when P is im-
plemented it is difficult to verify that
P(z) = f(z) for all inputs . There
are two traditional approaches to this
problem, program verification and pro-
gram testing. Program verification has
had fairly limited success because even
relatively simple programs are hard to
prove correct. Furthermore, even if
the proof is correct, it only makes a

statement about the program as it is
written on paper, not about the com-
piled code nor about the hardware on
which it runs. Traditional testing has
two drawbacks. First, the test inputs
typically do not cover all inputs en-
countered when the program is actually
used, and thus on a particular input the
user has no guarantee that the program
output is correct. Second, during test-
ing another program P’ is used to com-
pute f to compare against the answer
of P, and thus there is a reliance on the
correctness of another program P’ that
is in no quantifiable way different than
the program P it is being used to test.

We introduce the notion of self-
testing/correcting, which provides an
attractive alternative to traditional
approaches of verifying that a pro-
gram is correct. The theory of self-
testing/correcting is an extension of the
theory of program checkers introduced
by Manuel Blum [Blum)].

We want to design a probabilistic
program T} that is able to self-test any
program P that supposedly computes
f, i.e. Ty makes calls to P to estimate
the probability that P(z) # f(z) for
a random input x. We call this prob-
ability the error probability of P. We
insist that T be different than any cor-
rect program for computing f, in the
sense that the running time of 7%, not
counting the time for calls to P, must
be faster than the running time of any
correct program for computing f. This

ensures that 7y must be doing some-
thing quantifiably different than com-
puting f directly, because there is not
enough time for this. A self-testing pro-
gram is in this sense an “independent”
verification step for a program P sup-
posedly computing f. In addition, al-
though it is hard to quantify, the self-
testers we develop also have the prop-
erty that the resulting code is aesthet-
ically simple. We would like T to be
efficient, in the sense that the running
time of T}, counting the time for calls
to P, is within a constant multiplicative
factor of the running time of P. This
ensures that the advantages we gain by
using T} to self-test P are not over-
whelmed by an inordinate running time
slowdown.

In conjunction with a self-testing
program, we want to design a proba-
bilistic program C'; that is able to self-
correct any program P as long as the
error probability of P is sufficiently low,
i.e., for any input z, C'y makes calls to P
to compute f(z) correctly as long as the
error probability of P is small enough.
As for self-testing programs and for the
same reasons, we want Cy to be both
different and efficient.

A
self-testing/correcting pair (T, Cy) for
a function f is a powerful tool. A user
can take any program P that purport-
edly computes f and self-test it with
Ty. If P passes the self-test then, on
any input z, the user can call 'y, which

in turn makes calls to P, to correctly
compute f(z). Even a program P that
computes f incorrectly for a small but
significant fraction of the inputs can be
used with confidence to correctly com-
pute f(z) for any input z. In addi-
tion, if in the future somebody designs a
faster program P’ for computing f then
the same pair (7%, Cy) can be used to
self-test /correct P’ without any further
modifications. Thus, it makes sense to
spend a reasonable amount of time de-
signing self-testing/correcting pairs for
functions commonly used in practice
and for which a lot of effort is spent
writing super-fast programs.

We develop general techniques for
constructing simple to program self-
testing/correcting pairs for a variety
of numerical problems. The follow-
ing table summarizes the running time
behavior of our self-testing/correcting
pairs as a function of the problem input
size n. The second column is the run-
ning time not counting time for calls to
P and the third column is the total run-
ning time counting time for calls to P,
where M (n) is the running time of P on
inputs of size n. These times exclude a
constant multiplicative factor and they
also exclude the running time depen-
dence on the confidence parameter (3,
which is typically O(log(1/5)).

Problem Without P | Total
Integer Mult. n M(n

Mod n M(n

Mod Mult. n M(n
Integer Div. nlogn M(n)logn
Poly. Mult. n M(n

Mod Exp., ¢ n M(n

Mod Exp., no ¢ | nlog*n M(n)log®n
Matrix Mult. n M(n
Determinant n M(n
Matrix Inv. n M(n
Matrix Rank: C | n M(n
Matrix Rank: T | ny/n M(n)+/n

1.1 Related Work

[Blum Micali] construct a pseudo-
random generator, where a crucial in-
gredient of the construction can be
thought of as a self-correcting program
for the discrete log problem. [Rubin-
feld] introduces checking for parallel
programs, and uses self-testing to de-
sign a constant depth circuit to check
the majority function.

A self-testing/correcting pair for a
function f implies a program result
checker for f. A program result checker
for f implies a self-tester for f, but it
is not known whether a program result
checker also implies a self-corrector.
Previous to our work, [Kaminski] gives
program result checkers for integer and
polynomial multiplication. Indepen-
dently of our work, [Adleman Huang
Kompella] give program result check-
ers for integer multiplication and mod-

ular exponentiation. Both of these pa-
pers use very different techniques than
ours. Previous to our work, [Freivalds]
introduces a program result checker for
matrix multiplication over a finite field.
We make use of this checker when de-
signing the self-testing/correcting pair
for matrix multiplication over a finite
field.

[Lipton|, independently of our work,
discusses the concept of self-correcting
programs and for several problems uses
it to construct a testing program with
respect to any distribution assuming
that the programs are not too faulty with
respect to a particular distribution. To
highlight the importance of being able
to self-test, consider the mod function.
To self-correct on input z and modulus
R, the assumption in [Lipton]| and here
is that the program is correct for most
inputs x with respect to the particular
modulus R. This requires a different as-
sumption for each distinct modulus R.
Our self-testing algorithm for the mod
function on input R can be used to effi-
ciently either validate or refute this as-
sumption.

Previously, [Kannan| provides an el-
egant program result checker for com-
puting the determinant of a matrix,
but it is not efficient. Our self-
correcting/testing pair for determinant
is efficient, but it relies heavily on al-
lowing the pair to call a library of linear
algebra programs instead of restricting
calls to a single program that suppos-

edly computes determinant.

In this paper, we assume that the
program’s answer on a particular in-
put does not depend on previous in-
puts. [Blum Luby Rubinfeld] considers
the case when the program adaptively
decides its answer based on previous in-
puts.

2 A DMore
Overview

Formal

For expository purposes, we restrict
ourselves to the case when f is a func-
tion of one input from some universe
I. Let I1,1,,... be a sequence of sub-
sets of I such that I = U,cal,. The
subscript n indicates the “size” of the
problem. Let D = {D,|ln € N} be
an ensemble of probability distributions
such that D, is a distribution on I,.
Let P be a program that supposedly
computes f. Let error(P, f, D,) be the
probability that P(z) # f(z) when z is
randomly chosen in I, according to D,,.
Let 3 > 0 be a confidence parameter.

Definition (probabilistic oracle
program) : A probabilistic program
M is an oracle program if it makes calls
to another program that is specified at
run time. We let M denote M making
calls to program A.

Definition: Let 0 < ¢; < ey < 1. An
(€1, €2)-self-testing program for f with

respect to D is a probabilistic oracle
program T that has the following prop-
erties for any program P on input n and

3.

1. If error(P, f,D,) < ¢ then T]f’
outputs “PASS” with probability
at least 1 — (3.

2. If error(P, f,D,) > € then Tf
outputs “FAIL” with probability
at least 1 — (3.

The value of ¢ should be as close as
possible to €, to allow as faulty as possi-
ble programs P to pass test Tf and still
have self-corrector Cf work correctly.

Definition: Let 0 < e < 1. An
e-self-correcting program for f with re-
spect to D is a probabilistic oracle pro-
gram C; that has the following prop-
erty on input n, z € I, and 3. If
error(P, f,D,) < e then Cf(z) = f(x)
with probability at least 1 — f3.

We would like T and Cy to be both
different and efficient as discussed in
the introduction, although sometimes
we are forced to relax the efficiency re-
quirement somewhat. In the definitions
of different and efficient, we ignore the
running time dependence on the confi-
dence parameter 3, which is typically a
multiplicative factor of O(log(1/3)).

Definition: A self-testing/correcting
pair for f is a pair of probabilistic pro-

grams (T, C¢) such that there are con-
stants 0 < ¢ < &g < € < 1 and an
ensemble of distributions D such that
T} is an (€1, €2)-self-testing program for
[with respect to D and Cy is an e-self-
correcting program for f with respect
to D.

3 Self-Correcting

Because self-testers must be different,
the strategy used by T} cannot be the
naive technique of choosing =z € I, ac-
cording to D, and seeing if P(z) =
f(z), because this requires computa-
tion of f(z). Similarly, Cf is forced to
make various calls to P to help it com-
pute f(x) correctly. Many of the self-
testers and self-correctors we introduce
exploit the following property.

Random Self-Reducibility : Let z €
I,. Let ¢ > 1 be an integer. The prop-
erty is that f(z) can be expressed as
an easily computable function F' of z,
ai,...,a. and f(a1),..., f(a.), where
ai,-..,a. are easily computable given
z and each q; is randomly distributed
in I, according to D,.!

The strength of this property is that
it can be used to transform a pro-
gram that is correct on a large enough

'However, no independence between these
random variables is needed, e.g. given the
value of a; it is not necessary that as be ran-
domly distributed in I,, according to D,,.

fraction of the inputs into a program
that computes f(x) correctly with high
probability for any input . The follow-
ing program is a i—self—correcting pro-
gram for f with respect to D,. The
input to the program is n, z € I, and
a confidence parameter [3.

Gen Self-Correcting Program
(n7 $7 ﬁ)
Do form =1,...,12In(1/5)
randomly generate aq,...,a.
based on z
Fori=1,...,¢, a; — P(a;).
aNSm, —
F(z,aq,...,0.,01,...,0.)

Output the most common an-
swer among {ans,, : m =

1,...,121n(1/3)}

Lemma 1: The above program is a ;-
self-correcting program for f with re-
spect to D,,.

Proof: Because error(P, f,D,) < &
and because, for each £ = 1,...,¢, ag
is randomly distributed in I,, according
to D,, all ¢ outputs of P are correct
with probability at least 3/4 each time
through the loop. If all ¢ outputs of
P are correct, then by the random self-
reducibility property, ans, = f(z). A
straightforward calculation shows that
after 121n(1/8) executions, the major-
ity of the answers are equal to f(z) with
probability at least 1 — 3. B

As an example, consider the function

fr(z) = zmod R. (We are viewing
this as a function of one input z, where
R is a fixed but arbitrary positive inte-
ger.) Let In = ZRgn = {0, . ,R2n—1},
let £ € Zpon be the input to the self-
corrector, let D, = Ugz,,. be the uni-
form distribution on Zgon, let +5 de-
note addition modR and let +gon de-
note addition mod R2"™.

Suppose error(Pr, fr,Uzp,.) < 1/8.
At each step the self-corrector ran-
domly and uniformly chooses z; €
Zpgon, computes zo < (z—2z;) mod R2"
and lets the answer from the step be
Pg(z1) +r Pr(z2). Note that fg(z) =
fr(z1) +r fr(z2) and that z, is uni-
formly distributed in Zgon. Thus, the
probability that the answer for a par-
ticular step is equal to fr(z) is at least
3/4. The self-corrector repeats this
step 121n(1/43) times and outputs the
most common answer. It is easy to
see that the most common answer is
correct with probability at least 1 — f3.
The code for the self-corrector is simple,
involving only calls to Pr on random
inputs, integer additions and compar-
isons. Furthermore the self-corrector is
both efficient and different.

In addition to the mod function,
this generic self-correcting program can
be implemented for integer multiplica-
tion, modular multiplication and mod-
ular exponentiation, matrix multiplica-
tion over a finite field, multiplication of
polynomials over a finite field and sev-
eral other problems. In all cases, the re-

sulting self-correcting program is both
different and efficient. [Lipton] uses the
same basic outline to develop a self-
correcting program for several of these
problems and also for evaluating a poly-
nomial over a finite field.

4 Linearity and Self-
Testing

Although the most interesting of our
self-testing methods leads to self-testers
that are almost as simple to code as
the self-correctors described above, the
proofs that they meet their specifica-
tions are more difficult and interesting
and involve some probability theory on
groups that may have other applica-
tions. This method applies to integer
multiplication, the mod function, mod-
ular multiplication, and modular expo-
nentiation when the ¢ function of the
modulus is known. The resulting self-
testers are simple to code, and are both
different and efficient.

4.1 Self-Testing Mod

To give some idea of how the method
works, we concentrate on the mod func-
tion. For positive integers z and R,
let fr(z) = z mod R. (As before, we
are viewing this as a function of one in-
put x, where R is a fixed but arbitrary
positive integer.) Because the self-
correcting program for the mod func-

tion relies on a program that is cor-
rect for most inputs with respect to a
particular modulos R, the self-testing
program for the mod function is de-
signed to self-test with respect to an
input modulus R. This is an impor-
tant motivation for constructing effi-
cient self-testing programs, because the
self-testing program is executed each
time a new modulus is used. Similar re-
marks hold for modular multiplication
and modular exponentiation.

There are two critical tests performed
by the self-tester. Let z; and z; be
randomly, independently and uniformly
chosen in Zgs», and set & «— x1+ gon To.
Note that fr(z) = fr(z1)+r[r(22), Le.
fr is a (modular) linear function of its
inputs. The linear consistency test is

“Does PR(JI) = PR(.’Bl) +r PR($2)?”,

and the linear consistency error is the
probability that the answer to the lin-
ear consistency test is “no”. Let z be
randomly chosen in Zgo» according to
Ugzppm, and set 2’ < z+pon 1. Note that
fr(Z') = fr(2) +r 1, i.e. in addition to
being linear fg also has (modular) slope
one. The neighbor consistency test is

“Does Pg(%') = Pr(2) +r 177,

and the neighbor consistency error is
the probability that the answer to the
neighbor consistency test is “no”.

Our main theorem with respect to
the self-tester for fr is that there

are constants 0 < % < 1 and
Y > 1 such that error(Pg, fr,Uzp,.)
is at least v times the minimum of
the linear consistency error and the
neighbor consistency error, and that
error(Pg, fr,Uzg,.) is at most ¢’ times
the maximum of the linear consistency
error and the neighbor consistency er-
ror. Thus, we can indirectly approx-
imate error(Pg, fr,Uzp,.) by instead
estimating the linear and neighbor con-
sistency errors.

Without loss of generality, the out-
put of P is always in the range
{0,..., R —1}. To enforce this condi-
tion, we can simply check that each an-
swer that P supplies is in this range,
and if it isn’t then set the answer to
zero. This trivially modifies P to an-
other program P’ that is at least as cor-
rect as P. The same modification needs
to be made in the self-correcting pro-
gram. For simplicity of exposition, we
omit these lines of code.

Mod Function Self-Testing Pro-
gram (n, R,)

N = [5761n(4/3)]
t— 20
Doform=1,...,N
Call Mod_Linear_Test
(n, R, ans)
t—1t+ans
If t/N > 1/72 then “FAIL”

N' = [321n(4/5)]
0

Doform=1,...,N'
Call Mod_Neigh_Test
(n, R, ans)
t' —t' +ans
If #/N' > 1/4 then “FAIL”
else “PASS”

Mod_Linear_Test (n, R, ans)

ans < 0

Choose z; randomly in
{0,...,R2" — 1}

Choose z, randomly in
{0,...,R2" — 1}

T < T1 +Ron T2

If P($1,R) +r P(.’L'Q,R) ?é
P(z, R) then ans «— 1

Mod_Neigh_Test (n, R, ans):

ans «— 0
Choose 2 randomly in
{0,...,R2" — 1}

2 —z +Ron 1
If P(2,R)+r 1 # P(?,R)
then ans «— 1

Theorem 2.2: The above program is
an (1/288,1/8)-self-testing program for
the mod function with any modulus R.

Proof: This is a corollary of Theorem
2 from the next subsection.

The only non-trivial lines of code in the
self-testing program are generation of
random numbers, calls to the program
P, integer additions and integer com-
parisons.

4.2 Generic Linear Self-
Testing

In this section, we describe a generaliza-
tion of the mod function self-tester to
functions f mapping a group G into an-
other group G'. In addition to the mod
function, this generic self-tester can be
applied to integer multiplication, mod-
ular multiplication and modular expo-
nentiation. In all cases, the resulting
self-testing program is extremely sim-
ple to code, different and efficient. The
proof of the two main theorems for the
generic self-tester, Theorems A and B,
appear in the appendix. A more de-
tailed account of these theorems can
be found in [Ben-Or Coppersmith Luby
Rubinfeld].

For this version of the paper, we as-
sume that all groups are abelian; in the
final version of the paper we generalize
to non-abelian groups. Let G be a fi-
nite group with group operation o and
with generators gi,..., 9. and identity
element 0. For y € G, let y ! denote
the inverse of y. Let G’ be a (finite or
countable) group with group operation
o' and identity element 0'. For a € G',
let a~! denote the inverse of a. Let
f : G — G' be a function. Intuitively,
f is hard to compute compared to ei-
ther o or o’.

Let Ug be the uniform probability
distribution on GG. We say that f has
the linearity property if:

(1) It is easy to choose random ele-
ments of G according to Ug.

(2) F is an easily computable func-
tion with the property that, for
any pair 1,22 € G, F(z1,22) €
G' and furthermore f(z; o x2) =
f(z1) o f(xg) o F(z1,22). We call
this property linear consistency.
In all of our applications except for
integer multiplication, F(x1,22) =
0" for all inputs z;,x2, in which
case f is a group homomorphism.

(3) For each generator g; € G, F;
is an easily computable function
with the property that, for any
z € G, F;(2) € G" and furthermore
f(zog) = f(2) o Fi(z). We call
this property neighbor consistency.
This property is not needed for in-
teger multiplication. For all of the
other applications, both G and G’
are generated by a single element
denoted 1 and 1, respectively, (i.e.
they are both cyclic groups), and
forall z € G, f(z01) = f(2) o' 1"

The linearity property is a special case
of random self-reducibility.

Let P be a program that supposedly
computes f such that, for all y € G,
P(y) € G'. Gen Self-Testing Program
1 is an (€/36, €)-self-testing program for
f with respect to Ug when G’ is an
infinite group that has no finite sub-
groups except {0'}. The self-tester for
integer multiplication is based on Gen

Self-Testing Program 1, where G = Call Gen_Neigh_Test

{0,...,2" — 1} with addition mod 2" as (i,ans)

the group operation, and G' = Z with t'—t' 4+ ans

addition as the group operation. Gen If /N" > 1/4 then “FAIL”
Self-Testing Program 2 is an (¢/36, ¢)- else “PASS”

self-testing program for f with respect
to Ug for all other G'. The self-tester (en Linear. Test (ans)
for the mod function described in sub-

section 4.1, for modular multiplication randomly choose z; € G ac-
and for modular exponentiation are all cording to Ug.
based on Gen Self-Testing Program 2. randomly choose zo € G ac-

cording to Ug.

Gen Self-Testing Program 1 (e,) If P(z10m5) # P(a1)o' Pz2)o’

N — |‘Q In(2/8)] F(z1,2z2) then ans «— 1
fe 0 else ans «— 0
Do form=1,...,N

Call Gen_Linear_Test Gen_Neigh_Test (i, ans)

(ans)

t — t+ ans randomly choose z € G ac-

If t/N > ¢/9 then “FAIL” else cording to Ug.

“PASS” If P(z0g;) # P(2)o' Fy(z) then

ans «— 1

Gen Self-Testing Program 2 (e,)

N — [21n(4/8)] vide motivation for why the self-testers
fe 0 work. For each y € G, define the dis-
Doform=1,...,N crepancy of y to be
Call Gen_Linear_Test) B
(ans) disc(y) = f(y) o' P(y)~".
t—1t+ans

If t/N > ¢/9 then “FAIL”

N’ — [321n(4c/B)] function defines a homomorphism from

t' 0 G into {0'}.

Do form=1,...,N’ Because of the linearity property,
ans < 0 part (2), and because the self-testing
Dofori=1,...,c program computes F(zy,z3) correctly

10

We introduce some notation and pro-

Note that P computes f correctly for
all inputs if and only if the discrepancy

on its own, P(zj0x5) = P(x1)0' P(zq)o
F(z1,z2) if and only if

disc(zy 0 T3) = disc(xy) o disc(zz).

If this equality holds for all z1,25 € G
then the discrepancy function defines
a homomorphism A from G into G'.
Gen_Linear_Test verifies that the dis-
crepancy function is close to some A.
If G’ is infinite with no non-trivial fi-
nite subgroups then, because G is finite,
h ={0"}.

Now suppose G’ has a finite subgroup
not equal to {0'}. Because of the lin-
earity property, part (3), and because
the self-testing program computes F;(2)
correctly on its own, P(zog;) = P(2)0o
F;(2) if and only if

disc(z o g;) = disc(z).

If, forall z € Gand foralli =1,...,c,
disc(z o ¢g;) = disc(z) then h = {0'}.
Gen_Neigh Test verifies that h = {0'}.
The following notation is used
throughout the rest of this section.

Notation:

e § = Pr[disc(zy o z3) # disc(xy) o
disc(x)] when z; and z5 are ran-
domly and independently chosen
according to Ug.

e For all ¢« = 1,...,¢, 6 =
Pr[disc(z) # disc(z o g;)] when z
is randomly chosen in GG according
to ng.

e Yy = Pr[disc(y) # 0'] when y is
randomly chosen in GG according to
Ug.

Theorems A and B are proved in the
appendix. These two theorems are the
heart of the proof that Generic Self-
Testing Programs 1 and 2 meet their
specifications.

Theorem A: Let G' be an infinite
countable group with no finite sub-
groups except for the trivial subgroup
{0’}. Then, § > 2¢/9. A

Theorem B: Let G’ be any (finite
or countable) group. If, for all i =
1,---,¢,8; <1/2,then § > 2¢/9. R

Lemma 1: Let G’ be any (finite or
countable) group. Then, ¢ > §/2.

Proof: Because 1 — ¢ = Pr[disc(y) =
0'], Pr[disc(zy o z3) = 0] > (1 —)?
and consequently § < 1 — (1 — 9)?
¥(2 —). Because 9 > 0, this implies
that ¢ > 6/2. B

Lemma 2: Let G’ be any (finite or
countable) group. Then, for all i =
1,---,C,¢25i/2-

Proof: Foralli =1,...,¢, if disc(z o
9:) # disc(z) then either disc(z o g;) #
0’ or disc(z) # 0'. Thus, ¢ > 6,;/2. A

Theorem 1: Generic Self-Testing Pro-
gram 1 is (€/36, €)-self-testing for any
0<e<1.

Proof: Use Theorem A and Lemma 1.
[|

11

Theorem 2: Generic Self-Testing Pro-
gram 2 is (€/36, €)-self-testing for any
0<e< 1.

Proof: Use Theorem B and Lemma 2.
[|

5 Libraries and Lin-
ear Algebra

Often programs for related problems
are grouped in packages; common ex-
amples include packages that solve
statistics problems or packages that
do matrix manipulations. It is rea-
sonable therefore to use programs in
these packages to help test and cor-
rect each other. We extend the the-
ory proposed in [Blum| to allow the
use of several programs, or a library, to
aid in testing and correcting. We show
that this allows one to construct self-
testing/correcting pairs for functions
which did not previously have efficient
self-testing or self-correcting programs,
or even program result checkers. Thus,
the self-testing/correcting pair is given
a collection of programs, all of which
are possibly faulty, and may call any
one of them in order to test or correct
a particular program.

As an example, we show how to self-
test/correct a library of possibly fal-
lible programs for matrix multiplica-
tion, matrix inverse, determinant and
rank. Working with a library of pro-

grams rather than with just a single
program is a key idea: enormous dif-
ficulties arise in attempts to check a
determinant program in the absence of
programs for matrix multiplication and
inverse.

The Linear Algebra Library:

Matrix Multiplication

Input: n x n matrices A, B over fi-
nite field F

Output: A-B

Matrix Inverse

Input: n x n matrix A over finite
field F

Output: A1 ifit exists, “NO” oth-
erwise

Determinant

Input: n x n matrix A over finite
field F

Output: determinant(A)

Rank

Input: n x n matrix A over finite
field F

Output: rank(A)

For the analysis of the running time,
we assume that field operations can be
performed in constant time. Let U, be
the distribution on pairs of » x n ma-
trices where each entry is chosen inde-
pendently and uniformly from the finite
field F. Freivalds_Checker described
below is due to [Freivalds].

Self_Correcting

12

Matrix_Mult(A, B, 3)

Specifications: If error(P, f,U,) <
1/8 then the probability that the out-
put is equal to A x B is at least 1 — (.

Fori=1,...,00 do:

A; «— arandom n X n matrix

B; < arandom n x n matrix

A2 — A — Al

B2 — B — Bl

C «— P(A1,By) + P(A4, By)
+P(Az, By) + P(Az, Bs)

If
Freivalds_Checker(A, B, C, 3)
= “PASS” then output C
and STOP

Freivalds_Checker(A, B, C, 3)

Specifications: If ¢ # A x B
then output “FAIL” with probability
at least 1 — 3. If C = A x B then
output “PASS”. The running time is

O(n”[log(1/5)1)-

For j =1,...,[log(1/8)] do
R «— random (nx1) 0/1 vec-
tor from F
IfC-R# A-(B-R) then
output “FAIL”
output “PASS”

Claim: Self_Correcting Matrix_Mult
meets the specifications. Furthermore,
the expected total running time is
O(M(n) +n?log(1/8)), where M(n) is
the running time of P on nxn matrices.

Proof: A; and A, are uniformly dis-
tributed (though dependent) matrices.
By, and B, are uniformly distributed
(though dependent) matrices that are
independent from A; and A,. Hence
at most 1/8, and thus C = A x B
with probability at least 1/2 at each it-
eration. Let p be the probability that
the final output of Self_Correcting Ma-
trix Mult is equal to A x B. With
probability at least 1/2 in the first
iteration ¢ = A x B, in which
case Freivalds_Checker returns “PASS”.
With probability at most 1/2 in the
first iteration, C' # A x B, in which
case Freivalds_Checker returns “FAIL”
with probability at least 1 — 3, and
the second iteration starts. Thus p >
1+ 1(1—B)p. From this, it can be ver-
ified that 1 — p is at most .

The expected running
time of Self_Correcting Matrix_Mult is
at most M(n) + n*[log(1/3)] times
the expected number of iterations un-
til C = A x B, which is at most two.
|

The self-testing program for matrix
multiplication program is simple. The
following step is executed O(log(1/5))
times to obtain a good estimate
error(P, f,U,). Randomly and inde-
pendently choose matrices A and B
and set C «— P(A,B). If the out-
put of Freivalds_Checker(A, B, C,1/4)
is “PASS”, then the answer is 0 from

13

the step, and if the output is “FAIL”
then the answer is 1. It is easy to ver-
ify that if error(P, f,U,) > 1/8 then
the fraction of 1 answers is at least 1/16
with probability at least 1 — (3, and if
error(P, f,U,) < 1/32 then the frac-
tion of 1 answers is at most 1/16 with
probability at least 1 — 3. This yields a
(1/32,1/8)-self-tester for matrix multi-
plication.

We next design a self-correcting pro-
gram for matrix inversion. Here-
after, we call Self Correcting Ma-
trix Mult (abbreviated SCMM) when-
ever we want to multiply matrices to-
gether. The assumption is that SCMM
uses a program P; has already been self-
tested and “PASSED” to compute ma-
trix multiplications. To avoid clutter-
ing the explanation with messy details,
we assume that P; “PASSED” for good
reason, i.e. it has error probability at
most 1/8, and thus SCMM does self-
correct.

Let I be the n x n identity matrix.

Let U], be the uniform distribution on
n X n invertible matrices over /. Ran-
dall Gen_Matrix(n) randomly gener-
ates an n x m matrix over F' according
to Uy, and is due to [Randall].

Self Correcting Matrix_Inv(A,)

Specifications: If error(P, f,U}) <
1/8 and A is invertible then the output
is A~! with probability at least 1 — §3.
If A is not invertible then the output is
“NO” with probability at least 1 — (.

Fori=1,...,12In(1/3) do:
R —Randall_Gen_Matrix(n)
R' — SCMM(A4, R, 1/32)

If P(R) = “NO” then
ans; — “NO”
Else Al —

SCMM(R, P(R'),1/32)
If I # SCMM(A, A',1/32)
then
ans; — “NO”
Else ans; «— A’
Output the most common an-
swer

Claim: Self Correcting Matrix Inv
meets the specifications.

Proof: Suppose that A is invertible.
Then, because R is a random invertible
matrix, A x R is a random invertible
matrix. If the first call to SCMM is
correct then R’ = A x R. Because the
first call is correct with probability at
least 31/32, the distance between the
distribution on R’ and U} is at most
1/32. Consequently P(R') = R'™! =
R™1 x A~! with probability at least
7/8 —1/32. If P(R) = R7' x A™!
and the second call to SCMM is cor-
rect then A’ = A~ If the third call
to SCMM is correct then ans; = A™L.
Since these last two calls to SCMM are
both correct with probability at least
15/16, ans; = A~! with probability at
least 3/4. Now suppose that A is not in-
vertible. Then, for every A’, I # A’ x A.
Since the last call to SCMM is wrong

14

with probability at most 1/32, it follows
that ans; = “NO” with probability at
least 31/32. &

As was the case for the self-testing
program for matrix multiplication,
the self-tester for matrix inversion is
simple. Notice that inputs need
only be self-tested with respect to
Ul. The following step is exe-
cuted O(log(1/3)) times to obtain a
good estimate error(P, f,U!). Set
R «— Randall Gen Matrix(n), and set
R — P(R). If I = SCMM(R, R',1/64)
then the answer is 0 from the step, and
otherwise the answer is 1. It is easy to
verify that if error(P, f,U}) > 1/8 then
the fraction of 1 answers is at least 1/16
with probability at least 1 — (3, and if
error(P, f,U,) < 1/32 then the frac-
tion of 1 answers is at most 1/16 with
probability at least 1 — . This yields a
(1/32,1/8)-self-tester for matrix inver-
sion.

In the final paper, we will give a
self-testing /correcting pair for matrix
determinant using calls to the self-
testing/correcting pairs for matrix mul-
tiplication and matrix inversion, and a
pair for matrix rank based on the pairs
for all the other problems. The result-
ing pairs are all different, and all but
the pair for matrix rank are efficient.
The matrix rank self-corrector is effi-
cient, but the self-tester is not. How-
ever, the self-tester is the more efficient
than the program result checker given

in [Kannan], [Blum Kannan].

6 Another General
Technique for Nu-
merical Problems

In this section we introduce another
method of designing self-testers. It is
easier to prove that this method of self-
testing meets its specifications than it is
for self-testing based on linearity. This
method works for all the problems that
the linear self-testing works for, as well
as for polynomial multiplication, ma-
trix multiplication, modular exponenti-
ation when the ¢ function of the mod-
ulus is not known, and integer division.
The drawback is that this method is of-
ten less efficient and that the code is
slightly more complicated.

The two
requirements for this method to work
are random self-reducibility and:

Self-Reducibility to Smaller In-
puts: The property is that there is a
constant ¢ such that for all z € I,
f(z) can be expressed as an easily com-
putable function F of z, a4,...,a. and
fla1),..., f(a.), where ay,...,a. are
each in I,_;.

For example, for integer multiplica-
tion, this condition is fulfilled as fol-
lows: Let z = (w1,72). Let z¥ be
the most significant 2"~! bits of z;

15

and let z® be the least significant 2" !

bits of z;. Define zZ and z£ analo-
gously with respect to z,. Let a; =

(m{za‘zéz% Az = (mf?m§)7 az = (mfzamg)

and a4 = (2f,zL). Then, f(z) =
F(l’,al,...,acaf(a'l))"'7f(a’C)) =

flar)+(flaz)+ f(as))2” " + f(ag)2>".

The overall idea behind this method
is that once smaller size inputs have
been self-tested, larger inputs can be
self-tested by choosing a random input
x, decomposing x into smaller inputs,
self-correcting the smaller inputs using
random self-reducibility (which works
because smaller inputs have been self-
tested), and then comparing the answer
against the answer the program gives
on input z. This method of bootstrap-
ping can be continued until the desired
problem size is reached. We now give
more specific details.

We say that =z € I, is bad if P(z) #
f(z), and otherwise z is good. Pro-
gram Self Correct is the generic self-
correcting program described in Section
3.

Subroutine Rec_Self Test (n,[):
Rec_Self_Test verifies that most of the
inputs in I, are good given that most
of the inputs in 7,,_; are good.

Specification:

(1) If at least a fraction of - of the in-
puts in 7, are bad and at most a
fraction of - of the inputs in 7, 4
are bad then Rec_Self_Test outputs

“FAIL” with probability at least
1-p.

(2) If at most a fraction of 7 of the
inputs in 7,, are bad and at most a
fraction of & of the inputs in I,_4
are bad then Rec_Self_Test outputs
“PASS” with probability at least

1-4.
l — O(cln(1/5))

Doform=1,...,l
ansm, «— 0
randomly choose z € I,,.
If n =1 then:
compute f(z) directly
If f(z) # P(z) then
ans, «— 1
Else n > 1 then:
randomly
ai, - .., a. from z.
Fork=1,...,c,
yr <—Self_Correct(n —
1, ag, ﬁ)
If
F(z,a4,..
P(z)
then ans,, — 1

generate

yYe) #

<5 Qey Yty - - -

If ©i_jansk/l > - then
“FAIL”
Else “PASS”

Claim: Rec_Self Test meets the speci-
fication.

Proof:

(1) Because Self_Correct is called with

1
confidence parameter 1.7, the

16

probability that there is an incor-
rect yg for £ = 1,...,c is at most
1. Therefore, in each iteration
Prlans, =1] > L(1 - &) > 2

= B4c’
(2) In each iteration Pr[ans,, = 1] <

2
16c + 16c ~ 16¢°

Thus, the average of ans, over

. . . 3
O‘(cln(l/ﬁ))‘ iterations is at legst oo
with probability at least 1 — 3 in case
1 and at most ;> with probability at

least 1 — # in case 2. W

Program Self_Test (I, z,3): We make
the convention that if any call to one of
the subroutines returns “FAIL” then fi-
nal output is “FAIL” and otherwise the
output is “PASS”.

Specification:

(1) If thereisani, 1 < i <1, such that
the fraction of of bad inputs in I;
is at least -, then output “FAIL”
with probability at least 1 — (.

(2) Ifforalli, 1 <4 <[, the fraction of
bad inputs in /; is at most - then
output “PASS” with probablhty at
least 1 — (3.
For ¢ = 1, call

Rec_Self_ Test(B/1).

Theorem: Self_Test meets the specifi-

cations.

Proof:

17

(1) If there is an 4, 1 <4 <[such that
forall 1 < j <i—1, the fraction of
bad inputs in I; is at most - and
the fraction of bad inputs in I; is at
least 5 then Rec_Self Test(i,3/1)
outputs “FAIL” with probability
at least 1 — 5/l >1—[.

If, for all 7, 1 < ¢ < [, the frac-
tion of bad inputs in I; is at most
= then Rec_Self Test(i,3/1) out-
puts “FAIL” with probability at
most (/l. Thus, over the [calls,
the probability that all answers are
“PASS” is at least 1 — 5. W

(2)

7 Future Work

e Are there self-testing/correcting
pairs for other important func-
tions? Some additional results can
be found in [Beaver Feigenbaum],
[Lipton]. Sorting is a candidate
problem, the hard part seems to be
the design of a self-corrector.

e Is it possible to show that some
functions are not going to have a
self-testing/correcting pair? Some
partial progress can be found
in [Feigenbaum Kannan Nisan],
[Yao.

e Are there applications of the con-
volutions theorems in other areas?
We also propose to develop more
probabilistic tools long these lines.

e One area of practical concern for
self-testing/correcting pairs is the
overhead incurred by running the
self-tester and self-corrector. Re-
cently a batch self-corrector for the
mod function has been designed
which reduces the overhead to a
small additive factor if it is infre-
quent that P answers incorrectly
for some input in a batch [Ru-
binfeld]. We would like to design
batch self-correctors for other im-
portant functions.

8 Acknowledgements

We thank Silvio Micali for pointing out
the general applicability of our meth-
ods, for his enthusiastic support and
for numerous illuminating technical dis-
cussions. We thank Oded Goldre-
ich, Shafi Goldwasser, Sampath Kan-
nan, Richard Cleve, Don Coppersmith,
Michael Ben-Or, Russell Impagliazzo
and Steve Omohundro for very helpful
discussions.

9 References

Adleman, L., Huang, M., Kompella,
K., “Efficient Checkers for Number-
Theoretic Computations”, Submitted
to Information and Computation.

Beaver, D., Feigenbaum, J., “Hiding In-

stance in Multioracle Queries”, STACS
1990.

Ben-Or, M., Coppersmith, D., Luby,
M., Rubinfeld, R., “Convolutions on
Groups”, rough manuscript.

Blum, M., “Designing programs to
check their work”, Submitted to
CACM.

Blum, M., Kannan, S., “Program cor-
rectness checking ... and the design
of programs that check their work”,
STOC 1989.

Blum, M., Luby, M., Rubinfeld, R.,
“Program Result Checking Against
Adaptive Programs and in Crypto-
graphic Settings”, DIMACS workshop
on cryptography and distributed sys-
tems, 1989.

Blum, M., and Micali, S., “How
to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits”,
SIAM J. on Computing, Vol. 13, 1984,
pp. 850-864, FOCS 1982.

Feigenbaum, J., Kannan, S., Nisan,
N., “Lower Bounds on Random-Self-
Reducibility”, Structures in Complezity
Theory, 1990.

Freivalds, R., “Fast Probabilistic Algo-
rithms”, Springer Verlag Lecture Notes
in CS No. 74, Mathematical Founda-
tions of CS, 57-69 (1979).

Kaminski, Michael, “A note on prob-
abilistically verifying integer and poly-

18

nomial products,” JACM, Vol. 36, No.
1, January 1989, pp.142-149.

Kannan, S., “Program Result Checking
with Applications”, Ph.D. thesis, U.C.
Berkeley, 1990.

Lipton, R., “New directions in testing”,
manuscript.

Randall, D., “Efficient Random Gener-
ation of Invertible Matrices”, personal
communication.

Rubinfeld, R., “Designing Checkers
for Programs that Run in Parallel”,
manuscript, 1989.

Rubinfeld, R. “Batch Checking for the
Mod Function”, manuscript, 1990.

Yao, A., “Coherent Functions and Pro-
gram Checking”, these proceedings.

A Convolution Theo-
rems

In this appendix, we prove Theorems A
and B. These are the main two theo-
rems with respect to self-testers based
on the linearity property. The spe-
cific proofs given in this appendix, due
largely to Don Coppersmith, are sim-
pler than our original proofs. A full ex-
position of some related general prob-
ability results will appear in [Ben-Or
Coppersmith Luby Rubinfeld].

We retain the notation of Subsection

4.2. Uncapitalized letters from the end
of the alphabet denote elements cho-
sen randomly from G according to Ug,
e.g. z,y, 2, whereas uncapitalized let-
ters from the beginning of the alphabet
denote fixed elements of G, e.g. a, b, c.

Theorem A: Let G' be an infinite
countable group with no finite sub-

groups except for the trivial subgroup
{0"}. Then, § > 2¢/9.

Theorem B: Let G’ be any (finite
or countable) group. If, for all i =
1,-+-,¢, 6 < 1/2, then ¢§ > 2¢/9.

Before giving the proofs of these two
theorems, we prove some intermediate
lemmas. For Lemma Al, Lemma A2,
Lemma A3 and Lemma A4, we assume
that § < 2/9. Let §' be defined as the
solution to the equality ¢'(1 — ¢') = 6.
Because § < 2/9, §' < 1/3.

Lemma Al: Va € G, 3¢’ € G' such
that Pr[disc(z o a) = disc(z) o' a'] >
1-¢.

Proof: By the definition of ¢ and be-
cause zoa is distributed in G according
to Ug and a o y is distributed in G ac-
cording to Ug,

Pr[disc(z o a) o' disc(y) = disc(zoaoy)

= disc(z) o' disc(aoy)] > 1 —26.
So

Pr[disc(zoa)o'disc(z) ™ = disc(yoa)o'disc(y)™"]

19

>1-—26.

This is the sum, over all o’ € G', of the
square of the probability

Pr[disc(z 0 a) o' disc(z)™! = d'].

Since § < 2/9, this sum exceeds 5/9 and
thus there must be one value o' with

Pr[disc(z oa)o disc(z) ' =d]>1-¢

where (1 —§)?+6?=1-26 and ¢ <
1/2. This leads to §'(1 —¢') = 6. W

Lemma A1 leads to the definition of the
function A from G to G’ defined as fol-
lows: For all ¢ € G, let h(a) = o,
where d' is the element of G’ described
in Lemma Al.

Lemma A2: The function A is a group
homomorphism from G to G, i.e. for
all a,b € G, h(aob) = h(a) o’ h(b).

Proof: Using Lemma Al three times,
for all a,b € G,

Pr[disc(z)o'h(a)o'h(b) = disc(zoa)o'h(b)

disc(zoaob) = disc(x)o'h(aob)] > 1-36".

This probability is strictly greater than
zero because ¢’ < 1/3, and thus h(a o
b) = h(a) o' h(b). A

Lemma A3:

(1) If G’ is an infinite countable group
with no finite subgroups except for
the trivial subgroup {0’} then for
all a € G, h(a) =0".

(2) If G’ is any (finite or countable)
group and, for all ¢ = 1,---,c,
§; < 1/2, then for all a € G,
h(a) = 0.

Proof: By Lemma A2, h is a group
homomorphism and thus the image of
h is a finite subgroup of G'. In case (1),
the only finite subgroup of G’ is {0'}. In
case (2), consider a fixed i € {1,...,c}.
Because 1 — §; > 1/2 and using Lemma
Al and the fact that 1 — ¢’ > 2/3,

Pr[disc(z) = disc(zog;) = disc(x)o'h(g:)] > 1/6,

and thus there is some z € G such
that disc(z) = disc(z) o' h(g;) which
implies that h(g;) = 0. Thus, for
all i = 1,...,¢, h(g;) = 0'. Because
g1, - -, g are generators for G it follows
that for all a € G, h(a) =0'. W

Lemma A4: Under the same con-
ditions as (1) and (2) in Lemma A3,
Pr[disc(z) = disc(z oy)] > 1 -4

Proof: By Lemma A3, h(a) = 0 for
all @ € G. On the other hand, Lemma
A1 says that

Pr[disc(zoa) = disc(z)o' h(a)] > 1§

for every ¢ € @G, and thus certainly
this is true when a is replaced with
a random y. Thus, Pr[disc(z o y) =
disc(z)] >1-¢. 1

Proof of Theorem A: Assume first
that § < 2/9. By definition of § and

20

using Lemma A4, Pr[disc(z) = disc(zo
y) = disc(z)o' disc(y)] > 1—48—6, and
thus Pr[disc(y) = 0'] > 1 —¢' — § which
implies that ¢ < § + ¢'. Because §' <
1/3, 1 — ¢ > 2/3 which implies that
¢’ < 3§/2. This implies that § > 2¢/5.
On the other hand, if § > 2/9, then
because ¢ < 1 it follows that § > 2¢/9.
|

Proof of Theorem B: Analogous to
the proof of Theorem A. &

21

