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Abstract

Suppose someone gives us an extremely
fast program P that we can call as
a black box to compute a function f.
Should we trust that P works correctly?
A self-testing/correcting pair allows us
to: (1) estimate the probability that
P(z) # f(z) when z is randomly cho-
sen; (2) on any input z, compute f(z)
correctly as long as P is not too faulty
on average. Furthermore, both (1) and
(2) take time only slightly more than
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the original running time of P.

We present general techniques for
constructing simple to program self-
testing/correcting pairs for a variety of
numerical problems, including integer
multiplication, modular multiplication,
matrix multiplication, inverting matri-
ces, computing the determinant of a
matrix, computing the rank of a ma-
trix, integer division, modular exponen-
tiation and polynomial multiplication.

1 Introduction

Consider the task of writing a program
P to evaluate a function f. One of the
main difficulties is that when P is im-
plemented it is difficult to verify that
P(z) = f(z) for all inputs . There
are two traditional approaches to this
problem, program verification and pro-
gram testing. Program verification has
had fairly limited success because even
relatively simple programs are hard to
prove correct. Furthermore, even if
the proof is correct, it only makes a



statement about the program as it is
written on paper, not about the com-
piled code nor about the hardware on
which it runs. Traditional testing has
two drawbacks. First, the test inputs
typically do not cover all inputs en-
countered when the program is actually
used, and thus on a particular input the
user has no guarantee that the program
output is correct. Second, during test-
ing another program P’ is used to com-
pute f to compare against the answer
of P, and thus there is a reliance on the
correctness of another program P’ that
is in no quantifiable way different than
the program P it is being used to test.

We introduce the notion of self-
testing/correcting, which provides an
attractive alternative to traditional
approaches of verifying that a pro-
gram is correct. The theory of self-
testing/correcting is an extension of the
theory of program checkers introduced
by Manuel Blum [Blum)].

We want to design a probabilistic
program T} that is able to self-test any
program P that supposedly computes
f, i.e. Ty makes calls to P to estimate
the probability that P(z) # f(z) for
a random input x. We call this prob-
ability the error probability of P. We
insist that T be different than any cor-
rect program for computing f, in the
sense that the running time of 7%, not
counting the time for calls to P, must
be faster than the running time of any
correct program for computing f. This

ensures that 7y must be doing some-
thing quantifiably different than com-
puting f directly, because there is not
enough time for this. A self-testing pro-
gram is in this sense an “independent”
verification step for a program P sup-
posedly computing f. In addition, al-
though it is hard to quantify, the self-
testers we develop also have the prop-
erty that the resulting code is aesthet-
ically simple. We would like T to be
efficient, in the sense that the running
time of T}, counting the time for calls
to P, is within a constant multiplicative
factor of the running time of P. This
ensures that the advantages we gain by
using T} to self-test P are not over-
whelmed by an inordinate running time
slowdown.

In conjunction with a self-testing
program, we want to design a proba-
bilistic program C'; that is able to self-
correct any program P as long as the
error probability of P is sufficiently low,
i.e., for any input z, C'y makes calls to P
to compute f(z) correctly as long as the
error probability of P is small enough.
As for self-testing programs and for the
same reasons, we want Cy to be both
different and efficient.

A
self-testing/correcting pair (T, Cy) for
a function f is a powerful tool. A user
can take any program P that purport-
edly computes f and self-test it with
Ty. If P passes the self-test then, on
any input z, the user can call 'y, which



in turn makes calls to P, to correctly
compute f(z). Even a program P that
computes f incorrectly for a small but
significant fraction of the inputs can be
used with confidence to correctly com-
pute f(z) for any input z. In addi-
tion, if in the future somebody designs a
faster program P’ for computing f then
the same pair (7%, Cy) can be used to
self-test /correct P’ without any further
modifications. Thus, it makes sense to
spend a reasonable amount of time de-
signing self-testing/correcting pairs for
functions commonly used in practice
and for which a lot of effort is spent
writing super-fast programs.

We develop general techniques for
constructing simple to program self-
testing/correcting pairs for a variety
of numerical problems. The follow-
ing table summarizes the running time
behavior of our self-testing/correcting
pairs as a function of the problem input
size n. The second column is the run-
ning time not counting time for calls to
P and the third column is the total run-
ning time counting time for calls to P,
where M (n) is the running time of P on
inputs of size n. These times exclude a
constant multiplicative factor and they
also exclude the running time depen-
dence on the confidence parameter (3,
which is typically O(log(1/5)).

Problem Without P | Total
Integer Mult. n M(n

Mod n M(n

Mod Mult. n M(n
Integer Div. nlogn M(n)logn
Poly. Mult. n M(n

Mod Exp., ¢ n M(n

Mod Exp., no ¢ | nlog*n M(n)log®n
Matrix Mult. n M(n
Determinant n M(n
Matrix Inv. n M(n
Matrix Rank: C | n M(n
Matrix Rank: T | ny/n M(n)+/n

1.1 Related Work

[Blum Micali] construct a pseudo-
random generator, where a crucial in-
gredient of the construction can be
thought of as a self-correcting program
for the discrete log problem. [Rubin-
feld] introduces checking for parallel
programs, and uses self-testing to de-
sign a constant depth circuit to check
the majority function.

A self-testing/correcting pair for a
function f implies a program result
checker for f. A program result checker
for f implies a self-tester for f, but it
is not known whether a program result
checker also implies a self-corrector.
Previous to our work, [Kaminski] gives
program result checkers for integer and
polynomial multiplication. Indepen-
dently of our work, [Adleman Huang
Kompella] give program result check-
ers for integer multiplication and mod-




ular exponentiation. Both of these pa-
pers use very different techniques than
ours. Previous to our work, [Freivalds]
introduces a program result checker for
matrix multiplication over a finite field.
We make use of this checker when de-
signing the self-testing/correcting pair
for matrix multiplication over a finite
field.

[Lipton|, independently of our work,
discusses the concept of self-correcting
programs and for several problems uses
it to construct a testing program with
respect to any distribution assuming
that the programs are not too faulty with
respect to a particular distribution. To
highlight the importance of being able
to self-test, consider the mod function.
To self-correct on input z and modulus
R, the assumption in [Lipton]| and here
is that the program is correct for most
inputs x with respect to the particular
modulus R. This requires a different as-
sumption for each distinct modulus R.
Our self-testing algorithm for the mod
function on input R can be used to effi-
ciently either validate or refute this as-
sumption.

Previously, [Kannan| provides an el-
egant program result checker for com-
puting the determinant of a matrix,
but it is not efficient.  Our self-
correcting/testing pair for determinant
is efficient, but it relies heavily on al-
lowing the pair to call a library of linear
algebra programs instead of restricting
calls to a single program that suppos-

edly computes determinant.

In this paper, we assume that the
program’s answer on a particular in-
put does not depend on previous in-
puts. [Blum Luby Rubinfeld] considers
the case when the program adaptively
decides its answer based on previous in-
puts.

2 A DMore
Overview

Formal

For expository purposes, we restrict
ourselves to the case when f is a func-
tion of one input from some universe
I. Let I1,1,,... be a sequence of sub-
sets of I such that I = U,cal,. The
subscript n indicates the “size” of the
problem. Let D = {D,|ln € N} be
an ensemble of probability distributions
such that D, is a distribution on I,.
Let P be a program that supposedly
computes f. Let error(P, f, D,) be the
probability that P(z) # f(z) when z is
randomly chosen in I, according to D,,.
Let 3 > 0 be a confidence parameter.

Definition (probabilistic oracle
program) : A probabilistic program
M is an oracle program if it makes calls
to another program that is specified at
run time. We let M denote M making
calls to program A.

Definition: Let 0 < ¢; < ey < 1. An
(€1, €2)-self-testing program for f with



respect to D is a probabilistic oracle
program T that has the following prop-
erties for any program P on input n and

3.

1. If error(P, f,D,) < ¢ then T]f’
outputs “PASS” with probability
at least 1 — (3.

2. If error(P, f,D,) > € then Tf
outputs “FAIL” with probability
at least 1 — (3.

The value of ¢ should be as close as
possible to €, to allow as faulty as possi-
ble programs P to pass test Tf and still
have self-corrector Cf work correctly.

Definition: Let 0 < e < 1. An
e-self-correcting program for f with re-
spect to D is a probabilistic oracle pro-
gram C; that has the following prop-
erty on input n, z € I, and 3. If
error(P, f,D,) < e then Cf(z) = f(x)
with probability at least 1 — f3.

We would like T and Cy to be both
different and efficient as discussed in
the introduction, although sometimes
we are forced to relax the efficiency re-
quirement somewhat. In the definitions
of different and efficient, we ignore the
running time dependence on the confi-
dence parameter 3, which is typically a
multiplicative factor of O(log(1/3)).

Definition: A self-testing/correcting
pair for f is a pair of probabilistic pro-

grams (T, C¢) such that there are con-
stants 0 < ¢ < &g < € < 1 and an
ensemble of distributions D such that
T} is an (€1, €2)-self-testing program for
[ with respect to D and Cy is an e-self-
correcting program for f with respect
to D.

3 Self-Correcting

Because self-testers must be different,
the strategy used by T} cannot be the
naive technique of choosing =z € I, ac-
cording to D, and seeing if P(z) =
f(z), because this requires computa-
tion of f(z). Similarly, Cf is forced to
make various calls to P to help it com-
pute f(x) correctly. Many of the self-
testers and self-correctors we introduce
exploit the following property.

Random Self-Reducibility : Let z €
I,. Let ¢ > 1 be an integer. The prop-
erty is that f(z) can be expressed as
an easily computable function F' of z,
ai,...,a. and f(a1),..., f(a.), where
ai,-..,a. are easily computable given
z and each q; is randomly distributed
in I, according to D,.!

The strength of this property is that
it can be used to transform a pro-
gram that is correct on a large enough

'However, no independence between these
random variables is needed, e.g. given the
value of a; it is not necessary that as be ran-
domly distributed in I,, according to D,,.



fraction of the inputs into a program
that computes f(x) correctly with high
probability for any input . The follow-
ing program is a i—self—correcting pro-
gram for f with respect to D,. The
input to the program is n, z € I, and
a confidence parameter [3.

Gen Self-Correcting Program
(n7 $7 ﬁ)
Do form =1,...,12In(1/5)
randomly generate aq,...,a.
based on z
Fori=1,...,¢, a; — P(a;).
aNSm, —
F(z,aq,...,0.,01,...,0.)

Output the most common an-
swer among {ans,, : m =

1,...,121n(1/3)}

Lemma 1: The above program is a ;-
self-correcting program for f with re-
spect to D,,.

Proof: Because error(P, f,D,) < &
and because, for each £ = 1,...,¢, ag
is randomly distributed in I,, according
to D,, all ¢ outputs of P are correct
with probability at least 3/4 each time
through the loop. If all ¢ outputs of
P are correct, then by the random self-
reducibility property, ans, = f(z). A
straightforward calculation shows that
after 121n(1/8) executions, the major-
ity of the answers are equal to f(z) with
probability at least 1 — 3. B

As an example, consider the function

fr(z) = zmod R. (We are viewing
this as a function of one input z, where
R is a fixed but arbitrary positive inte-
ger.) Let In = ZRgn = {0, . ,R2n—1},
let £ € Zpon be the input to the self-
corrector, let D, = Ugz,,. be the uni-
form distribution on Zgon, let +5 de-
note addition modR and let +gon de-
note addition mod R2"™.

Suppose error(Pr, fr,Uzp,.) < 1/8.
At each step the self-corrector ran-
domly and uniformly chooses z; €
Zpgon, computes zo < (z—2z;) mod R2"
and lets the answer from the step be
Pg(z1) +r Pr(z2). Note that fg(z) =
fr(z1) +r fr(z2) and that z, is uni-
formly distributed in Zgon. Thus, the
probability that the answer for a par-
ticular step is equal to fr(z) is at least
3/4. The self-corrector repeats this
step 121n(1/43) times and outputs the
most common answer. It is easy to
see that the most common answer is
correct with probability at least 1 — f3.
The code for the self-corrector is simple,
involving only calls to Pr on random
inputs, integer additions and compar-
isons. Furthermore the self-corrector is
both efficient and different.

In addition to the mod function,
this generic self-correcting program can
be implemented for integer multiplica-
tion, modular multiplication and mod-
ular exponentiation, matrix multiplica-
tion over a finite field, multiplication of
polynomials over a finite field and sev-
eral other problems. In all cases, the re-



sulting self-correcting program is both
different and efficient. [Lipton] uses the
same basic outline to develop a self-
correcting program for several of these
problems and also for evaluating a poly-
nomial over a finite field.

4 Linearity and Self-
Testing

Although the most interesting of our
self-testing methods leads to self-testers
that are almost as simple to code as
the self-correctors described above, the
proofs that they meet their specifica-
tions are more difficult and interesting
and involve some probability theory on
groups that may have other applica-
tions. This method applies to integer
multiplication, the mod function, mod-
ular multiplication, and modular expo-
nentiation when the ¢ function of the
modulus is known. The resulting self-
testers are simple to code, and are both
different and efficient.

4.1 Self-Testing Mod

To give some idea of how the method
works, we concentrate on the mod func-
tion. For positive integers z and R,
let fr(z) = z mod R. (As before, we
are viewing this as a function of one in-
put x, where R is a fixed but arbitrary
positive integer.) Because the self-
correcting program for the mod func-

tion relies on a program that is cor-
rect for most inputs with respect to a
particular modulos R, the self-testing
program for the mod function is de-
signed to self-test with respect to an
input modulus R. This is an impor-
tant motivation for constructing effi-
cient self-testing programs, because the
self-testing program is executed each
time a new modulus is used. Similar re-
marks hold for modular multiplication
and modular exponentiation.

There are two critical tests performed
by the self-tester. Let z; and z; be
randomly, independently and uniformly
chosen in Zgs», and set & «— x1+ gon To.
Note that fr(z) = fr(z1)+r[r(22), Le.
fr is a (modular) linear function of its
inputs. The linear consistency test is

“Does PR(JI) = PR(.’Bl) +r PR($2)?”,

and the linear consistency error is the
probability that the answer to the lin-
ear consistency test is “no”. Let z be
randomly chosen in Zgo» according to
Ugzppm, and set 2’ < z+pon 1. Note that
fr(Z') = fr(2) +r 1, i.e. in addition to
being linear fg also has (modular) slope
one. The neighbor consistency test is

“Does Pg(%') = Pr(2) +r 177,

and the neighbor consistency error is
the probability that the answer to the
neighbor consistency test is “no”.

Our main theorem with respect to
the self-tester for fr is that there



are constants 0 < % < 1 and
Y > 1 such that error(Pg, fr,Uzp,.)
is at least v times the minimum of
the linear consistency error and the
neighbor consistency error, and that
error(Pg, fr,Uzg,. ) is at most ¢’ times
the maximum of the linear consistency
error and the neighbor consistency er-
ror. Thus, we can indirectly approx-
imate error(Pg, fr,Uzp,.) by instead
estimating the linear and neighbor con-
sistency errors.

Without loss of generality, the out-
put of P is always in the range
{0,..., R —1}. To enforce this condi-
tion, we can simply check that each an-
swer that P supplies is in this range,
and if it isn’t then set the answer to
zero. This trivially modifies P to an-
other program P’ that is at least as cor-
rect as P. The same modification needs
to be made in the self-correcting pro-
gram. For simplicity of exposition, we
omit these lines of code.

Mod Function Self-Testing Pro-
gram (n, R, )

N = [5761n(4/3)]
t— 20
Doform=1,...,N
Call Mod_Linear_Test
(n, R, ans)
t—1t+ans
If t/N > 1/72 then “FAIL”

N' = [321n(4/5)]
0

Doform=1,...,N'
Call Mod_Neigh_Test
(n, R, ans)
t' —t' +ans
If #/N' > 1/4 then “FAIL”
else “PASS”

Mod_Linear_Test (n, R, ans)

ans < 0

Choose z; randomly in
{0,...,R2" — 1}

Choose z, randomly in
{0,...,R2" — 1}

T < T1 +Ron T2

If P($1,R) +r P(.’L'Q,R) ?é
P(z, R) then ans «— 1

Mod_Neigh_Test (n, R, ans):

ans «— 0
Choose 2 randomly in
{0,...,R2" — 1}

2 —z +Ron 1
If P(2,R)+r 1 # P(?,R)
then ans «— 1

Theorem 2.2: The above program is
an (1/288,1/8)-self-testing program for
the mod function with any modulus R.

Proof: This is a corollary of Theorem
2 from the next subsection.

The only non-trivial lines of code in the
self-testing program are generation of
random numbers, calls to the program
P, integer additions and integer com-
parisons.



4.2 Generic Linear Self-
Testing

In this section, we describe a generaliza-
tion of the mod function self-tester to
functions f mapping a group G into an-
other group G'. In addition to the mod
function, this generic self-tester can be
applied to integer multiplication, mod-
ular multiplication and modular expo-
nentiation. In all cases, the resulting
self-testing program is extremely sim-
ple to code, different and efficient. The
proof of the two main theorems for the
generic self-tester, Theorems A and B,
appear in the appendix. A more de-
tailed account of these theorems can
be found in [Ben-Or Coppersmith Luby
Rubinfeld].

For this version of the paper, we as-
sume that all groups are abelian; in the
final version of the paper we generalize
to non-abelian groups. Let G be a fi-
nite group with group operation o and
with generators gi,..., 9. and identity
element 0. For y € G, let y ! denote
the inverse of y. Let G’ be a (finite or
countable) group with group operation
o' and identity element 0'. For a € G',
let a~! denote the inverse of a. Let
f : G — G' be a function. Intuitively,
f is hard to compute compared to ei-
ther o or o’.

Let Ug be the uniform probability
distribution on GG. We say that f has
the linearity property if:

(1) It is easy to choose random ele-
ments of G according to Ug.

(2) F is an easily computable func-
tion with the property that, for
any pair 1,22 € G, F(z1,22) €
G' and furthermore f(z; o x2) =
f(z1) o f(xg) o F(z1,22). We call
this property linear consistency.
In all of our applications except for
integer multiplication, F(x1,22) =
0" for all inputs z;,x2, in which
case f is a group homomorphism.

(3) For each generator g; € G, F;
is an easily computable function
with the property that, for any
z € G, F;(2) € G" and furthermore
f(zog) = f(2) o Fi(z). We call
this property neighbor consistency.
This property is not needed for in-
teger multiplication. For all of the
other applications, both G and G’
are generated by a single element
denoted 1 and 1, respectively, (i.e.
they are both cyclic groups), and
forall z € G, f(z01) = f(2) o' 1"

The linearity property is a special case
of random self-reducibility.

Let P be a program that supposedly
computes f such that, for all y € G,
P(y) € G'. Gen Self-Testing Program
1 is an (€/36, €)-self-testing program for
f with respect to Ug when G’ is an
infinite group that has no finite sub-
groups except {0'}. The self-tester for
integer multiplication is based on Gen



Self-Testing Program 1, where G = Call Gen_Neigh_Test

{0,...,2" — 1} with addition mod 2" as (i,ans)

the group operation, and G' = Z with t'—t' 4+ ans

addition as the group operation. Gen If /N" > 1/4 then “FAIL”
Self-Testing Program 2 is an (¢/36, ¢)- else “PASS”

self-testing program for f with respect
to Ug for all other G'. The self-tester (en Linear. Test (ans)
for the mod function described in sub-

section 4.1, for modular multiplication randomly choose z; € G ac-
and for modular exponentiation are all cording to Ug.
based on Gen Self-Testing Program 2. randomly choose zo € G ac-

cording to Ug.

Gen Self-Testing Program 1 (e, ) If P(z10m5) # P(a1)o' Pz2)o’

N — |‘Q In(2/8)] F(z1,2z2) then ans «— 1
fe 0 else ans «— 0
Do form=1,...,N

Call Gen_Linear_Test Gen_Neigh_Test (i, ans)

(ans)

t — t+ ans randomly choose z € G ac-

If t/N > ¢/9 then “FAIL” else cording to Ug.

“PASS” If P(z0g;) # P(2)o' Fy(z) then

ans «— 1

Gen Self-Testing Program 2 (e, )

N — [21n(4/8)] vide motivation for why the self-testers
fe 0 work. For each y € G, define the dis-
Doform=1,...,N crepancy of y to be
Call Gen_Linear_Test ) B
(ans) disc(y) = f(y) o' P(y)~".
t—1t+ans

If t/N > ¢/9 then “FAIL”

N’ — [321n(4c/B)] function defines a homomorphism from

t' 0 G into {0'}.

Do form=1,...,N’ Because of the linearity property,
ans < 0 part (2), and because the self-testing
Dofori=1,...,c program computes F(zy,z3) correctly

10

We introduce some notation and pro-

Note that P computes f correctly for
all inputs if and only if the discrepancy



on its own, P(zj0x5) = P(x1)0' P(zq)o
F(z1,z2) if and only if

disc(zy 0 T3) = disc(xy) o disc(zz).

If this equality holds for all z1,25 € G
then the discrepancy function defines
a homomorphism A from G into G'.
Gen_Linear_Test verifies that the dis-
crepancy function is close to some A.
If G’ is infinite with no non-trivial fi-
nite subgroups then, because G is finite,
h ={0"}.

Now suppose G’ has a finite subgroup
not equal to {0'}. Because of the lin-
earity property, part (3), and because
the self-testing program computes F;(2)
correctly on its own, P(zog;) = P(2)0o
F;(2) if and only if

disc(z o g;) = disc(z).

If, forall z € Gand foralli =1,...,c,
disc(z o ¢g;) = disc(z) then h = {0'}.
Gen_Neigh Test verifies that h = {0'}.
The following notation is used
throughout the rest of this section.

Notation:

e § = Pr[disc(zy o z3) # disc(xy) o
disc(x)] when z; and z5 are ran-
domly and independently chosen
according to Ug.

e For all ¢« = 1,...,¢, 6 =
Pr[disc(z) # disc(z o g;)] when z
is randomly chosen in GG according
to ng.

e Yy = Pr[disc(y) # 0'] when y is
randomly chosen in GG according to
Ug.

Theorems A and B are proved in the
appendix. These two theorems are the
heart of the proof that Generic Self-
Testing Programs 1 and 2 meet their
specifications.

Theorem A: Let G' be an infinite
countable group with no finite sub-
groups except for the trivial subgroup
{0’}. Then, § > 2¢/9. A

Theorem B: Let G’ be any (finite
or countable) group. If, for all i =
1,---,¢,8; <1/2,then § > 2¢/9. R

Lemma 1: Let G’ be any (finite or
countable) group. Then, ¢ > §/2.

Proof: Because 1 — ¢ = Pr[disc(y) =
0'], Pr[disc(zy o z3) = 0] > (1 — )?
and consequently § < 1 — (1 — 9)?
¥(2 — ). Because 9 > 0, this implies
that ¢ > 6/2. B

Lemma 2: Let G’ be any (finite or
countable) group. Then, for all i =
1,---,C,¢25i/2-

Proof: Foralli =1,...,¢, if disc(z o
9:) # disc(z) then either disc(z o g;) #
0’ or disc(z) # 0'. Thus, ¢ > 6,;/2. A

Theorem 1: Generic Self-Testing Pro-
gram 1 is (€/36, €)-self-testing for any
0<e<1.

Proof: Use Theorem A and Lemma 1.
[ |

11



Theorem 2: Generic Self-Testing Pro-
gram 2 is (€/36, €)-self-testing for any
0<e< 1.

Proof: Use Theorem B and Lemma 2.
[ |

5 Libraries and Lin-
ear Algebra

Often programs for related problems
are grouped in packages; common ex-
amples include packages that solve
statistics problems or packages that
do matrix manipulations. It is rea-
sonable therefore to use programs in
these packages to help test and cor-
rect each other. We extend the the-
ory proposed in [Blum| to allow the
use of several programs, or a library, to
aid in testing and correcting. We show
that this allows one to construct self-
testing/correcting pairs for functions
which did not previously have efficient
self-testing or self-correcting programs,
or even program result checkers. Thus,
the self-testing/correcting pair is given
a collection of programs, all of which
are possibly faulty, and may call any
one of them in order to test or correct
a particular program.

As an example, we show how to self-
test/correct a library of possibly fal-
lible programs for matrix multiplica-
tion, matrix inverse, determinant and
rank. Working with a library of pro-

grams rather than with just a single
program is a key idea: enormous dif-
ficulties arise in attempts to check a
determinant program in the absence of
programs for matrix multiplication and
inverse.

The Linear Algebra Library:

Matrix Multiplication

Input: n x n matrices A, B over fi-
nite field F

Output: A-B

Matrix Inverse

Input: n x n matrix A over finite
field F

Output: A1 ifit exists, “NO” oth-
erwise

Determinant

Input: n x n matrix A over finite
field F

Output: determinant(A)

Rank

Input: n x n matrix A over finite
field F

Output: rank(A)

For the analysis of the running time,
we assume that field operations can be
performed in constant time. Let U, be
the distribution on pairs of » x n ma-
trices where each entry is chosen inde-
pendently and uniformly from the finite
field F. Freivalds_Checker described
below is due to [Freivalds].

Self_Correcting
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Matrix_Mult(A, B, 3)

Specifications: If error(P, f,U,) <
1/8 then the probability that the out-
put is equal to A x B is at least 1 — (.

Fori=1,...,00 do:

A; «— arandom n X n matrix

B; < arandom n x n matrix

A2 — A — Al

B2 — B — Bl

C «— P(A1,By) + P(A4, By)
+P(Az, By) + P(Az, Bs)

If
Freivalds_Checker(A, B, C, 3)
= “PASS” then output C
and STOP

Freivalds_Checker(A, B, C, 3)

Specifications: If ¢ # A x B
then output “FAIL” with probability
at least 1 — 3. If C = A x B then
output “PASS”. The running time is

O(n”[log(1/5)1)-

For j =1,...,[log(1/8)] do
R «— random (nx1) 0/1 vec-
tor from F
IfC-R# A-(B-R) then
output “FAIL”
output “PASS”

Claim: Self_Correcting Matrix_Mult
meets the specifications. Furthermore,
the expected total running time is
O(M(n) +n?log(1/8)), where M(n) is
the running time of P on nxn matrices.

Proof: A; and A, are uniformly dis-
tributed (though dependent) matrices.
By, and B, are uniformly distributed
(though dependent) matrices that are
independent from A; and A,. Hence
at most 1/8, and thus C = A x B
with probability at least 1/2 at each it-
eration. Let p be the probability that
the final output of Self_Correcting Ma-
trix Mult is equal to A x B. With
probability at least 1/2 in the first
iteration ¢ = A x B, in which
case Freivalds_Checker returns “PASS”.
With probability at most 1/2 in the
first iteration, C' # A x B, in which
case Freivalds_Checker returns “FAIL”
with probability at least 1 — 3, and
the second iteration starts. Thus p >
1+ 1(1—B)p. From this, it can be ver-
ified that 1 — p is at most .

The expected running
time of Self_Correcting Matrix_Mult is
at most M(n) + n*[log(1/3)] times
the expected number of iterations un-
til C = A x B, which is at most two.
|

The self-testing program for matrix
multiplication program is simple. The
following step is executed O(log(1/5))
times to obtain a good estimate
error(P, f,U,). Randomly and inde-
pendently choose matrices A and B
and set C «— P(A,B). If the out-
put of Freivalds_Checker(A, B, C,1/4)
is “PASS”, then the answer is 0 from

13



the step, and if the output is “FAIL”
then the answer is 1. It is easy to ver-
ify that if error(P, f,U,) > 1/8 then
the fraction of 1 answers is at least 1/16
with probability at least 1 — (3, and if
error(P, f,U,) < 1/32 then the frac-
tion of 1 answers is at most 1/16 with
probability at least 1 — 3. This yields a
(1/32,1/8)-self-tester for matrix multi-
plication.

We next design a self-correcting pro-
gram for matrix inversion. Here-
after, we call Self Correcting Ma-
trix Mult (abbreviated SCMM) when-
ever we want to multiply matrices to-
gether. The assumption is that SCMM
uses a program P; has already been self-
tested and “PASSED” to compute ma-
trix multiplications. To avoid clutter-
ing the explanation with messy details,
we assume that P; “PASSED” for good
reason, i.e. it has error probability at
most 1/8, and thus SCMM does self-
correct.

Let I be the n x n identity matrix.

Let U], be the uniform distribution on
n X n invertible matrices over /. Ran-
dall Gen_Matrix(n) randomly gener-
ates an n x m matrix over F' according
to Uy, and is due to [Randall].

Self Correcting Matrix_Inv(A, )

Specifications: If error(P, f,U}) <
1/8 and A is invertible then the output
is A~! with probability at least 1 — §3.
If A is not invertible then the output is
“NO” with probability at least 1 — (.

Fori=1,...,12In(1/3) do:
R —Randall_Gen_Matrix(n)
R' — SCMM(A4, R, 1/32)

If P(R) = “NO” then
ans; — “NO”
Else Al —

SCMM(R, P(R'),1/32)
If I # SCMM(A, A',1/32)
then
ans; — “NO”
Else ans; «— A’
Output the most common an-
swer

Claim:  Self Correcting Matrix Inv
meets the specifications.

Proof: Suppose that A is invertible.
Then, because R is a random invertible
matrix, A x R is a random invertible
matrix. If the first call to SCMM is
correct then R’ = A x R. Because the
first call is correct with probability at
least 31/32, the distance between the
distribution on R’ and U} is at most
1/32. Consequently P(R') = R'™! =
R™1 x A~! with probability at least
7/8 —1/32. If P(R) = R7' x A™!
and the second call to SCMM is cor-
rect then A’ = A~ If the third call
to SCMM is correct then ans; = A™L.
Since these last two calls to SCMM are
both correct with probability at least
15/16, ans; = A~! with probability at
least 3/4. Now suppose that A is not in-
vertible. Then, for every A’, I # A’ x A.
Since the last call to SCMM is wrong

14



with probability at most 1/32, it follows
that ans; = “NO” with probability at
least 31/32. &

As was the case for the self-testing
program for matrix multiplication,
the self-tester for matrix inversion is
simple. Notice that inputs need
only be self-tested with respect to
Ul. The following step is exe-
cuted O(log(1/3)) times to obtain a
good estimate error(P, f,U!).  Set
R «— Randall Gen Matrix(n), and set
R — P(R). If I = SCMM(R, R',1/64)
then the answer is 0 from the step, and
otherwise the answer is 1. It is easy to
verify that if error(P, f,U}) > 1/8 then
the fraction of 1 answers is at least 1/16
with probability at least 1 — (3, and if
error(P, f,U,) < 1/32 then the frac-
tion of 1 answers is at most 1/16 with
probability at least 1 — . This yields a
(1/32,1/8)-self-tester for matrix inver-
sion.

In the final paper, we will give a
self-testing /correcting pair for matrix
determinant using calls to the self-
testing/correcting pairs for matrix mul-
tiplication and matrix inversion, and a
pair for matrix rank based on the pairs
for all the other problems. The result-
ing pairs are all different, and all but
the pair for matrix rank are efficient.
The matrix rank self-corrector is effi-
cient, but the self-tester is not. How-
ever, the self-tester is the more efficient
than the program result checker given

in [Kannan], [Blum Kannan].

6 Another General
Technique for Nu-
merical Problems

In this section we introduce another
method of designing self-testers. It is
easier to prove that this method of self-
testing meets its specifications than it is
for self-testing based on linearity. This
method works for all the problems that
the linear self-testing works for, as well
as for polynomial multiplication, ma-
trix multiplication, modular exponenti-
ation when the ¢ function of the mod-
ulus is not known, and integer division.
The drawback is that this method is of-
ten less efficient and that the code is
slightly more complicated.

The two
requirements for this method to work
are random self-reducibility and:

Self-Reducibility to Smaller In-
puts: The property is that there is a
constant ¢ such that for all z € I,
f(z) can be expressed as an easily com-
putable function F of z, a4,...,a. and
fla1),..., f(a.), where ay,...,a. are
each in I,_;.

For example, for integer multiplica-
tion, this condition is fulfilled as fol-
lows: Let z = (w1,72). Let z¥ be
the most significant 2"~! bits of z;
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and let z® be the least significant 2" !

bits of z;. Define zZ and z£ analo-
gously with respect to z,. Let a; =

(m{za‘zéz% Az = (mf?m§)7 az = (mfzamg)

and a4 = (2f,zL). Then, f(z) =
F(l’,al,...,acaf(a'l))"'7f(a’C)) =

flar)+(flaz)+ f(as))2” " + f(ag)2>".

The overall idea behind this method
is that once smaller size inputs have
been self-tested, larger inputs can be
self-tested by choosing a random input
x, decomposing x into smaller inputs,
self-correcting the smaller inputs using
random self-reducibility (which works
because smaller inputs have been self-
tested), and then comparing the answer
against the answer the program gives
on input z. This method of bootstrap-
ping can be continued until the desired
problem size is reached. We now give
more specific details.

We say that =z € I, is bad if P(z) #
f(z), and otherwise z is good. Pro-
gram Self Correct is the generic self-
correcting program described in Section
3.

Subroutine Rec_Self Test (n,[):
Rec_Self_Test verifies that most of the
inputs in I, are good given that most
of the inputs in 7,,_; are good.

Specification:

(1) If at least a fraction of - of the in-
puts in 7, are bad and at most a
fraction of - of the inputs in 7, 4
are bad then Rec_Self_Test outputs

“FAIL” with probability at least
1-p.

(2) If at most a fraction of 7 of the
inputs in 7,, are bad and at most a
fraction of & of the inputs in I,_4
are bad then Rec_Self_Test outputs
“PASS” with probability at least

1-4.
l — O(cln(1/5))

Doform=1,...,l
ansm, «— 0
randomly choose z € I,,.
If n =1 then:
compute f(z) directly
If f(z) # P(z) then
ans, «— 1
Else n > 1 then:
randomly
ai, - .., a. from z.
Fork=1,...,c,
yr  <—Self_Correct(n —
1, ag, ﬁ)
If
F(z,a4,..
P(z)
then ans,, — 1

generate

yYe) #

<5 Qey Yty - - -

If ©i_jansk/l > - then
“FAIL”
Else “PASS”

Claim: Rec_Self Test meets the speci-
fication.

Proof:

(1) Because Self_Correct is called with

1
confidence parameter 1.7, the
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probability that there is an incor-
rect yg for £ = 1,...,c is at most
1. Therefore, in each iteration
Prlans, =1] > L(1 - &) > 2

= B4c’
(2) In each iteration Pr[ans,, = 1] <

2
16c + 16c ~ 16¢°

Thus, the average of ans, over

. . . 3
O‘(cln(l/ﬁ))‘ iterations is at legst oo
with probability at least 1 — 3 in case
1 and at most ;> with probability at

least 1 — # in case 2. W

Program Self_Test (I, z,3): We make
the convention that if any call to one of
the subroutines returns “FAIL” then fi-
nal output is “FAIL” and otherwise the
output is “PASS”.

Specification:

(1) If thereisani, 1 < i <1, such that
the fraction of of bad inputs in I;
is at least -, then output “FAIL”
with probability at least 1 — (.

(2) Ifforalli, 1 <4 <[, the fraction of
bad inputs in /; is at most - then
output “PASS” with probablhty at
least 1 — (3.
For ¢ = 1, call

Rec_Self_ Test( B/1).

Theorem: Self_Test meets the specifi-

cations.

Proof:
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(1) If there is an 4, 1 <4 <[ such that
forall 1 < j <i—1, the fraction of
bad inputs in I; is at most - and
the fraction of bad inputs in I; is at
least 5 then Rec_Self Test(i,3/1)
outputs “FAIL” with probability
at least 1 — 5/l >1—[.

If, for all 7, 1 < ¢ < [, the frac-
tion of bad inputs in I; is at most
= then Rec_Self Test(i,3/1) out-
puts “FAIL” with probability at
most (/l. Thus, over the [ calls,
the probability that all answers are
“PASS” is at least 1 — 5. W

(2)

7 Future Work

e Are there self-testing/correcting
pairs for other important func-
tions? Some additional results can
be found in [Beaver Feigenbaum],
[Lipton]. Sorting is a candidate
problem, the hard part seems to be
the design of a self-corrector.

e Is it possible to show that some
functions are not going to have a
self-testing/correcting pair? Some
partial progress can be found
in [Feigenbaum Kannan Nisan],
[Yao.

e Are there applications of the con-
volutions theorems in other areas?
We also propose to develop more
probabilistic tools long these lines.



e One area of practical concern for
self-testing/correcting pairs is the
overhead incurred by running the
self-tester and self-corrector. Re-
cently a batch self-corrector for the
mod function has been designed
which reduces the overhead to a
small additive factor if it is infre-
quent that P answers incorrectly
for some input in a batch [Ru-
binfeld]. We would like to design
batch self-correctors for other im-
portant functions.
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A Convolution Theo-
rems

In this appendix, we prove Theorems A
and B. These are the main two theo-
rems with respect to self-testers based
on the linearity property. The spe-
cific proofs given in this appendix, due
largely to Don Coppersmith, are sim-
pler than our original proofs. A full ex-
position of some related general prob-
ability results will appear in [Ben-Or
Coppersmith Luby Rubinfeld].

We retain the notation of Subsection

4.2. Uncapitalized letters from the end
of the alphabet denote elements cho-
sen randomly from G according to Ug,
e.g. z,y, 2, whereas uncapitalized let-
ters from the beginning of the alphabet
denote fixed elements of G, e.g. a, b, c.

Theorem A: Let G' be an infinite
countable group with no finite sub-

groups except for the trivial subgroup
{0"}. Then, § > 2¢/9.

Theorem B: Let G’ be any (finite
or countable) group. If, for all i =
1,-+-,¢, 6 < 1/2, then ¢§ > 2¢/9.

Before giving the proofs of these two
theorems, we prove some intermediate
lemmas. For Lemma Al, Lemma A2,
Lemma A3 and Lemma A4, we assume
that § < 2/9. Let §' be defined as the
solution to the equality ¢'(1 — ¢') = 6.
Because § < 2/9, §' < 1/3.

Lemma Al: Va € G, 3¢’ € G' such
that Pr[disc(z o a) = disc(z) o' a'] >
1-¢.

Proof: By the definition of ¢ and be-
cause zoa is distributed in G according
to Ug and a o y is distributed in G ac-
cording to Ug,

Pr[disc(z o a) o' disc(y) = disc(zoaoy)

= disc(z) o' disc(aoy)] > 1 —26.
So

Pr[disc(zoa)o'disc(z) ™ = disc(yoa)o'disc(y)™"]
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>1-—26.

This is the sum, over all o’ € G', of the
square of the probability

Pr[disc(z 0 a) o' disc(z)™! = d'].

Since § < 2/9, this sum exceeds 5/9 and
thus there must be one value o' with

Pr[disc(z oa)o disc(z) ' =d]>1-¢

where (1 —§)?+6?=1-26 and ¢ <
1/2. This leads to §'(1 —¢') = 6. W

Lemma A1 leads to the definition of the
function A from G to G’ defined as fol-
lows: For all ¢ € G, let h(a) = o,
where d' is the element of G’ described
in Lemma Al.

Lemma A2: The function A is a group
homomorphism from G to G, i.e. for
all a,b € G, h(aob) = h(a) o’ h(b).

Proof: Using Lemma Al three times,
for all a,b € G,

Pr[disc(z)o'h(a)o'h(b) = disc(zoa)o'h(b)

disc(zoaob) = disc(x)o'h(aob)] > 1-36".

This probability is strictly greater than
zero because ¢’ < 1/3, and thus h(a o
b) = h(a) o' h(b). A

Lemma A3:

(1) If G’ is an infinite countable group
with no finite subgroups except for
the trivial subgroup {0’} then for
all a € G, h(a) =0".

(2) If G’ is any (finite or countable)
group and, for all ¢ = 1,---,c,
§; < 1/2, then for all a € G,
h(a) = 0.

Proof: By Lemma A2, h is a group
homomorphism and thus the image of
h is a finite subgroup of G'. In case (1),
the only finite subgroup of G’ is {0'}. In
case (2), consider a fixed i € {1,...,c}.
Because 1 — §; > 1/2 and using Lemma
Al and the fact that 1 — ¢’ > 2/3,

Pr[disc(z) = disc(zog;) = disc(x)o'h(g:)] > 1/6,

and thus there is some z € G such
that disc(z) = disc(z) o' h(g;) which
implies that h(g;) = 0. Thus, for
all i = 1,...,¢, h(g;) = 0'. Because
g1, - -, g are generators for G it follows
that for all a € G, h(a) =0'. W

Lemma A4: Under the same con-
ditions as (1) and (2) in Lemma A3,
Pr[disc(z) = disc(z oy)] > 1 -4

Proof: By Lemma A3, h(a) = 0 for
all @ € G. On the other hand, Lemma
A1 says that

Pr[disc(zoa) = disc(z)o' h(a)] > 1§

for every ¢ € @G, and thus certainly
this is true when a is replaced with
a random y. Thus, Pr[disc(z o y) =
disc(z)] >1-¢. 1

Proof of Theorem A: Assume first
that § < 2/9. By definition of § and
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using Lemma A4, Pr[disc(z) = disc(zo
y) = disc(z)o' disc(y)] > 1—48—6, and
thus Pr[disc(y) = 0'] > 1 —¢' — § which
implies that ¢ < § + ¢'. Because §' <
1/3, 1 — ¢ > 2/3 which implies that
¢’ < 3§/2. This implies that § > 2¢/5.
On the other hand, if § > 2/9, then
because ¢ < 1 it follows that § > 2¢/9.
|

Proof of Theorem B: Analogous to
the proof of Theorem A. &
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