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ABSTRACT
We present a probabilistic analysis for a large class of combina-
torial optimization problems containing, e.g., allbinary optimiza-
tion problemsdefined by linear constraints and a linear objective
function over{0,1}n. By parameterizing which constraints are of
stochastic and which are of adversarial nature, we obtain a semi-
random input model that enables us to do a general average-case
analysis for a large class of optimization problems while atthe
same time taking care for the combinatorial structure of individual
problems. Our analysis covers various probability distributions for
the choice of the stochastic numbers and includessmoothed analy-
siswith Gaussian and other kinds of perturbation models as a spe-
cial case. In fact, we can exactly characterize the smoothedcom-
plexity of optimization problems in terms of their random worst-
case complexity.

A binary optimization problem has apolynomial smoothed
complexityif and only if it has a pseudopolynomial com-
plexity.

Our analysis is centered around structural properties of binary op-
timization problems, calledwinner, loser, andfeasibility gaps. We
show, when the coefficients of the objective function and/orsome
of the constraints are stochastic, then there usually exista polyno-
mial n−Ω(1) gap between the best and the second best solution as
well as a polynomial slack to the boundary of the constraints. Sim-
ilar to the condition number for linear programming, these gaps
describe the sensitivity of the optimal solution to slight perturba-
tions of the input and can be used to bound the necessary accuracy
as well as the complexity for solving an instance. We exploitthe
gaps in form of an adaptive rounding scheme increasing the accu-
racy of calculation until the optimal solution is found. Thestrength
of our techniques is illustrated by applications to variousNP-hard
optimization problems from mathematical programming, network
design, and scheduling for which we obtain the the first algorithms
with polynomial average-case/smoothed complexity.
∗Email: rbeier@mpi-sb.mpg.de. Supported by the DFG studies
program GRK 623.
†Email: berthold.voecking@uni-dortmund.de. Supported inpart
by DFG grant Vo889/1-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04,June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Mis-
cellaneous

General Terms
Algorithms

Keywords
optimization problems, average-case analysis, smoothed analysis

1. INTRODUCTION
Many combinatorial optimization problems have an objective

function or constraints specified in terms of real numbers repre-
senting natural quantities like time, weight, distance, orutility. This
includes some well-studied optimization problems like, e.g., trav-
eling salesperson, shortest path, minimum spanning tree aswell
as various scheduling and packing problems. When analyzingthe
complexity of algorithms for such problems, we usually assume
that these numbers are integers or rational numbers with a finite
length representation. The hope is that it suffices to measure and
compute with some bounded precision in order to identify an op-
timal or close to optimal solution. In fact, if real numbers oc-
cur only in the objective function and if this objective function is
well-behaved (e.g., a linear function) then calculating with reason-
able approximations of the input numbers yields a feasible solu-
tion whose objective value is at least close to the optimal objective
value. More problematically, however, if the constraints are de-
fined by real numbers, then calculating with rounded input numbers
might miss all interesting solutions or might even produce infeasi-
ble solutions.

How can one solve optimization problems (efficiently) on a com-
puter when not even the input numbers can be specified exactly? –
In practice, optimization problems in which real numbers occur in
the input are solved by simply rounding the real numbers more
or less carefully. Fortunately, this approach seems to yield rea-
sonable results. We seek for a theoretically founded explanation
why this rounding approach usually works. Studying this issue un-
der worst case assumptions does not make very much sense as, in
the worst case, the smallest inaccuracy might lead to an infeasible
or utterly sub-optimal solution. This question needs to be studied
in a stochastic model. In the following probabilistic analysis, we
will show that, under some reasonable and quite general stochas-
tic assumptions, one can usually round real-valued input numbers
after only a logarithmic number of bits without changing theop-
timal solution. In fact, our probabilistic analysis goes far beyond
the point of explaining phenomena occurring in practice. Weare



able to provide algorithms with polynomial average-case complex-
ity (more precisely, polynomial smoothed complexity) for aquite
general class of discrete optimization problems. Our analysis cov-
ers various well-studiedNP-hard discrete optimization problems
from mathematical programming, network design, and scheduling
like, e.g., multi-dimensional knapsack, constrained spanning tree,
or scheduling to minimize the weighted number of tardy jobs.

1.1 A semi-random input model for discrete
optimization problems

A discrete optimization problem is specified in terms of an objec-
tive function and a feasible region over a set of discrete variables.
Usually the variables are binary, the objective function islinear, and
the feasible region is defined by a set of linear constraints.Suppose
an optimization problemΠ is defined by a set ofn binary variables
x1, . . . ,xn, an objective function of the formminimize (or maxi-
mize) cTx, and a finite set of constraintswT

j x ≤ t j or wT
j x≥ t j . In

the following, we use the phraseexpressionas a generic term for the
linear expressionscTx andwT

j x occurring in the objective function
and the constraints, respectively. We explicitly distinguish between
those expressions that shall be of stochastic nature and those that
shall be of adversarial nature. In particular, we assume that there is
a set ofstochastic expressionswhose coefficients shall be random
or randomly perturbed real numbers and a set ofadversarial expres-
sionsin the sense that we treat the numbers in these expressions like
rational or integer numbers in a usual worst-case analysis.The rea-
son for distinguishing stochastic and adversarial expressions is that
we do not want that the randomization destroys the combinatorial
structure of the underlying optimization problems. At thispoint, let
us remark that we can slightly relax the assumptions made above.
In fact, the linearity assumption for adversarial expressions can be
dropped, that is, objective function and constraints only need to be
specified by linear expressions if they are stochastic.

Let us make the above explanations more concise. The num-
ber of stochastic expressions is denoted byk≥ 1 and the number of
stochastic constraints byk′ ∈ {k−1,k}. A stochastic instanceof an
optimization problemΠ is described in terms of a possibly stochas-
tic (and in this case linear) objective function and a feasible region
that is defined by the intersection of an arbitrary subsetS ⊆ {0,1}n

with k′ subsetsB1, . . . ,Bk′ ⊆ {0,1}n each of which is defined by a
stochastic, linear constraint. The coefficients in the stochastic ex-
pressions are specified by independent continuous probability dis-
tributions with domain

�
. Different coefficients might be drawn

according to different distributions. The only restriction on these
distributions is that their density function is piecewise continuous
and bounded. Assuming bounded densities is necessary as other-
wise worst-case instances could be approximated arbitrarily well
by specifying distributions with very high density. For a given dis-
tribution, the supremum of its density function is called its den-
sity parameter. We will see that the maximum density parameter
over all distributions plays an important role in our analysis. This
parameter is denoted byφ. Intuitively, φ can be seen as a mea-
sure specifying of how close the instances might be to the worst
case. A worst-case instance can be interpreted as a stochastic in-
stance in which the probability measure for each stochasticnumber
is mapped to a single point. Thus, the largerφ, the closer we are to
a worst-case analysis.

In our probabilistic analysis, we assume that the objectivefunc-
tion defines a unique ranking among all solutions in{0,1}n. Ob-
serve, if the objective function is stochastic then the coefficients are
continuous random variables so that the probability that there exist
solutions with same objective value is 0. In other words, a unique
ranking is given with probability 1. Recall that the objective func-

tion does not have to be linear if it is adversarial, but if it is linear,
i.e., of the formcTx, c ∈ �n, then a unique ranking can always
be enforced by encoding the lexicographical order among thesolu-
tions into the less significant bits of the objective function without
changing the computational complexity of the underlying optimiza-
tion problem by more than a polynomial factor. In fact, most of the
algorithmic problems that we will study have algorithms that im-
plicitly realize a unique ranking. In this case, one does noteven
need an explicit encoding. Given a unique ranking, we seek tofind
thewinner, i.e., the highest ranked solution inS ∩B1∩ . . .∩Bk′ . In
the following, optimization problems satisfying all the conditions
above are calledbinary optimization problems with stochastic ex-
pressionsor, for short,binary optimization problems.

Smoothed Analysis.The framework of smoothed analysis was
introduced by Spielman and Teng in [24]. Essentially, they show
that the Simplex algorithm has polynomial smoothed complexity
when input numbers are slightly perturbed using a Gaussian dis-
tribution with small standard deviation. It is assumed thatfirst an
adversary specifies all coefficients in the constraint matrix such that
||w|| ≤ 1, for every coefficientw, and then these adversarial num-
bers are slightly perturbed by adding to each of them a random
numbers drawn according to a Gaussian distribution with mean 0
and a specified standard deviationσ > 0. Spielman and Teng prove
a running time for the Simplex algorithm under the shadow ver-
tex pivot rule that is polynomial in the number of variables and
constraints as well as in1σ . Similar results have been obtained for
other variants of the Simplex algorithm as well as for a few other
problems [1, 3, 5, 8, 25]. Our probabilistic analysis is not restricted
to the model of smoothed analysis, but we use this nice framework
to illustrate our results.

We generalize smoothed analysis as follows. At first, we do not
necessarily perturb all coefficients in the constraint matrix, but only
the coefficients in the stochastic expressions. Initially,an adversary
chooses all input numbers. The domain of the coefficients in those
constraints that shall be stochastic is restricted to[0,1] or [−1,1],
depending on whether the domain should be non-negative or also
include negative numbers. Then a random perturbation slightly
changes the coefficients in the stochastic constraints by adding an
independent random number to each of them. These random num-
bers are drawn according to a specified family of probabilitydistri-
butions satisfying the following conditions. Letf :

�
→
�

≥0 be
any piecewise continuous density function such that sups( f (s)) = 1
and

R

|s| f (s)ds is finite, that is, the random variable described by
f has a finite expected absolute value. Functionf is called the
perturbation model. For φ ≥ 1, we definefφ by scaling f , that is,
fφ(s) = φ f (sφ), for everys∈

�
. This way, the density parameter

of fφ is φ. We obtainφ-perturbationsaccording to the perturbation
model f by adding an independent random variable with density
function fφ to each stochastic input number. For example, one ob-
tains the Gaussian perturbation model from [24] by choosingf to
be the Gaussian density with standard deviation(2π)−1/2. A non-
negative domain can be obtained, e.g., by choosingf to be the den-
sity of the uniform distribution over[0,1]. In [24] the running time
is described in terms of the standard deviationσ. In contrast, we
describe the running time in terms of the density parameterφ. For
the Gaussian and the uniform distribution these two parameters are
closely related; in both cases,φ is proportional to1

σ .

Let us illustrate our semi-random input model by an example.In
the single-pair shortest path problem one seeks for the shortest path
in a graphG= (V,E) between a given sources∈V and a given tar-
gett ∈V. In the binary program formulation of this problem there
is a variablexe for each edgee∈ E. Thus,n corresponds to the
number of edges. A solutionx is feasible if the edges in the set



{e∈ E |xe = 1} form a path froms to t. Let S denote the set of all
solutions satisfying this condition. The combinatorial structure de-
scribed byS should not be touched by our randomization. It makes
sense, however, to assume that the objective function is stochastic
as its coefficients describe measured quantities. So we may assume
that these coefficients are perturbed with uniformφ-perturbations,
that is, each of these coefficients corresponds to the sum of an ad-
versarial number from[0,1] and an independent random number
drawn uniformly from[0,φ−1]. In the constrained shortest path
problem (see, e.g., [11]), edges do not only have lengths butad-
ditionally each edge comes with a latency parameter`e. Now one
seeks for the shortest path satisfying an additionally specified linear
time constraint∑e`ex≤ T. This additional constraint corresponds
to a subsetB1 ⊆ {0,1}|E| so that nowB1∩S is the set of feasible
solutions. Due to the additional constraint, the problem becomes
NP-hard. We will see, however, that there is an algorithm with
“polynomial smoothed complexity” if either the objective function
or the additional latency constraint is stochastic.

1.2 How accurately do we need to calculate?
More precisely, we ask how many bits of each stochastic input

number do we need to reveal in order to determine the winner? –
We say that the winner isdeterminedafter revealing some number
of the bits, when there is only one possible candidate for thewinner,
regardless of the outcomes of the unrevealed bits.

THEOREM 1. Consider any instance of a binary optimization
problemΠ. Let n≥ 1 denote the number of binary variables and
k≥ 1 the number of stochastic expressions.

a) Suppose the expected absolute valueE [|w|] of every stochas-
tic coefficient w is bounded from above by µ> 0. Then the
number of bits in front of the floating point of any stochastic
number is bounded by O(log(1+µnk)), whp1.

b) Letφ > 0 denote the maximum density parameter, that is, all
density functions are upper-bounded byφ. Then the winner
is uniquely determined when revealing O(log(1+φnk)) bits
after the binary point of each stochastic coefficient,whp.

One can always scale the input of a linear optimization problem
by multiplying all input numbers with a factorγ > 0. Obviously,
the parametersµ andφ must be adapted to this scaling, that is,µ
needs to be multiplied withγ andφ with 1

γ . Observe that this kind
of scaling does not change the overall number of bits that need to be
revealed as log(µnk)+ log(φnk) = log(γµnk)+ log( 1

γ φnk). In case
of a smoothed analysis, the right way to scale the input numbers
is already build into the model. According to our definitions, the
density functionf specifying the perturbation model has to have a
finite expected absolute value. For any fixed model of perturbation,
R

|s| f (s)ds= O(1). In particular, the expected absolute value of the
density functionfφ is O(φ−1). Taking into account that the domain
of the initial adversarial choices for the stochastic coefficients is
[−1,1] or [0,1], we observe thatφ-perturbations yield coefficients
with an expected absolute value of at mostµ= O(1+ 1

φ ). In order to
simplify the notation, our model of smoothed analysis is restricted
to density parametersφ ≥ 1. This leads to the following result on
the overall number of bits that need to be revealed per stochastic
input number.

COROLLARY 2. For any fixed perturbation model f , the win-
ner is uniquely determined when revealing O(log(φnk)) bits of each
stochastic coefficient,whp.
1with high probability, with probability 1− (nk)−α , for every fixed
α > 0

Let us explain the concepts and ideas behind the analysis for
Theorem 1. Part a) of the theorem follows simply by applying the
Markov inequality to the expected absolute values of the individ-
ual coefficients. The interesting part of the theorem is stated in
b). In order to identify the winner one needs toisolate the win-
ner from other feasible solutions having a worse objective value.
Furthermore, one needs toseparatethe winner from those infea-
sible solutions that have a better objective value than the winner.
Our analysis is based on ageneralized Isolating Lemma– i.e., a
generalization of the well-known Isolating Lemma by Mulmuley,
Vazirani and Vazirani [18] – and a novelSeparating Lemma.

The Isolating Lemma was originally presented in an article about
RNC algorithms for perfect matchings [18]. It is known, however,
that the lemma does not only apply to the matching problem but
to to general binary optimization problems with a linear objective
function. The lemma states that the optimal solution of a binary
optimization problem is unique with probability at least1

2 when
choosing the coefficients of the objective function independently,
uniformly at random from the set{1,2, . . . ,2n}. This is a very sur-
prising and counterintuitive result as there might be an exponential
number of feasible solutions whose objective values fall all into a
polynomially large set, namely the set{1,2, . . . ,2n2}, so that one
can expect that an exponential number of solutions are mapped to
the same objective value. The reason why the winner nevertheless
is isolated is that the objective values of different solutions are not
independent but the solutions represent subsets over a ground set
of only n random numbers. We adapt the Isolating Lemma towards
our continuous setting and generalize it towards piecewisecontinu-
ous probability distributions as described in Section 1.1.In partic-
ular, different coefficients may follow different continuous proba-
bility distributions. Suppose only the objective functionis stochas-
tic, and the feasible region is fixed arbitrarily. Letφ denote the
maximum density parameter over all coefficients in the objective
functions. Define thewinner gapto be the difference between the
objective value of the winner and the second-best feasible solution,
provided there are at least two feasible solutions. The generalized
Isolating Lemma states that the winner gap is a continuous random
variable whose density function is bounded from above by 2φn,
and this bound is tight. From this result one can immediatelyde-
rive the following lower bound on the size of the winner gap. For
everyε ∈ [0,1], the winner gap is lower-bounded byε2φn with prob-
ability at least 1− ε. As a consequence, it suffices to reveal only
O(log(φn)) bits of each coefficient of the objective function in or-
der to identify the winner,whp.

We accompany the Isolating Lemma with a novelSeparating
Lemma, enabling us to separate the winner from infeasible solu-
tions with better objective value than the winner. For the time be-
ing, consider any binary optimization problem in which a single
constraint is stochastic. The difficulty in checking the feasibility
with respect to this constraint is that it might be likely that there are
many solutions that are exponentially close to the constraint hyper-
plane. Nevertheless, we will see that the optimal solution can be
identified by inspecting only a logarithmic number of bits per input
number,whp. The reason is that we do not need to check the fea-
sibility of all solutions but only of some particular solutions. The
losersare those solutions that have a rank higher than the winner
but they are infeasible because of the considered constraint. The
loser gapis defined to be the minimal amount by which a loser
(except for the solution 0n) exceeds the constraint threshold. The
Separating Lemma shows that the supremum of the density func-
tion of the loser gap is at mostφn2. Hence, for everyε > 0, the
loser gap is at leastεφn2 with probability at least 1− ε. Let us try
to give some intuition about this result. If there are only a few



losers then one can imagine that neither of them comes very close
to a random or randomly perturbed hyperplane. However, there
might be an exponential number of losers. In this case, however,
the winner has a relatively low rank as there is an exponential num-
ber of solutions better than the winner; but this is very unlikely if
the constraint hyperplane is likely to come very close to thegood
solutions which correspond to the losers. Seeing it the other way
around, if there are many losers then the hyperplane is likely to be
relatively far away from the losers, which might intuitively explain
the phenomenon described by the Separating Lemma. Besides the
loser gap, we study the so-calledfeasibility gapcorresponding to
the slack of the optimal solution with respect to the stochastic con-
straint. Essentially, we prove that the density functions of loser
and feasibility gaps have the same maximum supremum so that the
density of the feasibility gap is lower-bounded byεφn2 as well. In
fact, our analysis for loser and feasibility gaps is heavilybased on
symmetry properties between them.

Let us remark that, when analyzing the winner gap, it is assumed
a random objective function and a fixed feasible region. In contrast,
when analyzing loser and feasibility gaps, it is assumed a random
constraint or a set of random constraints instead of a randomobjec-
tive function. In other words, the random expressions defining the
objective function and the constraints are assumed to be stochasti-
cally independent. In fact, if the feasible region and the objective
function are correlated, then winner, loser, and feasibility can not
be lower-bounded by a polynomial. The optimization variantof the
subset-sum problem (i.e., knapsack with profits equal to weights) is
a simple counterexample. Lueker [16] proved exponentiallysmall
gaps for this problem.

1.3 Characterizing polynomial smoothed
complexity

Based on the gap properties, we aim at characterizing which dis-
crete optimization problems have polynomial time algorithms un-
der random perturbations. We formalize this as follows. Fixany
binary optimization problemΠ and any perturbation modelf . Let
IN denote the set of all unperturbed instances of lengthN that the
adversary may specify. The definition of the input lengthN needs
some clarification as the coefficients in the stochastic expressions
are assumed to be real numbers. We define that each of these num-
bers has a virtual length of one. (This way, we ensureN ≥ kn.) The
bits of the stochastic numbers can be accessed by asking an oracle
in time O(1) per bit. The bits after the binary point of each coeffi-
cient are revealed one by one from left to right. The deterministic
part of the input does not contain real numbers and can be encoded
in an arbitrary fashion. For an instanceI ∈ IN, let I + fφ denote the
random instance that is obtained by aφ-perturbation ofI . We say
thatΠ hassmoothed polynomial complexityif and only if it admits
an algorithmA whose running timeT satisfies

∃α,β > 0 : ∀φ ≥ 1 : ∀N ∈ � : max
I∈IN

E
[

(

T(I + fφ)
)α

]

≤ βφN .

This definition of polynomial smoothed complexity follows more
or less the way how polynomial complexity is defined in average-
case complexity theory, adding the requirement that the running
time should be polynomially bounded not only inN but also inφ. It
is not difficult to show that the assumption on the running time ofA
is equivalent to requiring that there exists a polynomialP(N,φ, 1

ε )
such that for everyN ∈ � ,φ ≥ 1,ε ∈ [0,1], the probability that the
running time ofA exceedsP(N,φ, 1

ε ) is at mostε. Observe that
this does not imply that the expected running time is polynomi-
ally bounded. To enforce expected polynomial running time,the
exponentα in the definition of polynomial smoothed complexity

should have been placed outside instead of inside the expectation.
The reason for not defining polynomial complexity based on the
expected running time is that this is not a sufficiently robust notion.
For example, an algorithm with expected polynomial runningtime
on one machine model might have expected exponential running
time on another machine model. In contrast, the above definition
yields a notion of polynomial smoothed complexity that doesnot
vary among classes of machines admitting polynomial time sim-
ulations among each other. Although polynomial smoothed com-
plexity does not always imply polynomial bounds on the expected
running time, we will show that several of our algorithmic results
yield expected polynomial running time on a RAM.

We show that the smoothed complexity of a binary optimiza-
tion problem can be characterized in terms of its worst-casecom-
plexity. Theorem 1 shows that one usually only needs to reveal a
logarithmic number of bits per real-valued input number. This sug-
gests that there should be a connection between pseudopolynomial
worst-case running time and polynomial average-case complexity.
For a binary optimization problemΠ, letΠu denote the correspond-
ing optimization problem in which all numbers in the stochastic ex-
pression are assumed to be integers in unary representationinstead
of randomly chosen real-valued numbers. The following theorem
holds for any fixed perturbation modelf .

THEOREM 3. A binary optimization problemΠ has polynomial
smoothed complexity if and only ifΠu ∈ ZPP.

In other words,Π has polynomial smoothed complexity if it
admits a (possibly randomized) algorithm with (expected) pseu-
dopolynomial worst-case running time. This characterization im-
mediately shows that stronglyNP-hard optimization problems do
not have polynomial smoothed complexity, unlessZPP= NP. This
result might not sound very surprising as the hardness of strongly
NP-hard problems does not rely on large or precisely specified in-
put numbers. Observe, however, that the strongNP-hardness of a
problem does not immediately rule out the possibility of a poly-
nomial average-case complexity. For example, the TSP problem
with edge lengths drawn uniformly at random from[0,1] might
have a polynomial average-case complexity. Our theorem, how-
ever, shows that it does not have a polynomial smoothed complex-
ity, unlessP = NP. The more sophisticated part of the theorem
is the other direction stating that every binary problem admitting a
pseudopolynomial time algorithm has a polynomial smoothedcom-
plexity. This result is based on the generalized Isolating Lemma
and the Separating Lemma. The idea is as follows. We design effi-
cient verifiers checking whether a solution computed with a certain
precision is actually the optimal solution ofΠ. The success prob-
ability of these verifiers is analyzed with the help of the gapprop-
erties. In an adaptive rounding procedure we increase the precision
until the optimal solution is found. The overall running time of this
meta-algorithm is polynomial if the algorithm computing the solu-
tions with bounded precision has pseudopolynomial runningtime.

Algorithmic Applications. Let us illustrate the strength of The-
orem 3 by giving some algorithmic applications to some well-known
optimization problems and comparing these results with previous
work on the probabilistic analysis of optimization problems. There
has been substantial effort to analyze random instances of the knap-
sack problem, see, e.g., [5, 6, 12, 14, 15]. The knapsack problem
can be seen as the simplest non-trivial binary optimizationprob-
lem as its feasible region is described by only one single linear
constraint. The problem belongs to the class of packing problems,
that is, the constraint is of the formwTx ≤ t and the coefficients
are assumed to be non-negative. To our knowledge, the knapsack



problem is the onlyNP-hard optimization problem that was pre-
viously known to have polynomial smoothed complexity [5]. The
multi-dimensional knapsack problem is a natural generalization in
which there are multiple packing constraints instead of only one.
Dyer and Frieze [9] proved that, with constant probability,this
problem can be solved in polynomial time if the number of con-
straints is constant and the coefficients in the constraintsas well
as in the objective function are chosen uniformly at random from
[0,1]. Their result, however, does not yield polynomial average-
case complexity as the dependence of the running time on the fail-
ure probability is not bounded by a polynomial. The multipleknap-
sack problem with a constant number of constraints admits a pseu-
dopolynomial algorithm. Hence, Theorem 3 implies a polynomial
smoothed and, hence, also a polynomial average-case complexity
for this problem. Moreover, the pseudopolynomial algorithm also
works for general 0/1 integer programming with any fixed num-
ber of constraints. Therefore, this class of problems has polyno-
mial smoothed complexity when assuming that the objective func-
tion and all constraints are stochastic. Furthermore, the theorem
shows that general 0/1 integer programming with an unbounded
number of constraints has no polynomial smoothed complexity as
it is stronglyNP-hard.

The problem of scheduling to minimize the weighted number of
tardy jobs is defined byn jobs each of which coming with a pro-
cessing timepi , a due datedi , and a penaltyci that has to be paid if
job i is not finished in time. The jobs shall be scheduled on a single
machine such that the sum of the penalties is minimized. In terms
of n binary variablesx1, . . . ,xn, the objective is to minimizecTx
wherexi = 1 if job i cannot be finished in time. Observe that the
problem is essentially solved once these binary variables are deter-
mined as we can assume w.l.o.g. that an optimal schedule executes
the selected jobs in the order of non-decreasing deadlines.The ex-
act formulation of the feasible region in terms of a binary program
is not of interest to us. The input of the problem consists only of 3n
numbers, the processing times, the due dates, and the penalties. As
the scheduling problem admits an algorithm whose running time
is pseudopolynomial with respect to the penalties, the problem has
polynomial smoothed complexity for stochastic penalties.

Next we come to multicriteria optimization problems. If several
criteria shall be optimized simultaneously then usually one of them
is declared to be the objective function, and the others are formu-
lated in form of a constraint with a given threshold. Often when
a single-criteria optimization problem is polynomial, theproblem
becomesNP-hard when adding another criteria in form of a linear
constraint. Examples for such problems are shortest path, span-
ning tree, or matching [17, 11, 19]. Theorem 3 enables us to prove
polynomial smoothed complexity for such multicriteria problems
as follows. The problems listed above have exact algorithmswith
pseudopolynomial running time [19, 4, 18], that is, given aninte-
gerk and an instance of these problems one can compute a solution
with objective value exactlyk in pseudopolynomial time. Using
standard coding techniques (see, e.g., [23]) a pseudopolynomial
algorithm for the exact single-criteria decision problem implies a
pseudopolynomial algorithm for its multicriteria optimization vari-
ant. Combining this observation with Theorem 3 yields the follow-
ing result.

COROLLARY 4. Let Π be a (single objective) binary optimiza-
tion problem. Suppose the exact version ofΠ admits an algorithm
with pseudopolynomial running time. Then any multicriteria vari-
ant ofΠ with stochastic coefficients with respect to all criteria has
a polynomial smoothed complexity.

A similar approach was used in [19] to derive approximation

schemes for multiobjective optimizations problems. The corollary
implies polynomial smoothed complexity for the multicriteria vari-
ants of shortest path, spanning tree, and matching. One doesnot
always need to assume that all criteria are of stochastic nature. For
example, the bicriteria variant of the shortest path problem, i.e.,
the constrained shortest path problem, has an algorithm whose run-
ning time is pseudopolynomial with respect to the objectivefunc-
tion and another algorithm that is pseudopolynomial with respect
to the additional constraint. Applying Theorem 3 directly to these
algorithms yields that the constrained shortest path problem has
polynomial smoothed complexity even when either only the objec-
tive function or the additional constraint are stochastic.

1.4 Other aspects
In order to obtainexpected polynomial running timeunder ran-

dom perturbations one needs an algorithm with “pseudolinear” in-
stead of pseudopolynomial running time. Such pseudolinearalgo-
rithms exist on a uniform RAM, e.g., for the knapsack problem, the
problem of scheduling to minimize weighted tardiness or thecon-
straint shortest path problem. Hence, assuming the uniformRAM
model, all these problems admit algorithms with expected polyno-
mial running time under random perturbations. With some more
effort the same result can also be obtained on a log-RAM. More
details are given in a full version of this paper.

On a first view, theEuclidean variants of TSP and Steiner
tree might look like interesting candidates for problems with poly-
nomial smoothed complexity. Using the same techniques as inthe
proof of Theorem 3 one can easily prove, however, that polynomial
smoothed complexity for these problem would imply an random-
ized fully polynomial time approximation scheme. Thus, aiming
at smoothed analysis for Euclidean TSP or Steiner tree only makes
sense if one believes that these problems might admit an FPAS.

One criticism of the smoothed analysis of the Simplex algorithm
is that the additive perturbations destroy the zero-structure of an
optimization problem as it replaces zeros with small values. See
also the discussion in [24]. The same criticism applies to the zero-
structure in binary programs. It turns out, however, that our prob-
abilistic analysis in Section 2 is robust enough to deal withzero-
preserving perturbations. In particular, we can extend our input
model by allowing the adversary to declare some of the coefficients
in the stochastic constraints to be fixed to zero. This way, wecan
extend our results to further algorithmic applications, e.g., we ob-
tain polynomial smoothed complexity for the general assignment
problem (GAP) with any fixed number of bins.

2. ANALYSIS OF THE GAP PROPERTIES
In this section, we will formally define winner, loser, and fea-

sibility gaps and prove upper bounds on the density functions of
these random variables. Before going into the details of theanal-
ysis, the term ”upper bound on the density” needs some clarifi-
cation as the density of a continuous variable is not uniquely de-
fined. A continuous random variableX is defined by itsdistri-
bution FX(t) = Pr [X ≤ t]. In general, thedensity fX is any non-
negative function satisfyingFX(t) =

R t
−∞ fX(s)ds. Observe that the

integrand is not uniquely determined. It might be redefined on any
set of points of measure 0 without affecting the integral. Wesay
that a continuous random variableX is well-behavedif its distribu-
tion functionFX is piecewise differentiable. In this case,X admits
a piecewise continuous density functionfX which at all of its con-
tinuous points corresponds to the derivative ofFX. As usual, we
ignore the trifling indeterminacy in the definition offX and refer to
fX as thedensity ofX. In particular, thesupremum of the density
of X refers solely to the supremum over the points at whichfX is



continuous, and we say that the density isboundedif there exists
b ∈

�
such thatfX(s) ≤ b, for every points∈

�
at which fX is

continuous. Throughout the analysis[n] denotes{1, . . . ,n}.

The winner gap. We consider an instance of a discrete optimiza-
tion problem whose solutions are described byn binary variables
x1, . . . ,xn. The set of feasible solution is denoted byS ⊆ {0,1}n.
We assume that there are at least two feasible solutions, butother-
wise S can be specified arbitrarily. The objective function is de-
noted bycTx. The numbersci ∈

�
, i = 1, . . . ,n, are assumed to be

stochastic, that is, they are treated as independent randomvariables
following possibly different, well-behaved continuous probability
distributions with bounded density. W.l.o.g., we considera maxi-
mization problem. Letx∗ = argmax{cT x|x∈ S} denote the winner
andx∗∗ = argmax{cT x|x∈ S\{x∗}} the second best solution. The
winner gap∆ is defined to be the difference between the objective
values of a best and a second best solution, that is,

∆ = cTx∗−cT x∗∗ .

The random variable∆ is well-behaved, i.e.,∆ admits a piece-
wise continuous density function. This can be seen as follows.
The probability space of∆ is (c1 × . . .× cn) ⊆

�n. Each pair
of solutions defines a hyperplane in

�n, consisting of all points
where the two solutions have equal objective function. These hy-
perplanes partition

�n into a finite number of polyhedral cells. Fix
any cellC ⊆

�n. In this cell,x∗ andx∗∗ are uniquely determined.
In particular,(∆|C) = cTx∗ − cTx∗∗. Thus, the random variable
∆|C is a linear functional of the well-behaved continuous variables
c1, . . . ,cn. Thus the density of∆|C corresponds to the convolution
of piecewise-continuous variables, and hence it is piecewise contin-
uous, too. Consequently,f∆ = ∑C Pr [C] f∆|C is piecewise continu-
ous as well, so that∆ is well-behaved. The same kind of argument
applies to other gap variables that we will define in the following.

LEMMA 5 (GENERALIZED ISOLATING LEMMA ). Let φi de-
note the density parameter of ci , 1≤ i ≤ n, andφ = maxi φi . For
every choice of the feasible regionS and every choice of the proba-
bility distributions of c1, . . . ,cn, the density function of∆ is bounded
from above by2∑i∈[n] φi ≤ 2φn.

PROOF. At first, we observe, if there is a variablexi that takes
the same value in all feasible solutions, then this variabledoes not
affect the winner gap and it can be ignored. Thus, w.l.o.g., for
everyi ∈ [n], there are at least two feasible solutions whose vectors
differ in the i-th bit, i.e., with respect to thei-th variable. Under
this assumption, we can define the winner gap with respect to bit
positioni ∈ [n] by

∆i = cTx∗−cTy (1)

with x∗ = argmax{cTx|x ∈ S} and y = argmax{cTx|x ∈ S , xi 6=
x∗i }. In words,∆i is the difference between the objective value of
the winnerx∗ and the value of a solutiony that is best among those
solutions that differ in thei-th bit from x∗, i.e., the best solution in
{x∈ S |xi 6= x∗i }.

Clearly, the best solution,x∗ = (x∗1, . . . ,x
∗
n), and the second best

solution,x∗∗ = (x∗∗1 , . . . ,x∗∗n ), differ in at least one bit, that is, there
existsi ∈ [n] such thatx∗i 6= x∗∗i . If the best and the second best solu-
tion differ in thei-th bit then∆ = ∆i . Thus,∆ is guaranteed to take
a value also taken by at least one of the variables∆1, . . . ,∆n. We
will prove upper bounds on the density functions of the variables
∆1, . . . ,∆n and use these bounds and the following lemma to obtain
an upper bound on the density of the random variable∆. Observe
that the random variables∆1, . . . ,∆n are well-behaved continuous,
but there might be various kinds of dependencies among thesevari-
ables.

LEMMA 6. Let X1, . . . ,Xn and X denote well-behaved continu-
ous random variables. Suppose X always takes a value equal to
one of the values of the variables X1, . . . ,Xn. Then for all t∈

�
,

fX(t) ≤ ∑i∈[n] fXi (t).

The lemma follows directly from elementary probability theory.
Therefore, we skip the proof. In the following, we will provean
upper bound of 2φi on the density function for the random variable
∆i , for everyi ∈ [n]. Combining this bound with Lemma 6 imme-
diately yields that the density function of∆ is bounded from above
by 2∑i∈[n] φi , so that the theorem is shown.

Let us fix an indexi ∈ [n]. It only remains to be shown that the
density of∆i is bounded from above by 2φi . We partitionS , the
set of feasible solutions, into two disjoint subsetsS0 = {x∈ S |xi =
0} andS1 = {x ∈ S |xi = 1}. Now suppose all random variables
ck,k 6= i are fixed arbitrarily. Obviously, under this assumption,
the winner among the solutions inS0 and its objective value are
uniquely determined as the objective values of the solutions in S0
do not depend onci . Although the objective values of the solu-
tions in S1 are not fixed, the winner ofS1 is uniquely determined
as well because the unknown outcome of the random variableci
does not affect the order among the solutions inS1. For j ∈ {0,1},
let x( j) denote the winner among the solutions inS j . We observe
∆i = |cTx(1) − cTx(0)| because the solutionsx∗ and y as defined
in Equation (1) cannot be contained in the same setS j , j ∈ {0,1}.
Hence,∆i takes either the value ofcTx(1) − cTx(0) or the value of
cTx(0) − cTx(1). Observe that the random variableci appears as a
simple additive term in both of these expressions, and the density
of ci is at mostφi . Therefore, both expressions describe random
variables with density at mostφi as well. (Observe that this holds,
regardless of whether we assume that the other variables arefixed
or random numbers.) Consequently, Lemma 6 yields that the den-
sity of ∆i is at most 2φi . This completes the proof of Lemma 5.

2

Loser and feasibility gaps for a single constraint. We con-
sider an instance of an optimization problem overn binary vari-
ables. The objective function can be fixed arbitrarily; we rank all
solutions (feasible and infeasible) according to their objective value
in non-increasing order. Solutions with the same objectivevalues
are ranked in an arbitrary but fixed fashion. The feasible region is
described by a subsetS ⊆ {0,1}n intersected with the half-spaceB

described by an additional linear constraint. W.l.o.g. theconstraint
is of the formwTx≤ t. The setS and the thresholdt are assumed
to be fixed. The coefficientsw1, . . . ,wn correspond to independent
random variables following possibly different, well-behaved con-
tinuous probability distributions with bounded density. The win-
ner, denoted byx∗, is the solution with highest rank inS ∩B. The
feasibility gapis defined by

Γ =

{

t −wTx∗ if S ∩B 6= /0, and
⊥ otherwise.

In words, Γ corresponds to the slack of the winner with respect
to the thresholdt. Observe thatx∗ might be undefined as there is
no feasible solution. In this case, the random variableΓ takes the
value⊥ (undefined). The domain ofΓ is

�
≥0∪{⊥}. The density

function fΓ over
�

≥0 is well-behaved continuous. The functionfΓ
does not necessarily integrate to 1 but only to 1−Pr [Γ =⊥]. In the
following, when talking about the density ofΓ, we solely refer to
the function fΓ over

�
≥0, that is, we ignore the probability of the

event{Γ =⊥} as it is of no relevance to us.
A solution is called aloser if it is contained inS and has a higher

rank thanx∗, that is, the losers are those solutions fromS that are



better than the winner (w.r.t. the ranking), but they are cutoff by
the constraintwTx ≤ t. The set of losers is denoted byL . If there
is no winner, as there is no feasible solution, then we defineL = S .
The loser gapis defined by

Λ =

{

min{wTx− t | x∈ L} if L 6= /0, and
⊥ otherwise.

As in the case of the feasibility gap, when talking about the density
of the loser gap, we solely refer to the functionfΛ over

�
≥0 and

ignore the probability of the event{Λ =⊥}.
Our goal is to upper-bound the densities ofΓ andΛ. Observe that

the solution 0n is different from all other solutions inS as its fea-
sibility does not depend on the outcome of the random coefficients
w1, . . . ,wn. Suppose 0n ∈ S and 0n has the highest rank among all
solutions inS . Then one can enforceΓ = 0 by settingt = 0. Sim-
ilarly, one can enforceΛ → 0 for t → 0. For this reason, we need
to exclude the solution 0n from our analysis. Assuming 0n 6∈ S , the
following theorem shows that both the loser and the feasibility gap
are likely to have polynomial size.

LEMMA 7 (SEPARATING LEMMA ). Letφi denote the density
parameter of wi , and φ = maxi∈[n] φi . Suppose0n 6∈ S . Then the

densities ofΓ andΛ are bounded from above by n∑n
i=1 φi ≤ φn2.

PROOF. We will heavily use symmetry properties between the
two gaps. At first, we will prove an upper bound ofφn on the
density of the loser gap under the assumption that the ranking sat-
isfies a certain monotonicity property. Next, we will show that the
supremum of the density functions for loser and feasibilitygaps are
identical for worst-case choices of the thresholdt. This way, the up-
per bound on the density of the loser gap holds for the feasibility
gap as well. Then we will show that monotonicity assumption for
the feasibility gap can be dropped at the cost of an extra factor n,
thereby achieving an upper bound ofφn2 on the density of the fea-
sibility gap. Finally, by applying the symmetry between loser and
feasibility gap again, we obtain the same result for the loser gap.

The ranking among the solutions is calledmonotoneif all pairs of
solutionsx,y ∈ S , x having a higher rank thany, satisfy that there
exists i ∈ [n] with xi ≥ yi . When considering the binary solution
vector as subsets of[n], a ranking ismonotoneif no solution that is
a proper subset of another solutionS is ranked lower thanS. This
property is naturally satisfied for maximization problems having a
linear objective function with positive coefficients, but also if all
solutions inS have the same number of ones.

LEMMA 8. Suppose0n 6∈ S and the ranking is monotone. Then
fΛ is bounded from above by∑i∈[n] φi .

PROOF. Fix t ∈
�

arbitrarily. As in the proof for the winner gap,
we definen random variablesΛ1, . . . ,Λn with maximum densities
φ1, . . . ,φn such that at least one of them takes the value ofΛ. For
i ∈ [n], defineSi = {x∈ S | xi = 1} andS̄i = S \Si . Let x̄(i) denote
the winner fromS̄i , i.e., the solution with highest rank in̄Si ∩B.
Now let Li denote the set of losers fromSi with respect to ¯x(i), that
is, Li = {x ∈ Si |x has a higher rank than ¯x(i)}. If x̄i does not exist

then we setLi = Si . Now definex(i)
min = argmin{wTx|x∈ Li}, and

Λi =

{

wTx(i)
min− t if Li 6= /0, and

⊥ otherwise.

Observe thatLi is not necessarily a subset ofL asx̄(i) might have
a lower rank thanx∗. In fact,xi

min might be feasible so thatΛi can
take negative values. The reason for this “wasteful” definition is

that it yields some kind of independence that we will exploitin the
following arguments.

Claim A: The density ofΛi is at mostφi . This claim can be
seen as follows. The definitions above ensureLi ⊆ Si while x̄(i) ∈
S̄i . Suppose all variablesw j , j 6= i are fixed arbitrarily. We prove
that the density ofΛi is bounded byφi under this assumption, and
hence the same bound holds for randomly chosenw j , j 6= i as well.
The winner ¯x(i) can be determined without knowing the outcome
of wi as x̄(i) ∈ S̄i and for all solutions in̄Si the i-th entry is zero.

Observe thatLi is fixed as soon as ¯x(i) is fixed, and so isx(i)
min. As a

consequence,wi is not affected by the determination ofx(i)
min. As the

i-th bit of x(i)
min is set to one, the random variableΛi can be rewritten

asΛi = wTx(i)
min− t = κ +wi, whereκ denotes a fixed quantity and

wi is a random variable with density at mostφi . Consequently, the
density ofΛi is bounded from above byφi .

Claim B: If Λ 6=⊥, then there existsi ∈ [n] such thatΛ takes the
value ofΛi . To show this claim, let us first assume thatx∗ exists
and L 6= /0. Let xmin ∈ L denote theminimal loser, i.e., xmin =
argmin{wTx|x ∈ L}. By definition, xmin has a higher rank than
x∗. Because of the monotonicity of the ranking, there existsi ∈ [n]
such thatx∗ ∈ S̄i andxmin ∈ Si . Fromx∗ ∈ S̄i , we concludex∗ =

x̄(i). Consequently,xmin ∈ L ∩Si = Li so thatxmin = x(i)
min. Hence,

Λ = Λi . Now supposex∗ does not exist. ThenL = S andLi = Si ,
for all i ∈ [n]. Thus, there existsi ∈ [n] with xmin = xi

min because
S =

S

i∈[n] Si as 0n 6∈ S . Finally, if L = /0 then the claim follows
immediately asΛ =⊥.

Now applying Lemma 6 to the Claims A and B immediately
yields the lemma. 2

The following lemma shows that upper bounds on the density
function of the loser gap also hold for the feasibility gap and vice
versa. For a given thresholdt, let R(t) ⊆

�
≥0 denote the set of

points at which the distribution functions ofΛ(t) andΓ(t) are dif-
ferentiable. AsΛ(t) and Γ(t) are well-behaved continuous, the
points in

�
\R(t) have measure 0 and, hence, can be neglected.

LEMMA 9. Suppose0n 6∈ S . Thensupt∈� sups∈R(t) fΓ(t)(s) =

supt∈� sups∈R(t) fΛ(t)(s).

PROOF. (Sketch) We take an alternative view on the given opti-
mization problem. We interpret the problem as a bicriteria problem.
The feasible region is defined by the setS . On one hand, we seek
for a solution fromS whose rank is as high as possible. On the
other hand, we seek for a solution with small weight, where the
weightof a solutionx∈ S is defined by the linear functionwTx. A
solutionx∈ S is calledPareto-optimalif there is no other solution
y∈ S so thaty improves onx in rank and weight simultaneously.

We show that winners and minimal losers of the original opti-
mization problem correspond to Pareto-optimal solutions of the bi-
criteria problem. Intuitively, we can imagine that all Pareto-optimal
solutions are mapped onto a horizontal line such that a Pareto-
optimal solutionx is mapped to the pointwTx. ThenΓ(t) is the
distance from the pointt on this line to the closest Pareto point
left of t (i.e., less than or equal tot), andΛ(t) is the distance from
t to the closest Pareto pointstrictly right of t (i.e., larger thant).
Now let f be a measure over

�
describing the density of the Pareto

points on the line. Lett ′ ∈
�

denote the point maximizingf . Then
f (t ′) is the joint supremum of the densities ofΓ andΛ when setting
t = t ′, and this choice oft maximizes the supremum of the density
functions, so that the lemma follows. 2
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Figure 1: The picture shows three constraints of the form
−x1 ≤ t1, x1 − x2 ≤ t2, and x1 + x2 ≥ t3. Supposex is the
only loser. The loser gap ofx is max{t j − wT

j x|wT
j x ≤ t j} =

t1− (−1,0)T x.

Combining the two lemmas, we observe that the density of the
feasibility gapΓ(t) is at most∑i∈[n] φi , provided that the ranking
is monotone and 0n 6∈ S . Next we extend this result towards gen-
eral kinds of rankings by breaking the original problem in subprob-
lems. We partitionS into the setsS (k) = {x∈ S | ∑ixi = k}, for
1≤ k ≤ n. Observe that each of these sets contains only solutions
with the same number of ones, and hence satisfies the monotonicity
condition. LetΓ(k)(t) denote the feasibility gap over the setS (k).
By Lemma 8, the density ofΓ(k)(t) is at most∑i∈[n] φi , for every
t ∈

�
. Furthermore,Γ(t) takes the value of one of the variables

Γ(k)(t), 1≤ k≤ n because the winner of one of the subproblems is
the winner of the original problem. As a consequence of Lemma6,
the density ofΓ(t) is at mostn∑i∈[n] φi , for every continuous point
t ∈

�
. Let us remark that such a kind of argument cannot directly

be applied to the loser gap. By applying Lemma 9, however, the
bound for the feasibility gap holds for the loser gap as well.Hence,
Lemma 7 is shown. 2

Loser and Feasibility gap for multiple constraints. Assume
there arek ≥ 2 stochastic constraints. W.l.o.g., these constraints
are of the formwT

j x ≤ t j , for j ∈ [k], and the sets of points satis-
fying these constraints areB1, . . . ,Bk, respectively. We generalize
the definition of feasibility and loser gap as follows. Givena set
of solutionsS ⊆ {0,1}n and a ranking, thewinner x∗ is the highest
ranked solution inS ∩B1∩ . . .∩Bk. Thefeasibility gap for multiple
constraintsis the minimal slack ofx∗ over all stochastic constraints,
that is,Γ = min j∈[k]{t j −wT

j x∗}, if x∗ exists, and∆ =⊥, otherwise.
The set oflosersL consists of all solutions fromS that have a rank
higher thanx∗. Observe that a loser only needs to be infeasible
with respect to one out of thek constraints. In particular, it is not
true that the values of all losers are likely to be far away from all
thresholdst j , j ∈ [k]; not even if we consider only those constraints
for which the respective losers are infeasible. Fortunately, how-
ever, we do not need such a property in the application of the loser
gap. For every loser, one only needs a single constraint thatrenders
the loser infeasible. Therefore, we define theloser gap for multi-
ple constraintsby Λ = minx∈L maxj∈[k]{wT

j x− t j}, if L 6= /0, and
Λ =⊥, otherwise. Figure 1 illustrates this definition.

LEMMA 10. Let φ denote the maximum density parameter of
all coefficients in the stochastic constraints. Suppose0n 6∈ S . Then
Pr [Γ < ε] ≤ εkφn2 andPr [Λ < ε] ≤ εkφn2, for all ε ∈

�
≥0.

PROOF. First we show the bound for the feasibility gap. Sup-
poseΓ ≤ ε, for someε ∈

�
≥0. Then there existsj ∈ [k] with

t j −wT
j x∗ ≤ ε. Thus,

Pr [Γ ≤ ε] ≤ ∑
j∈[k]

Pr
[

t j −wT
j x∗ ≤ ε

]

.

Now, for every individual j ∈ [k], we can apply the Separating
Lemma assuming that the set of feasible solutions with respect to
all other constraints is fixed as the coefficients in this constraint are
stochastically independent from the other constraints. This way, we
obtainPr [Γ ≤ ε] ≤ k · εφn2.

Next, we turn our attention to the loser gap. Unfortunately,we
cannot generalize the bound on the loser gap from one to multi-
ple constraints in the same way as we generalized the feasibility
gap as the loser gap for multiple constraints does not correspond
to the minimal loser gap over the individual constraints. Instead
we will make use of the result for the feasibility gap established
above. AssumeΛ ≤ ε, for someε ∈

�
≥0. Then there exists a loser

x satisfying∀ j ∈ [k] : wT
j x− t j ≤ ε. Let xL denote the loser with

this property that is ranked highest. Consider a relaxed variant Π′

of the given optimization problemΠ where the thresholds of all
stochastic constraints are increased byε, i.e., we have constraints
wT

j x ≤ t j + ε, j ∈ [k]. Observe thatxL is feasible in the relaxed
problemΠ′ and, by the definition ofxL, no higher ranked solution
is feasible. Thus,xL is the winner ofΠ′. Sincet j < wT

j xL ≤ t j + ε
for some j ∈ [k], the feasibility gapΓ′ of the relaxed problem is
smaller thanε. Hence,Λ ≤ ε implies Γ′ ≤ ε. Finally, applying
the boundPr [Γ′ ≤ ε] ≤ εkφn2 derived in the first part of the proof
yieldsPr [Λ ≤ ε] ≤ εkφn2. 2

3. PROOF OF THEOREM 1
First, suppose the only stochastic expression is the objective func-

tion. We revealb bits after the binary point of each coefficientci
(1 ≤ i ≤ n), and assume that all following bits are 0. This corre-
sponds to rounding down all numbers to multiples of 2−b causing
an absolute rounding error of less than 2−b for each number.

LEMMA 11. Letφ denote the maximum density parameter over
all coefficients in the objective function. When revealing bbits after
the binary point of each coefficient in the objective function then the
winner is uniquely determined with probability at least1−2−bn2φ.

PROOF. Let bcc be the vector that is obtained by rounding each
entry ci of c down to the next multiple of 2−b. Consider any two
solutionsx,x′ ∈ S . We have|(cTx− cTx′)− (bccTx−bccTx′)| =
|(c−bcc)T(x− x′)| < n2−b. Hence, if the winner gap∆ (with re-
spect to the exact coefficientsc1, . . . ,cn) is at leastn2−b then the
rounding can not affect the optimality of the winner. In thiscase
the winner is uniquely determined after revealing onlyb bits of
each coefficientci . Let φ∆ denote the supremum of the density of
∆. ThenPr [∆ < x] ≤ xφ∆ for all x ∈

�
≥0. Using Lemma 5 and

settingx = n2−b yieldsPr
[

∆ < n2−b
]

≤ 2−bn2φ. 2

Next suppose only some of the constraints are stochastic, and
the objective function is adversarial. Letk′ denote the number
of stochastic constraints. W.l.o.g. the constraints are ofthe form
wT

j x ≤ t j , j ∈ [k′]. We revealb bits after the binary point of each
coefficient and round down.

LEMMA 12. Letφ denote the maximum density parameter over
all coefficients in the stochastic constraints. When revealing b bits
after the binary point of each coefficient, then the winner isuniquely
determined with probability at least1−2−bk′n3φ.



PROOF. Observe that, due to rounding, infeasible solutions might
become feasible whereas feasible solutions stay feasible.To ensure
that the winner is uniquely determined it suffices to upper bound
the maximum possible error in each constraint that is causedby the
rounding. If this error is smaller than the loser gap then rounding
cannot change the feasibility status of any loser, i.e., allinfeasible
solutions that have rank higher than the winner stay infeasible.

In order to apply the bound on the loser gap given in Lemma 10,
let us first assume 0n 6∈ S . The error for every solution with respect
to any constraint is at mostn2−b. The definition of the loser gap
for multiple stochastic constraints states that for every loserx there
is a constraintj ∈ [k′] such thatwT

j x− t j ≥ Γ. Therefore, ifΓ ≥

n2−b then every loser stays infeasible after rounding. Applying
Lemma 10, the probability for this event is at least 1−k′φn3/2b.

The solution 0n can influence the loser gap in two ways. At
first, 0n can be a loser and thus decrease the loser gap. However,
rounding the coefficientswi does not change the objective value of
this solution. Thus, 0n stays infeasible under rounding and the loser
gap with respect to all other solutions in unaffected. At second, 0n

might be the winner, which would result in a different loser set
than under the assumption 0n 6∈ S . In this case, however, 0n has a
higher rank than the previous winner so that the set of loserscan
only shrink. Therefore, the loser gap cannot decrease because of
0n and, hence, the argument above about the feasibility of the other
solutions remains valid. 2

Now suppose some constraints and the objective function are
stochastic. Letk = k′ +1 denote the number of stochastic expres-
sions. The probability that winner and loser gap are sufficiently
large, as described in the two lemmas above, is 1− k′φn3/2b −
φn2/2b ≥ 1− kφn3/2b. This implies that the winner is uniquely
determined when revealingO(log(kφn)) bits,whp. This completes
the proof of Theorem 1. 2

4. PROOF OF THEOREM 3
At first, we prove that a randomized pseudopolynomial algo-

rithm implies polynomial smoothed complexity. We design anal-
gorithm with polynomial smoothed complexity calling the pseu-
dopolynomial algorithm with higher and higher precision until the
optimal solution is found. Due to space limitations, we onlypresent
the core of the algorithm and its analysis, namely we presenthow
to compute a certified winner when only a bounded number of bits
per input number is available. The algorithm has availableb bits
after the binary point of each random coefficient and either outputs
the true winner or, if it cannot compute such a winner as it needs
more bits, it reports a failure.

Certifying optimality. Suppose only the objective function is
stochastic. W.l.o.g., consider a maximization problem with ob-
jective functioncTx. Let bcic denote the coefficientci rounded
down to the next smaller multiple of 2−b. At first, we compute
the optimal solutionx′ for the problem with the rounded coeffi-
cients bc1c, . . . ,bcnc. To check, whetherx′ is optimal with re-
spect to the original cost vectorc, we generate another vector ¯c
of rounded coefficients. This time the rounding depends onx′. For
all i with x′i = 1, we set ¯ci := bcic and for alli with x′i = 0, we set
c̄i := dcie = bcic+ 2−b. Observe, the functionδ(x) = cTx− c̄Tx
is maximal for x = x′. Next, we compute the optimal solution
x′′ for the problem with the vector ¯c. If x′ = x′′ then x′ simul-
taneously maximizesδ(x) and c̄Tx. Consequently, it maximizes
c̄Tx+ δ(x) = cTx as well and, hence,x′ corresponds to the true
winner x∗. Thus, the algorithm outputsx′ as a certified winner if
x′ = x′′ and reports a failure, otherwise. Observe, if the winner

gap is large enough so that the winner is uniquely determinedin
the sense of Lemma 11, then the algorithm will always computea
certified winner. Hence, the probability that the algorithmis suc-
cessful corresponds to the bound given in Lemma 11.

Certifying feasibility. Now we show how to deal with stochas-
tic constraints. W.l.o.g, we assume that all stochastic constraints
are of the formwT

j x≤ t j , 1≤ j ≤ k′. As described in Lemma 12 all

coefficients are rounded down to the next multiple of 2−b, and we
compute a certified winner with respect to the rounded coefficients.
Let x′ denote the winner with respect to the rounded coefficients.
Observe, that we rounded in such a way that feasible solutions stay
feasible. However, we have to detect infeasible solutions that might
become feasible due to the rounding and displace the true winner.
Hence, we need to check whetherx′ is indeed feasible with respect
to the original constraints. This would be trivial if the exact val-
ues of all constraint vectorsw1, . . . ,wk were available. However,
we want to check the feasibility with only knowingb bits after the
binary point of each coefficient. Letbw jc denote the vector that is
obtained by rounding down each entry ofw j to the next multiple
of 2−b. Assume solutionx is infeasible w.r.t. thej-th constraint
and becomes feasible due to rounding. Thenbw jc

Tx ≤ t j < wT
j x

and hencet j −bw jc
Tx < wT

j x−bw jc
Tx ≤ n2−b, i.e. x has slack

less thann2−b for constraintj . Our verifier will use this property.
It classifiesx′ as possibly infeasible if it has slack less thann2−b

for any of thek constraints. There are two reasons why the verifier
may fail. At first, there might be a loser that appears to be feasi-
ble because of the rounding. As seen in the proof of Lemma 12,
however, this can happen only if the loser gap is smaller thann2−b.
At second, by mistake the true winner might have been rejected as
its slack is less thann2−b. This can happen only if the feasibil-
ity gap is smaller thann2−b. Applying Lemma 10 yields that the
probability that one of these events happen is at most 2k′2−bφn3.

Now let us briefly sketch the missing details of the algorithmand
its analysis. Until now we did not specify how the optimal solution
for the rounded coefficient is actually computed. For this purpose,
we use the pseudopolynomial algorithm. The optimal solution is
found whenb = O(log(φnk)), whp. Hence, the pseudopolynomial
algorithm has to deal with numbers described byO(log(φnk)) bits
so that its running time is bounded by 2O(log(φnk)) = poly(φnk) =
poly(φN), whp.

Finally, we need to show that polynomial smoothed complex-
ity implies the existence of a randomized pseudopolynomialalgo-
rithm. Polynomial smoothed complexity implies that there exists
an algorithmA and a polynomialP(n,φ) such that the probabil-
ity that the running time ofA exceedsP(n,φ) is at most14 . Since
we are aiming for a pseudopolynomial time algorithm we can as-
sume that all numbers in the stochastic expressions are integers.
Let M denote the largest absolute value of those integers. The idea
is to perturb all numbers only slightly such that the cumulative er-
ror in each expression is less than1

2 . To adapt the problem to the
smoothed analysis framework we first scale all input numbersin the
stochastic constraints byM−1. Then we generate a random pertur-
bation and test if any number has changed by more than(2nM)−1.
In that case we outputFAILURE. Otherwise we call the perturbation
proper and runA. If A has not completed afterP(n,φ) time steps
we stopA and outputFAILURE. Let Q be the event that the pertur-
bation is proper. There is a constantc, depending on perturbation
model f , such thatPr [Q] ≥ 1

2 when settingφ = 4cn2kM. Then the
probability of success is

Pr [Q∧ (T ≤ P(n,φ))] ≥ Pr [Q]−Pr [T > P(n,φ)] ≥
1
4

.



The running time of this algorithm is pseudopolynomial because
φ = O(Mn2k). Hence,Πu ∈ ZPP. This completes the proof of
Theorem 3. 2

5. RELATIONSHIP TO CONDITION
NUMBERS

To obtain a finer analysis of algorithms than that provided by
worst-case complexity, one should find a way of distinguishing
hard problem instances from easy ones. A natural approach isto
find a quantity indicating the difficulty of solving a problemin-
stance. In Numerical Analysis and Operations Research it iscom-
mon to bound the running time of an algorithm in terms of acon-
dition numberof its input. The condition number is typically de-
fined to be the sensitivity of the solution for a problem instance to
slight perturbations of the input. For example, Renegar [20, 21, 22]
presents a variant of the primal interior point method and describes
its running time as a function of the condition number. Remarkably,
his running time bound depends only logarithmically on the condi-
tion number. Dunagan, Spielman, and Teng [7] study this condition
number in the smoothed analysis framework. Assuming Gaussian
φ-perturbations, the condition number can be bounded by a func-
tion that is polynomial inφ. Thus, the running time of Renegar’s
algorithm depends only logarithmically on the density parameterφ.
In contrast, the running time bound of the Simplex algorithmpre-
sented by Spielman and Teng in [24] is polynomial inφ.

In [25], Spielman and Teng propose to extend the condition num-
ber towards discrete optimization problems in order to assist the
smoothed analysis of such problems. As a natural definition for the
condition number of a discrete function they suggestthe reciprocal
of the minimum distance of an input to one on which the function
has a different value. In fact, the minimum of winner, loser, and
feasibility gap is a lower bound on the amount by which the coeffi-
cients of a binary optimization problem needs to be altered so that
the winner, i.e., the solution taking the optimal value, changes. Let
us define the reciprocal of this minimum to be thecondition number
for binary optimization problems. This allows us to summarize our
analysis in an alternative way. Our probabilistic analysisin Sec-
tion 2 shows that the condition number is bounded polynomially in
the density parameterφ. Furthermore, in Section 4, we proved that
a problem with pseudopolynomial worst-case complexity admits an
algorithm whose running time is bounded polynomially in thecon-
dition number. Combining these results, we obtained algorithms
whose smoothed complexity depends in a polynomial fashion on
the density parameterφ. Let us remark that this kind of dependence
is best possible for NP-hard optimization problems, unlessthere
is a subexponential time algorithm forNP-complete problems. In
particular a running time bound logarithmic inφ would yield a ran-
domized algorithm with polynomial worst-case complexity.
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