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Abstract

Given access to independent samples of a distribution�
over �� � � �	 �, we show how to test whether the distri-

butions formed by projecting
�

to each coordinate are in-
dependent, i.e., whether

�
is 
-close in the�� norm to the

product distribution
�� ��


for some distributions
�� over

�� � and
�


over �	 �. The sample complexity of our test is�� ��
��	 ���poly
�
����, assuming without loss of general-

ity that 	 � �. We also give a matching lower bound, up
to poly

���� � � 
��� factors.
Furthermore, given access to samples of a distribution�
over �� �, we show how to test if

�
is 
-close in ��

norm to an explicitly specified distribution� . Our test
uses

�� �� ��
poly
�
�� �� samples, which nearly matches the

known tight bounds for the case when� is uniform.

1. Introduction

Fred works at a national consumer affairs office, where
each day he gets several consumer complaints. Because
he has a hunch that there is some correlation between the
zip code of the consumer and the zip code of the company,
Fred wants to check whether these zip codes are dependent.
However, since there are���� zip code pairs, he does not
have enough samples for traditional statistical techniques.
What can Fred do?

Suppose we are given a black box that generates inde-
pendent samples of a distribution

�
over pairs

�� �  � for� ! ��� and ! �	 � with 	 � �. We want to test whether
the distribution over the first elements is independent of the
distribution over the second elements, without making any
additional assumptions on the structure of

�
."
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Checking independence is a central question in statis-
tics and there exist many different techniques for attack-
ing it (see [5]). Classical tests such as the(



test or the

Kolmogorov-Smirnoff test work well when� and 	 are
small, but for large� �	 these tests require more than� ) 	
samples, which may be huge. Can one develop a test that
uses fewer than�	 samples?

We also consider the problem of testing if a black-box
distribution over�� � is close to a known distribution. The
(



test is commonly used for this problem, but requires at
least a linear number of samples. Can one develop a test
that uses a sublinear number of samples?

Testing statistical properties of distributions has been
studied in the context of property testing [7, 3] (see the sur-
vey by Ron [6]). Using the techniques of Goldreich and
Ron [4], one can get (see [1]) an

�� �*+ � algorithm to test if
a black-box distribution over

+
elements is close in� � norm

to uniform. Batu, Fortnow, Rubinfeld, Smith, and White [1]
show how to test whether two black-box distributions over+

elements are close in�� norm, using
�� �+ 
�� � samples. In

particular, this gives a test that answers the second question
in the affirmative.

Our results. In this paper we develop a general algorithm
(Section 3) for the independence testing problem with a sub-
linear sample complexity (in the size of�� � � �	 �). To our
knowledge, this is the first sublinear time test which makes
no assumptions about the structure of the distribution. Our
test uses

� ��
��	 ���poly
���� � � 
���� samples, assuming

without loss of generality that� , 	 , and distinguishes be-
tween the case that

� - � � ��

, and the case that for all

��
and

�

, .� / � � � �
 . , 
. Here,

�� and
�


are distribu-
tions over�� � and �	 � respectively and.� / 0 . represents
the � � or statistical difference between two distributions.
We also show that this bound is tight up to poly

���� � � 
���
factors (Sectin 5).

We then give an algorithm (Section 4) to test if a
black-box distribution over�� � is close (in� � norm) to
an explicitly specified distribution. Our algorithm uses� �� ��
poly

���� � � 
���� samples – almost matching the
upper and lower bounds of [4] for the uniform case.



Overview of our techniques. Our approach begins with
presenting two different ways of testing independence of
distributions. These two methods have different sample
complexities and are desirable in different situations.

In the first method, we use the equivalence of testing in-
dependence to testing whether

�
is close to� �� � � 
�

where��� is the distribution of
�

projected to the
�
-th co-

ordinate. Since it is easy to generate samples of� �� � � 
�
given samples of

�
, we can apply the result of Batu et

al. [1]. This immediately gives us a test for independence
that uses

�� ��
��	 
�� � samples.
For the second method, first consider the case where� ��

and� 
� are uniform over�� � and �	 �, respectively. Test-
ing the independence is equivalent to testing whether

�
is

uniform in �� � � �	 �. We can use the test of Goldreich and
Ron [4] for this using

�� �*�	 � - �� �� � samples.
To reduce the general problem to that of� �� and� 
�

uniform we first use abucketingtechnique (Section 2.3)
to partition �� � and �	 � into a polylogarithmic number of
buckets of elements of similar probabilities given� �� and
� 
� , respectively. To do this we must approximate the
probabilities of each� �� ��� and � 
� � � which requires�� ���� �� � 	 �� - �� �� � samples.

For all buckets
0 � � �� � and

0
 � �	 � we could try
to test independence of

�
restricted to

0� � 0

since� ��

restricted to
0� and� 
� restricted to

0

are close to uni-

form. Unfortunately they are not close enough to uniform
for our purposes. To overcome this we use asifting tech-
nique (Section 2.4). We first collect many samples

�� �  �
with

� ! 0 � and ! 0

. We then create a virtual sampler

that first chooses
�

uniformly from
0 � and then picks the

first
�� �  � we previously sampled. We then create a second

virtual sampler that chooses uniformly from
0


and picks
the first

�� �  � from the first virtual sampler. We show that
the second virtual sampler, which we call asieve, preserves
the dependencies of the original distribution, and has uni-
form projections to

0 � and
0


, so we can apply the uniform
tester described above. We also show that this process only
costs us a polylogarithmic factor in the number of samples
we need, achieving a tester using

�� �� � samples overall.
Then, we combine these two algorithms in an appropri-

ate manner to exploit their different behavior. In particular,
we partition the elements of�� � to ‘light’ and ‘heavy’ ele-
ments based on� �� . We apply the first method to the light
elements, and apply the second method to the heavy ele-
ments. This asymmetric approach helps us achieve an op-
timal trade-off in the sample complexities, resulting in the�� ��
��	 ��� � bound.

2. Some preliminary tools

We use the
��

notation to hide dependencies on the
logarithm of any of the quantities in the expression, i.e.,

� - �� �� � if
� - � �� ) poly

���� � ��. To simplify the ex-
position, we assume that all tests are repeated so that the
confidence is sufficiently high. Since amplifying the con-
fidence to� / �

can be achieved with
� ���� �	 � trials, an

additional multiplicative factor that is polylogarithmicin �
or �
��	 ��� (as the case may be) is all that we will require.

We use
� � � � 
 to denote random variables over sets and� � 0 �� �� to denote random variables over pairs of sets.

We often refer to the first coordinate of a sample from the
latter type of distributions as theprefix.

For a set
 , let �� denote the uniform random variable
over
 . Let

� ��� denote the probability that
� - �

, and

for a subset
 � of 
 , let
� �
 �� ���- ����� � ���. If

�
is

a random variable over� � � , let ��� denote the random
variable obtained by projecting

�
into the

�
-th coordinate.

Let
� �� �  � denote the probability that

� - �� �  �.
Let . ) . stand for the� � norm, � ) � for the�


norm, and
� ) �� for the�� norm. If .� / 0 . � 
, we say that

�
is


-closeto
0

.
We assume that a distribution

�
over
 can be specified

in one of two ways. We call
�

a black-boxdistribution if
an algorithm can only get independent samples from

�
and

otherwise has no knowledge about
�

. We call
�

anexplicit
distribution if it is represented by an oracle which on input� ! 
 outputs the probability mass

� ���.
2.1. Independence and approximate independence

Let
�

be a distribution over�� � � �	 �. We say that
�

is
independentif the induced distributions� �� and� 
� are
independent, i.e., that

� - �� �� � � �� 
� �. Equivalently,�
is independent if for all

� ! ��� and ! �	 �, � �� �  � -
�� �� � ��� ) �� 
� � � �.

We say that
�

is 
-independentif there is a distribution0
that is independent and.� / 0 . � 
. Otherwise, we say�
is not 
-independentor is 
-far from being independent.
Now, closeness is preserved under independence:

Proposition 1 Let
� � 0 be distributions over� � � . If

.� / 0 . � 
�� and
0

is independent, then.� / �� �� � ��� 
� � . � 
 �
Proposition 1 follows from the following lemmas.

Lemma 2 ([8]) Let
� � � � � be distributions over� and�
 � �


be distributions over� . Then.� � ��� /� 
 ��
 . �
.� � / �� . � .� 
 / �
 .�
Lemma 3 Let

� � 0 be distributions over� � � . If .� /
0 . � 
, then .� �� / � �0 . � 
 and .� 
� / � 
0 . � 
.
PROOF OFPROPOSITION1: Clearly,

0 - �� �0 � ��� 
0 �.
Using the triangle inequality, Lemma 2 and Lemma 3,.� /
�� �� � � �� 
� � . � .� / 0 .� .0 / �� �� � � �� 
� � . - .� /
0 .� .�� �0 � � �� 
0 � / �� �� � � �� 
� � . � 
�� � �
�� - 
. 



2.2. Restriction and coarsening

We begin with the definitions.

Definition 4 Given a random variable
�

over
 , and� �

 � � 
 , the restriction

� ��� is the random variable over

 � with distribution

� ��� ��� - � ����� �
 ��.
Given a random variable

�
over 
 , and a partition� - �
 � � � � � �
 � � of 
 , thecoarsening

� �� 	
is the ran-

dom variable over�
 � with distribution
� �� 	 ��� - � �
 � �.

The definition of restriction resembles the definition of a
conditional distribution, only a restriction is defined as a
distribution over the subset
 �, while a conditional distribu-
tion is defined over the whole
 by padding it with zeros.

In the light of the above definition, it follows that:

Observation 5 If
�

is a random variable over
 and
� -�
 � � � � � �
 � � is a partition of
 , then for all

�
in �
 � and 

in 
�, � � � - � �� 	 ��� ) � �� � � �.
In words, the probability of picking an element belong-
ing to the partition
� according to

�
is equivalent to the

probability of picking the partition
 � times the probabil-
ity of picking  when restricted to the partition
�. Us-
ing Observation 5, it follows that

� �� �  � - �� �� � ��� )�� 
� ���
���� � � �.
The following lemma (proof omitted) shows that two

random variables are close if they are close with respect to
restrictions and coarsening.

Lemma 6 Let
� � � be random variables over
 and let� - �
 � � � � � �
 � � be a partition of
 . If for all

�
in �
 �,

.� �� � /� �� � . � 
� and .� �� 	 /� �� 	 . � 

, then.� /� . �

� � 

.
Note that if

�� / 
�� �
 � � � � �
 � � � �� � 
�� �
 � � for
every

� ! �
 �, then .� �� 	 / � �� 	 . � 
.
The following lemma (proof omitted) shows a partial

converse: if
�

and� are close, then they are close when
restricted to sufficiently ‘heavy’ partitions of the domain.

Lemma 7 Let
� � � be distributions over
 and let
 � �


 . Then.� ��� / � ��� . � � .� / � .�� �
 ��.
2.3. Bucketing

Bucketing is a general tool that decomposes an arbitrary
explicitly given distribution into a collection of distributions
that are almost uniform.

Given an explicit distribution
�

over 
 , we define
Bucket

�� �
 � 
� as a partition
�
 � �
 � � � � � �
 � � of 
 with
 - ��� ��� �� � 
�� ) ��� .
 ., 
 � - �� . � ��� �

�� �.
 . ��� .
 .��, and for all
�

in �
 �,

 � - � ����

�� � 
����
.
 . ��� .
 .

� � � � � �� � 
��
.
 . ��� .
 . � �

The following lemma shows that if one considers the re-
striction of

�
to any of the buckets
�, then the distribution

is close to uniform.

Lemma 8 Let
�

be an explicit distribution over
 and let�
 � � � � � �
 � � -
Bucket

�� �
 � 
�. For
� ! �
 � we have

.� �� � /�� � . � 
, �� �� � /�� � �
 � 



� .
 � ., and

� �
 � � �
�� ��� .
 ..
PROOF: Clearly,

� �
 � � � �� ��� .
 .. For
� , �, consider

an arbitrary (non-empty) subset
 � and without loss of gen-
erality, assume
 � - ��� � � � � � � with

� ��� � ) ) ) � � �� �.
Let � - � �� � . Then, � �� ��� ��� � � � 
. Also,
by averaging,� ��� � ��� � � �� �. Hence� �� � ��� � 
�� ��� � �� � 
���. Similarly it can be shown that
� ��� , �� �� �� � 
�� � �� / 
���. Thus, it follows that
.� � � / ��� . � 
�� for all  - �� � � � � � and therefore,� � �� � .� � �/�� � . � 
 and

� � �� � �� � �/�� � �
 � 



��. 

Given an “approximation”
��

of
�

, the bucketing of
��

has
similar properties as the bucketing of

�
.

Corollary 9 Let
� � ��

be distributions over
 such that��
approximates

�
i.e., � � ! 
 � �� / 
�� ��� � �� ��� ��� � 
�� ��� for some
 � �. Then,Bucket

� �� �
 � 
� is a
partition

�
 � � � � � �
 � � of 
 with 
 - � �
�� ��� .
 .� such
that for all

� ! �
 �, .� �� � / �� � . � �
 and
� �
 � � ��� � 
�� ��� .
 ..

In our applications of bucketing, we usually ignore the�-th
bucket
 � since the probability mass on this bucket will be
negligible for our purposes.

2.4. Sieves

In our construction, we will have a distribution
�

whose
projections are nearly uniform. By using techniques from
Goldreich and Ron [4], we can quickly test independence
of distributions whose projections are truly uniform. In this
section, we show how to reduce the nearly uniform case to
the uniform case. We achieve this reduction by constructing
a sievethat collects samples from

�
and sifts out samples

in a way that achieves the desired uniformity.
We use the sieve in batch mode, i.e., given an input pa-

rameter�, we output� samples according to some
0

, based
on samples we take of the original

�
. An

�� � 0 �-sieve is
specified in terms of the relationship between the properties
of the output distribution

0
and those of input distribution�

; in our case of an
�

whose projections are nearly uniform
the sieve will produce a

0
that is close to

�
, while uni-

formizing its projections, and preserving its independence
if such existed. The other important parameter is the sam-
ple complexity of the sieve, which is the total number of
samples of

�
it uses for a given� and the domain of

�
.



We first show that there is a sieve that takes a distribution�
over� � � for which the first coordinate is close to uni-

form, and produces a new distribution which is close to the
original one, and for which the first coordinate is uniform;
moreover, this sieve preserves independence.

Lemma 10 There exists an
�� � 0 �-sieve for random vari-

ables over� � � such that for any�, with high probability,
(1) if

� - �� �� � � �� 
� � then
0 - �� � �� 
� �, and (2) if

.� �� /�� . � 
�� then .� /0 . � 
. The sample complexity
of the sieve is

� ���� � .� .� � � ���� ��� � .� .� � ��.
PROOF: First, we describe the construction of the sieve.
Let � be given and let� - � ��� .� . ��� .� . ��� ��. The sieve
maintains a data structure which for every

� ! � , contains a
list � � of � elements of� . Each list starts out empty and is
filled according to the following steps:

(1) Obtain
� ���� � .� .� � � ���� ��� � .� .� � �� samples

from
�

and for each sample
�� �  � from

�
, add to � � if

.� � . � �.
(2) For each

� � ! � , if .� �� . � �, then discard� �� . In this
case, obtain� more samples from

�
and for each sample�� �  � from

�
, add to � �� .

For
� ! � , let

0 � be a random variable with the distri-
bution � 
� ���
 �� if � � was not discarded in step (2) and
with the distribution� 
� otherwise. Thus,� � contains�
independent samples of

0 �.
Next, we describe the operation of the sieve. Upon a

sample request, the sieve generates a uniformly random� !� � . If .� � . � �, then the sieve picks the first ele-
ment in � �, outputs

�� �  �, and deletes the first element in
� �. If .� � . - �, then the sieve gets a sample

�� � �  �� from
�

and outputs
�� �  � �.

First, notice that with high probability (via a Chernoff
bound), no� � becomes empty in any of the� requests for
samples. Also, it is clear that the output of the sieve is the
random variable

0
defined by generating a uniform

� !� �
and then simulating the corresponding

0 �. The exact distri-
bution of

0
may depend on the outcome of the preprocess-

ing stage of the sieve, but we show that with high probability0
satisfies the assertions of the lemma.
For the first assertion, note that if

� - �� �� � � �� 
� �,
then the second coordinate is independent of the first coor-
dinate. So,

0 � - � 
� for every
�

(regardless of whether� �
was filled by step (1) or (2)). Thus,

0 - �� � �� 
� �.
To show the second assertion, let� - �� . � �� ��� ,

�� �� .� .��. Another application of the Chernoff bound
shows that with high probability, for every

� ! � ,
0 �

is distributed as� 
 �� ���
 �� � (since� � would not be dis-
carded in step (2)). Thus, for every

� ! � , � � contains� independent samples of
0 � - � 
� ���
 �� . Also, since

.� � �� � / �� . � 
��, we have.� �� . � 
 .� .��. We get

.� / 0 . - ���� � � �� .� �� �  � / 0 �� �  � .
� � ����� � � �� .� �� �  � / 0 �� �  � .

� ���� � � �� .� �� �  � / 0 �� �  � .
� � ��� �� � � �� �� �� �  � � 0 �� �  ��

- ���� � � �� � 
� ���
 �� � � ) ���� �� ��� / ��� � ���� � ��� �� �� �� ��� � � �0 ����
� ���� ���� �� ��� / ��� � ���� ���� �� � �� ��� �

�� �� ��� �� �� 
 � �� 
 � �
 
 - 
  

Sieves can be composed, i.e., an
�� � � �-sieve can be com-

bined with a
�� � 0 �-sieve to give an

�� � 0 �-sieve. If the
sample complexity of the

�� � � �-sieve is given by the func-
tion

� ���, and that of the
�� � 0 �-sieve is given by� ���, then

the sample complexity of the combined
�� � 0 �-sieve will

be given by� ��� - � �� ����.
Corollary 11 There exists an

�� � 0 �-sieve for random
variables over� � � such that if .� �� / �� . � 
��	,
and .� 
� / �� . � 
��	, then with high probability, (1)
.0 / � . � �����	�
; (2) if

� - �� �� � � �� 
� � then0 - �� �� ; and (3) if
�

is not 
-independent, then
.0 / �� �� . , ����	�
. The sample complexity of the sieve
is

� ���� � .� . � .� .� � � ���
 ��� � .� .� .� .� � ��.
PROOF: We apply the

�� �� �-sieve from Lemma 10 on the
first coordinate. Using this sieve we obtain a random vari-
able� (with high probability) such that.� / � . � �
��	,
� �� - �� , and such that� is independent if

�
is inde-

pendent. Now, using Lemma 3,.� 
� / � 
� . � �
��	
and since by our hypothesis,.� 
� / �� . � 
��	, we get
.� 
� / �� . � 
�	.

We now construct a
�� � 0 �-sieve from Lemma 10, only

this time switching coordinates and sifting on the second
coordinate. Using this sieve, we obtain a random variable0

(with high probability) such that.0 / � . � ��
��	 and
� 
0 - �� .

Moreover, according to Lemma 10 if
�

is independent
(and thus so are� and

0
) then� �0 has the same distribu-

tion as� �� - �� . Since� �0 - �� � � 
0 - �� and they
are independent, we get that

0
is uniform on� � � .

Clearly, .0 / � . � .0 / � .� .� / � . � �����	�
. This
implies that if

�
is not
-independent, then

0
is

����	�
-far
from any independent distribution on� � � , and in partic-
ular from�� �� .

 

2.5. Tools from earlier work

We use the following results from earlier work. The first
theorem states that the�


norm of a distribution can be
approximated in sublinear time. This can be proved using
techniques from Goldreich and Ron [4].

Theorem 12 (based on [4])Given a black-box distribu-
tion

�
over
 , there is a test using

� �� .
 .
�

 ��� ���� ��

queries that estimates�� �



to within a factor of
�� � 
�,

with probability at least� / �
.



The next theorem states that there is a sublinear time test for
�


closeness of two black-box distributions.

Theorem 13 ([1]) Given two black-box distributions
� � �

over
 , there is a test requiring
� �
�� ��� ���� �� samples

which (1) if �� /� � � 
�� it outputs PASS with probability
at least� / �

and (2) if �� / � � , 
 it outputs FAIL with
probability at least� / �

.

The next theorem states that there is a sublinear time test for
�� closeness of two black-box distributions.

Theorem 14 ([1]) Given two black-box distri-
butions

� � � over 
 , there is a test requiring� �.
 .

��


�� ��� .
 . ��� ���� �� samples which (1) if
.� / � . � ��� �




� ��� �� .
 .� � 
� ��� .
 .��, it outputs

PASS with probability at least� / �
and (2) if .� / � . � 
,

it outputs FAIL with probability at least� / �
.

The next theorem improves this result in the case that the
�� norms of the distributions are sufficiently small.

Theorem 15 ([1]) Given two black-box distributions
� � �

over 
 , with �� �� � �� �� , there is a test requir-
ing

� ��.
 .


�� �� �� �� 
�� � � .
 .�� �� 
�


 � ��� ���� ��
samples that (1) if.� / � . � ��

�* �� �, it outputs PASS with

probability at least� / �
and (2) if .� / � . � 
, it outputs

FAIL with probability at least� / �
.

The following theorem states that all sufficiently large en-
tries of a probability vector can be estimated efficiently.

Theorem 16 Given a black-box distribution
�

over 
 , a
threshold� and an accuracy
 � �, there is an algorithm
that requires

� ����
�

 ��� .
 . ��� ���� �� samples and out-

puts an estimate
��

such that with probability at least� / �
,

for every
� ! 
 with

� ��� , � we have
�� / 
�� ��� ��� ��� � �� � 
�� ���; the algorithm also outputs a set


 � � 
 that includes
�� ! 
 . � ��� , � � and on which

the above approximation is guaranteed.

The proof (omitted) of the above theorem is a simple appli-
cation of a Chernoff bound to several independent samples
from

�
. Finally, by similar methods to Theorem 15 (in

conjunction with those of [4]), we can show the following
(proof omitted):

Theorem 17 Given a black-box distribution
�

over 
 ,
there is a test that takes

� �
�� � .
 . ��� �.
 .� ��� ���� ��
samples, outputs PASS with probability at least� / �

if� - �� , and outputs FAIL with probability at least� / �
if .� / �� . � 
.

3. Testing independence

In this section we give a test for independence of a dis-
tribution

�
over �� � � �	 �. Without loss of generality, let� , 	 . The basic steps are the following. We partition

�� � into “heavy” and “light” prefixes while estimating the
probabilities of the heavy prefixes explicitly. We then apply
different approaches for each of these two classes: For the
distribution restricted to the heavy prefixes, we use bucket-
ing and sifting to transform the distribution into one that is
easier to test for independence (Section 3.1). For the light
prefixes, we use a different bucketing and previous results
that allow one to test that such distributions are close in the
�� distance (Section 3.2). Finally we ensure that the distri-
butions restricted to the the different prefixes are consistent.

Let 
 be given and let	 - �� . Let � � � � � be
a parameter to be determined later. Let� � denote the set
of indices in the first coordinate with probability mass at
least��� , which we will also refer to as the heavy prefixes.
Formally, let� � - �� ! ��� . �� �� � ��� , ��� � �Similarly,
we also define:� �� - �� ! ��� . �� �� � ��� , �
 � �� � �
Using a total of

� ��� 
�

 ��� � � samples, we can estimate�� �� � ��� � � ! � �� by

�� � ��� to within an 
��	 factor using
Theorem 16. Let

�
� be the set of all

�
for which

�� � ��� ,
� � �� . Then,
�
� � � �, and moreover

�
� does not contain any�

for which
�� �� � ��� � ��� ��.

Our main idea is to first test that
�

is independent condi-
tioned on the set of heavy prefixes and then to test that

�
is

independent conditioned on the set of light prefixes. To cre-
ate these conditionings, we first distinguish (using

�� �
���
samples) between

�� �� � � �
� � , 
 and

�� �� � � �
� � � 
��. If

the latter case occurs, then the distribution conditioned on
the heavy prefixes cannot contribute more than
�� to

�
’s

distance from independence. Otherwise, if we are guaran-
teed that the second case does not occur, we can simulate
the distribution for

� � �� ���� easily—we sample from
�

un-

til we find a member of
�
� � �	 � which we output; this takes� �
�� ��� ��	 �� queries with a high enough success prob-

ability. We then apply an independence test that works well
for heavy prefixes to

� � �� ����.
Next we distinguish between

�� �� � ����� �
� � , 
 and�� �� � ����� �

� � � 
��. Again if the latter occurs, then the
distribution conditioned on light elements can contributeat
most
�� to the distance from independence. Otherwise, if
the latter does not occur, as before we simulate the distri-
bution

� �	�
 �� �� ���� �, and use it with a test that works well
for distributions restricted to light prefixes (they will still
remain light enough provided that

�� �� � ����� �
� � , 
��).

Finally, we obtain a test for independence (Section 3.3)
by merging the testing over light and heavy prefixes and
then applying Theorem 14 to ensure the consistency of the
distributions.



3.1. The heavy prefixes

We show that using sieves, the heavy prefixes can
be tested for independence using roughly

�� ���� �	 �poly
�
�� �� samples. In fact, the following theorem

yields a general algorithm for testing independence; it is
just that the sample complexity is particularly appealing in
the heavy prefix case. Note that in this case.� . - � ��� �.
Theorem 18 There is an algorithm that given a black-box
distribution

�
over � � � : (1) if

�
is independent, it out-

puts PASS with high probability and (2) if
�

is not �
-
independent, it outputs FAIL with high probability. The al-
gorithm uses

�� ��.� . � .� .�poly
�
���� samples.

PROOF: Let
�� � be an explicit distribution which approxi-

mates� �� . Consider the following independence test:

Algorithm TestHeavyIndependence
�� � �� � � 
�

(1) � ���- ��� � � � � � � � � �� � -
Bucket

� �� � � � � 
��	�.
(2) Obtain an approximation

�� 

of � 
� to within an


��	 factor, on a
�� that includes all ! �	 � which

have probability at least
�	 ��� 	 ���.

(3) � ���- �� � � � � � � � � � �� � -
Bucket

� ��
 � �� � 
�; add� �
�� to � � .

(4) For
��� � �� � � � ! �
 � �  ! �� � do

(5) If
� ��� � �� � is not small, then

(6) If
� �� � ��� is not
-independent, then FAIL.

(7) If
� �� �� 	

is not 
��-independent, then FAIL.
(8) PASS.

Note that, if needed,
�� � can be obtained using�� .� .poly

�
�� � samples. After step (2),�� can be ignored
(as usual). The independence test in step (7) can be done
by brute force, for instance, since the alphabet is only log-
arithmic in .� . and .� .. Also, by bucketing, we know
that .� �� / �� � . � 
��	 �� � ! �
 � and .� 
� / ��� . �

��	 �� ! �� �. For deciding in step (5) whether to execute
step (6), we distinguish between

� ��� � �� � , 
� �
� � and� ��� � �� � � 
� ��
� �, by taking
�� �
��
� many samples

of
�

and counting how many of them are in�� � �� . Step
(6) requires sampling of

� �� � ��� ; this is done by repeatedly
sampling

�
until a member of�� � �� is found. As we are

assured in step (6) that
� ��� � �� � � 
� ��
� �, it suffices

to take
� �
�� ���� ��	 �� samples of

�
in order to gener-

ate a single sample of
� �� � ��� (remember that
 and� are

logarithmic in� and	 ).
We now present the independence test in step (6) which

is used for each pair of buckets from� and� .

Lemma 19 There is an algorithm that given a black-box
distribution

�
over � � � such that .� �� / �� . �


��	 � .� 
� / �� . � 
��	: (1) if
�

is independent, it
outputs PASS with high probability and (2) if

�
is not 
-

close to�� �� , it outputs FAIL with high probability (in

particular, only one of these cases can occur for a distri-
bution satisfying the above conditions). The algorithm uses�� ��.� . � .� .�poly

�
�� �� samples.

PROOF: We apply the
�� � 0 �-sieve from Corollary 11. By

its properties, if
�

is independent then
0 - �� �� , and

if
�

is not 
-close to�� �� , then .0 / �� �� . , 
��	
(because.� / 0 . � 
�
� 
). We can distinguish between
these cases using Theorem 17, with

�� �
��� .� � � .� sam-
ples from the sieve, which in itself takes less than a total of�� �
�� �.� .� .� .� ���
 �
�� �.� .� .� .��� samples from

�
.
 

Note that in the application of Lemma 19, its sampling es-
timate should be further multiplied by

� �
�� ���� ��	 �� to
get the total number of samples made from

�
, because it is

applied separately to the restriction of
�

to each�� � �� .
We now return to the proof of the theorem. If

�
is inde-

pendent, then for all
� ! �
 � �  ! �� �, the restriction

� �� � ���
is independent so steps (4)–(6) pass (remember that Lemma
19 ensures that independent distributions pass step (6)). In
the above case, also

� �� �� 	
is independent, so step (7) and

thus the entire algorithm passes as well.
Conversely, if for each

� ! �
 � and ! �� � for which step
(6) was performed.� �� � ��� / �� � ��� . � 
 (this step will
not pass otherwise by Lemma 19), and.� �� �� 	 / � . �
�
 
 where� over �
 � � �� � is an independent distribution,
then we show that

�
is �
-independent. First note that� ��� � � �� / 
�� ��� �. Now, we define a new random

variable
0

over � � � which is defined by first generat-
ing an

�� �  � ! �
 � � �� � according to� , and then gen-
erating

�� � �  � � ! �� � �� according to�� � ��� . It is
easy to see that

0
is independent. Finally, by Lemma 6,

.� / 0 . � �����
 � 
 � �� / 
�� ��� � � �
, where the sec-
ond term comes for possibly ignoring pairs

� �  for which� �� �  � � 
� �
� � and the third term comes from ignoring� ��� �.
The sample complexity of this algorithm is dominated by

the complexity for each pair of buckets going through the
test of Lemma 19. It brings us to a total sample complexity
of

�� ��.� . � .� .�poly
�
�� �� samples.

 

3.2. The light prefixes

We show that using the test for�� distance between
distributions, the light prefixes can be tested for indepen-
dence using roughly

�� ���

�


�	 � �
�� �poly

�
���� sam-
ples. Formally, we prove:

Theorem 20 There is an algorithm that given a black-box
distribution

�
over � � � with �� �� �� � �
�� .� .�

such that: (1) if
�

is independent, it outputs PASS with
high probability and (2) if

�
is not �
-independent, it

outputs FAIL with high probability. The algorithm uses�� ��.� .


�


� .� . � .� .


�� �poly
�
���� samples.



PROOF: The following is the outline of the algorithm. Note
that

��� � . � ! � � is the partition of� into singletons.

Algorithm TestLightIndependence
�� � 
�

(1) Obtain an approximation
�� 


of � 
� within an
��	
factor, on a

�� which includes all ! �	 � which
have probability at least

�	 ��� 	 ���.
(2) � ���- �� � � � � � � � � � � � � -

Bucket
� �� 
 � �� � 
�; add� �

�� to � � .
(3) For - �� � � � � � do
(4) If

� �� � �� � is not small, then
(5) If .� �� ��� / �� �� �� ��� � � �� 
� �� ��� � . , 
,

then FAIL.
(6) Let  � be such that

� �� � �� � � � 
� ��� �.
(7) For - �� � � � � � do
(8) If

� �� � �� � is not small, then
(9) If .� �� ��� � / � �� ��� . , 
, then FAIL.

(10) PASS.

The decisions in step (4) and step (8) are done in a similar
manner to what was done in Theorem 18. We distinguish
between

� �� � �� � , 
� ��� � and
� �� � �� � � 
� ��� �

by taking
�� ���
� samples of

�
. This guarantees that we

need to take
� �

poly
���� ��	 ����
� samples of

�
for every

sample of
� �� ��� required in step (5) and step (9), by re-

sampling
�

until we obtain a member of the required set
(similarly step (6) guarantees this for sampling

� �� ��� � ).
The projections appearing in step (5) are sampled by

sampling the respective distribution and ignoring a coordi-
nate. Obtaining the � in step (6) can be done for example
using a brute-force approximation of

� ��� 
 �� 	
.

The test for the distribution difference in step (5) is done
by using Theorem 15 with parameter
 and the distributions� �� ��� and

�� �� �� ��� � � �� 
� �� ��� �; the bound on the
�� norm of the distributions involved will be given below.
The test for the difference in step (9) is done similarly, but
this time using Theorem 14 with parameter
.

Notice that�� �� ��� �� � � .� .�� �
 for every�� (be-
cause of the bound on�� �� �� ), and that�� 
� �� ��� �� ��� � �
� .�� .��.

The total sample complexity for steps (3)–(5) is given
by

��� .� . times the sample complexity for iteration . The
sample complexity of the latter is given by Theorem 15,
which is

�� ���� �
� ) �.� ..�� .�
 ) .� .�� ) .� .�� .�� .�� ) 
�
� �,

times the
�� ���
� for sampling from the restrictions to the

buckets. This clearly dominates the sample complexity for
step (6), and the sample complexity for steps (7)–(9), which
is

�� �.� .

��


�
� � by multiplying the estimate of Theorem 14,

the sample complexity of the restricted distributions, and
the number of iterations.

As for correctness, if
�

is independent then it readily
follows that the algorithm accepts, while on the other hand
it is not hard to see that if the distribution pairs compared

in step (5) and step (9) are indeed all
-close, then
�

is �
-
independent.

 

3.3. Putting them together

We now give the algorithm for the general case.

Theorem 21 For � , 	 , there is an algorithm that given a
distribution

�
over �� � � �	 � and an
 � �: (1) if

�
is inde-

pendent, it outputs PASS with high probability and (2) if
�

is not�
-independent, it outputs FAIL with high probability.
The algorithm uses

�� ��
��	 ���poly
�
�� �� samples.

PROOF: The following is the outline of the algorithm.

Algorithm TestIndependence
�� � � �	 � 
�

(1) Let
�

be such that	 - �� , and set� - �� � � ���.
(2) Obtain an approximation

�� � of � �� to within an

��	 factor, on an

�
� which includes all

� ! ��� which
have probability at least��� and no

� ! ��� which
has probability at most��� ��.

(3) If
�� �� � � �

� � is not small then
(4) If TestHeavyIndependence

�� ������ � � �� � � �� ���� � 
�
fails then FAIL.

(5) If
�� �� � ����� �

� � is not small then
(6) If TestLightIndependence

�� �	 �
 �� ������ � � 
� fails
then FAIL.

(7) If both
�� �� � � �

� � and
�� �� � ����� �

� � are not small
then

(8) If � 
� � �� ��� � and� 
� �	�
 �� �� ���� � are not
-close,
then FAIL.

(9) PASS.

In the above algorithm, steps (3), (5) and (7) use sam-
pling to distinguish between the cases where the respec-
tive quantities are at least
 and the cases where they are
at most
��. Step (4) (if required) is done by using Theo-
rem 18, and step (6) is done by using Theorem 20; by the
choice of� in step (1), the number of queries in both is�� ��
��	 ���poly

�
���� times the
� �
�� ��� ��	 �� queries

required for sifting the restricted distributions (a factor
which does not change the above estimate).

In step (8) the two distributions are fed into the algo-
rithm of Theorem 14, parametrized to guarantee failure if
these distributions are more than
-apart; this uses a number
of queries that is dominated by the terms in the rest of the
algorithm.

It is clear that if
�

is independent, then the test will ac-
cept with high probability. We now prove that if the test
accepts, then

�
is at least�
-independent.

If steps (4), (6) and (8) are performed and none of the
above tests fails, then by a final application of Lemma 6,



where
� - � �

� � �	 � � ����� �
� � � �	 ��, we get that our dis-

tribution is at least�
-independent (because step (8) guar-
antees that the coarsening is not more than
-far from be-
ing independent). If steps (4) and (8) are not performed,
then

� � �
� � �	 �� � 
, so it contributes no more than
 to

the farness of
�

from being independent, and so step (6)
is sufficient to guarantee

�
-independence. Similarly
�
-

independence holds if steps (6) and (8) are not performed
since in this case

� ������ �
� � � �	 �� is small. This covers all

possible cases and concludes the proof.
 

4. Testing against a known distribution

In this section we assume that the distributions
�

and�
are over�� �, where

�
is a black-box distribution and� is

explicitly given. The task is to determine if.� / � . � 

using as few samples (from

�
) as possible. We show that

this can be done using roughly
�� �*�poly

�
���� samples.
The main technical idea is to use bucketing (Section 2.3)

to reduce this problem to that of testing that each of several
distributions is approximately uniform. We first bucket the
given distribution� ; recall that bucketing gives a partition�
 � � � � � �
 � � of the domain so that the distribution is close
to uniform in each of the partitions
 � (Lemma 8). For
each partition
 �, we sample

�
and test if

� �� � is close to
uniform on
 �. This can be accomplished using Theorem
12.

First, we need an additional step to interpret�

results

in terms of the�� norm.

Lemma 22 For any distribution
�

over 
 , �� �

 /

��� �

 - �� / �� �



.

Lemma 23 Let
� � � be distributions over�� � and let�
 � � � � � �
 � � -
Bucket

�� � ��� � 
�. For each
�

in �
 �, if
�� �� � �
 � �� � 



 �� .
 � . then .� �� � / �� � . � 
 and
.� �� � / � �� � . � �
.
PROOF: By Cauchy-Schwartz .� �� � / � �� � . �
� .
� . �� �� � / � �� � � which by Lemma 22, equals� .
� .��� �� � �
 / �� �� � �
 ���
 - � .
� .��� � 



 �� .
� . /
�� .
 � .��

�
 - 
. As for the second statement, using
Lemma 8 and triangle inequality,.� �� � / � �� � . � .� �� � /
� �� � . � .� �� � / � �� � . � �
.  

Now, we give the complete algorithm to test if a black-box
distribution

�
is close to an explicitly specified distribution

� .

Algorithm TestIdentity
�� � � � � � 
�

(1)
� ���- �
 � � � � � �
 � � -

Bucket
�� � � � 
�*��.

(2) Let� be a set of
� �*�
�


 ��� � � samples from
�

.
(3) For each partition
 � do

(4) Let� � -
� � 
� (preserving repetitions);

let � � - .� � . (counting also repetitions).
(5) If � �
 � � , 
�
 then
(6) If � � � � �*�
�


 � then FAIL.
(7) Estimate�� �� � �
 using� �. (Thm. 12)
(8) If �� �� � �
 � �� � 



 �� .
 � . then FAIL.
(9) If .� �� 	 / � �� 	 . � 
 then FAIL.

(10) PASS.

Theorem 24 Algorithm TestIdentity
�� � � � � � 
� is such

that: (1) if .� / � . � ����
 ��� 
 , it outputs PASS with high

probability and (2) if .� / � . � �
, it outputs FAIL with
constant probability. The algorithm uses

�� �*�poly
�
�� ��

samples.

PROOF: Step (9) can be done by using brute force to distin-
guish between.� �� 	 / � �� 	 . � 
 and .� �� 	 / � �� 	 . � �
 
.
This does not take a significant number of additional sam-
ples, as
 is logarithmic in�.

Note that by Chernoff bounds, the probability of fail-
ing in step (6) can be made sufficiently small, unless there
is a large difference between

� �
 � � and � �
 � � for some�
. Suppose that the algorithm outputs PASS. This implies

that for each partition
 � for which steps (6)–(8) were per-
formed (which are those for which� �
 � � , 
�
), we have
�� �� � �
 � �� � 



 �� .
� .. From Lemma 23 we get that for
each of these
�, .� �� � / � �� � . � �
.

We also have that the sum of� �
� � over all 
� for
which steps (6)–(8) were skipped is at most
. Also,
.� �� 	 / � �� 	 . � 
 by step (9); so the total difference be-
tween

�
and� over these partitions sums up to no more

than�
. Adding this to the�
 difference over the partitions
that were not skipped in steps (6)–(8) (given by applying
Lemma 6 with.� �� � / � �� � . � �
 and .� �� 	 / � �� 	 . � 
),
we get that.� / � . � �
.

On the other hand, suppose.� / � . � ����
 ��� 
 . From
the definition of the bucketing algorithm, step (1) will re-
turn a partition with
 - ��� ��� �� � 
�*��� ) ��� � ���*��
� ) ��� � elements. Using Lemma 7 for all parti-
tions 
 � with � �
 � � , 
�
 � 




� ��* � ��� � �, we have

.� �� � / � �� � . � 
� �* ���. In terms of � ) �, this im-
plies �� �� � / � �� � �
 � 




� ���� � 




� �� .
 � .�. Since

from Lemma 8,�� �� � / �� � �
 � 



� �� .
� .�, then by the

triangle inequality,�� �� � / �� � �
 � �� �� � / � �� � �
 �
�� �� � / �� � �
 � 




� .
 � .. So by Lemma 22,�� �� � �
 -

�� �� � / �� � �
 � ��� � �
 � �� � 


 �� .
 � .. Therefore the

algorithm will pass with high probability on all such parti-
tions; it is also not hard to see that the algorithm will pass
step (9) as well.

The sample complexity is
�� �*�
�


 � from step (2),
which dominates the sample complexity of step (9) (no
other samples are taken throughout the algorithm).

 



5. Lower bound for testing independence

Theorem 25 For any algorithm� using� ��

��	 ��� � sam-

ples whenever� , 	 , there exist two joint distributions
over �� � � �	 � for any sufficiently large� , 	 , with one
of them being independent and the other not being

���� �-
independent, such that� cannot distinguish between these
two joint distributions with probability greater than 2/3.

PROOF: Fix an algorithm� using� ��

��	 ��� � samples.

We first define two joint distributions
�� and

0� over �� � �
�	 �. Let

� - ���
 	 and� - �� � � ���.
�� �� � - �� �  �� -

��
�

�

�� if � � � � ����
 � �� � � � �
� otherwise

�� �0 � - �� �  �� -
����
���

�

�� if � � � � ��
�
 if
� �� � � � � and ! ��� � � � � 	 ���

� otherwise

We now define two joint distributions
�

and
0

such that�
,
0

modify
�� and

0� by randomly relabeling each ele-
ment in �� � and �	 �. First choose random permutations	�
of �� � and	 � � � � � � 	
 of �	 �. Define

�
to be the distribution

such that

�� �� - �	� ��� � 	 � � ��� - �� �� � - �� �  �� �
Likewise define

0
to be the distribution such that

�� �0 - �	� ��� � 	 � � ��� - �� �0� - �� �  �� �
Note that

�
and

0
are actually families of distributions

(indexed by the permutations). Throughout the rest of the
proof, we will refer to

�
and

0
, with an abuse of nota-

tion, as individual distributions in these families. Since
we fixed the algorithm� , we could choose the permuta-
tions 	� � � � � � 	
 to obtain the members of these families
that maximizes the error probability of the algorithm� .

The distribution
�

is independent whereas the distribu-
tion

0
is �
 -far from independent. This follows from

0
be-

ing �
 -far from � �0 � � 
0 and Proposition 1. The distri-
butions� �� and� �0 are identical, and they give half the
weight to a small number, namely�� , of the elements, and
distribute the remaining weight to half of the elements. The
distribution� 
� is uniform over its domain independent of
the value of� �� . The distribution� 
0 , however, is uni-
form over its domain only when� �0 outputs an element
with the higher weight, otherwise, conditioned on the event
that� �0 takes on a value with the lower probability,� 
0 is
uniform only on a subset of its domain that is half the size.
The choice of	 � ’s makes the distribution� 
0 uniform on
its domain.

Definition 26 For a pair
�� �  � ! ��� � �	 �, �

is the
prefix. An element

�� �  � ! ��� � �	 � such that�� �� (or
0

) takes on value
�� �  �� - �

�� is called a

heavy element. The prefix
�

of a heavy element
�� �  � is

called aheavy prefix. Elements and prefixes with non-zero
probabilities that are not heavy are calledlight.

When restricted to the heavy prefixes, both joint distri-
butions are identical. The only difference between

�
and0

comes from the light prefixes, and the crux of the proof
will be to show that this difference will not change the rel-
evant statistics in a statistically significant way. We do this
by showing that the only really relevant statistic is the num-
ber of prefixes that occur exactly twice and each time with
different suffix. We then show that this statistic has a very
similar distribution when generated by

�
and

0
because the

expected number of such prefixes that are light is much less
than the standard deviation of the number of such prefixes
that are heavy.

Next, we describe an aggregate representation of the
samples that� takes. We then prove that we can assume
without loss of generality that� is given this representation
of the samples as input instead of the samples themselves.
Then, we conclude the proof by showing that distributions
on the fingerprint when the samples are taken from

�
or

0
are indistinguishable.

Definition 27 Fix a set of samples � -� �� � � 
 � � � � � � � �� � � 
� �� from distribution
�

over �� � � �	 �.
Say thepatternof prefix

� � is �
 where
� is the number of
 ’s such that
�� � � 
 � appears exactly times in� . Define

the function�� ��
� to be the number of prefixes
�

for which
the pattern of

�
is �
. We refer to�� as thefingerprintof � .

We will just use� ��
� when� is clear from context.

The next claim shows that the fingerprint of the sample
is just as useful as the samples themselves to distinguish
between

�
and

0
.

Claim 28 Given algorithm� which for joint distributions
chosen from the family

�
or

0
, correctly distinguishes

whether the distribution is independent or
-far from inde-
pendent, there exists algorithm� � which gets as input only
the fingerprint of the generated sample and has the same
correctness probability as� .

The following lemma shows that it is only the heavy pre-
fixes, which have identical distributions in both

�
and

0
,

that contribute to most of the entries in the fingerprint.

Lemma 29 The expected number of light prefixes that oc-
cur at least three times in the sample such that at least two
of them are the same element is� ��� for both

�
and

0
.



PROOF: For a fixed light prefix, the probability that at least
three samples will land in this prefix and two of these sam-
ples will collide is � �� ���. Since there are� �� light pre-
fixes, by the linearity of expectation, the expected number
of such light prefixes in the sample is� ���.  

We would like to have the pattern of each prefix be inde-
pendent of the patterns of the other prefixes. To achieve
this we assume that algorithm� first chooses an inte-
ger �� from the Poisson distribution with the parameter� - � - � ��


��	 ��� �. The Poisson distribution with
the positive parameter

�
has the probability mass function� �
 � - ��� �/���� �
 �. Then, after taking�� samples from

the input distribution,� decides whether to accept or reject
the distribution. In the following, we show that� cannot
distinguish

�
from

0
with success probability at least���.

Since�� will have a value larger than��� with probability
at least�/� ��� and we will show an upper bound on the sta-
tistical distance of the distributions of two random variables
(i.e., the distributions on the fingerprints), it will follow that
no symmetric algorithm with sample complexity��� can
distinguish

�
from

0
.

Let � �� be the random variable that corresponds to the
number of times that the element

�� �  � appears in the sam-
ple. It is well known that� �� is distributed identically to
the Poisson distribution with parameter

� - �+ �� , where
+ ��

is the probability of element
�� �  � (cf., Feller [2], p. 216).

Furthermore, it can also be shown that all� �� ’s are mutu-

ally independent. The random variable� � ���- � � � �� is
distributed identically to the Poisson distribution with pa-
rameter

� - �� � + �� .
Let �� and�� be the distributions on all possible fin-

gerprints when samples are taken from
�

and
0

, respec-
tively. The rest of the proof proceeds as follows. We first
construct two processes	� and	� that generate distribu-
tions on fingerprints such that	� is statistically close to��
and	� is statistically close to�� . Then, we prove that the
distributions	� and	� are statistically close. Hence, the
theorem follows by the indistinguishability of�� and�� .

Each process has two phases. The first phase is the same
in both processes. They randomly generate the prefixes
of a set of samples using the random variables� � defined
above. The processes know which prefixes are heavy and
which prefixes are light, although any distinguishing algo-
rithm does not. For each heavy prefix, the distribution on
the patterns is identical in

�
and

0
and is determined by

choosing samples according to the uniform distribution on
elements with that prefix. The processes	� and	� use the
same distribution to generate the patterns for each heavy
prefix. For each each light prefix

�
that appears
 times for
 
- �, both	� and	� will determine the pattern of the

prefix to be
�
 � ���. This concludes the first phase of the pro-

cesses.
In the second phase,	� and	� determine the entries

of the patterns for the light prefixes that appear exactly
twice. These entries are distributed differently in	� and
	� . There are only two patterns to which these remaining
prefixes can contribute:

�� � ��� and
�� � � � ���. For each light

prefix that appears exactly twice,	� sets the pattern to be�� � ��� with probability � / ���	 � and
�� � �� ��� otherwise.

For such light prefixes,	� sets the pattern to be
�� � ��� with

probability � / ���	 � and
�� � �� ��� otherwise.

Since the patterns for all prefixes are determined at this
point, both process output the fingerprint of the sample they
have generated. We show (omitted):

Lemma 30 The output of	� , viewed as a distribution, has
�� distance� ��� to �� . The output of	� , viewed as a
distribution, has� � distance� ��� to �� .

Finally, we show (omitted) that the component of the fin-
gerprint that creates the difference between	� and	� is
normally distributed in both cases. Moreover, the expecta-
tions of these two distributions are close enough (relativeto
their standard deviations) so that they are indistinguishable.
Using this, it can be shown (omitted):

Lemma 31 .	� / 	� . � ��� �
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