Testing random variables for independence and identity
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Abstract Checking independence is a central question in statis-
tics and there exist many different techniques for attack-
Given access to independent samples of a distributioning it (see [5]). Classical tests such as tyetest or the
A over[n] x [m], we show how to test whether the distri- Kolmogorov-Smirnoff test work well whem andm are
butions formed by projecting to each coordinate are in-  small, but for larger, m these tests require more thanm
dependent, i.e., whether is e-close in theL; norm to the samples, which may be huge. Can one develop a test that
product distribution4; x A, for some distributionsl; over uses fewer thanm samples?

[n] and 4, ?ver[m].l The sample complexity of our testis e also consider the problem of testing if a black-box
O(n /2m*3poly(e™1)), assuming without loss of general-  gistribution overn] is close to a known distribution. The
ity thatm < n. We also give a matching lower bound, up 2 test is commonly used for this problem, but requires at

to poly(logn,e~") factors. ~least a linear number of samples. Can one develop a test
Furthermore, given access to samples of a distribution that uses a sublinear number of samples?

X over [n], we show how to test iK is e-close in L,
norm to an explicitly specified distributiolr. Our test
usesO(n'/?poly(e~')) samples, which nearly matches the
known tight bounds for the case whEris uniform.

Testing statistical properties of distributions has been
studied in the context of property testing [7, 3] (see the sur
vey by Ron [6]). Using the techniques of Goldreich and
Ron [4], one can get (see [1]) &X(/r) algorithm to test if
a black-box distribution overelements is close if; norm
to uniform. Batu, Fortnow, Rubinfeld, Smith, and White [1]
1. Introduction show how to test whether two black-box distributions over
r elements are close i, norm, using)(r?/3) samples. In

Fred works at a national consumer affairs office, where particular, this gives a test that answers the second guesti
each day he gets several consumer complaints. Becaus# the affirmative.
he has a hunch that there is some correlation between the
zip code of the consumer and the zip code of the company,
Fred wants to check whether these zip codes are dependenbur results.
However, since there are)'? zip code pairs, he does not
have enough samples for traditional statistical techréque
What can Fred do?

Suppose we are given a black box that generates inde
pendent samples of a distributioh over pairs(i, j) for

In this paper we develop a general algorithm
(Section 3) for the independence testing problem with a sub-
linear sample complexity (in the size pf] x [m]). To our
knowledge, this is the first sublinear time test which makes
ho assumptions about the structure of the distribution. Our
: : _ test use) (n?/3m'/3poly(logn, e 1)) samples, assuming

i € [n] andj € [m] with m < n. We want to test whether oyt loss of generality that > m, and distinguishes be-

the distribution over the first elements is independentefth . on the case that — A, x Ay, and the case that for adl;
distribution over the second elements, without making any andAy, |A — A; x As| > e. He;re A, and A, are distribu-

additional assumptions on the structureof tions over[n] and[m] respectively andi4 — B| represents
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Overview of our techniques. Our approach begins with

f = 0(g)if f = O(g - poly(log g)). To simplify the ex-

presenting two different ways of testing independence of position, we assume that all tests are repeated so that the

distributions.
complexities and are desirable in different situations.

In the first method, we use the equivalence of testing in-

dependence to testing whethédris close tor; A x m A
wherem; A is the distribution ofA projected to the-th co-
ordinate. Since it is easy to generate samples df x 7, A
given samples of4, we can apply the result of Batu et

These two methods have different sample confidence is sufficiently high. Since amplifying the con-

fidence tol — & can be achieved wit)(log $) trials, an
additional multiplicative factor that is polylogarithmiic n
orn?/3m!/3 (as the case may be) is all that we will require.
We useX, Y, Z to denote random variables over sets and
A, B,C, D to denote random variables over pairs of sets.

We often refer to the first coordinate of a sample from the

al. [1]. This immediately gives us a test for independence latter type of distributions as thgrefix

that use€) (n?/3m?/3) samples.

For the second method, first consider the case whede
andm, A are uniform ovefn] and[m], respectively. Test-
ing the independence is equivalent to testing whethés
uniform in[n] x [m]. We can use the test of Goldreich and
Ron [4] for this using)(y/nm) = O(n) samples.

To reduce the general problem to thatmgfA andn; A
uniform we first use @ucketingtechnique (Section 2.3)
to partition[n] and[m] into a polylogarithmic number of
buckets of elements of similar probabilities givend and
mo A, respectively. To do this we must approximate the
probabilities of eachr; A(i) and w2 A(j) which requires
O(max(n,m)) = O(n) samples.

For all bucketsB; C [n] andB> C [m] we could try
to test independence of restricted toB; x B, sincer; A
restricted toB; andmy A restricted toB, are close to uni-
form. Unfortunately they are not close enough to uniform
for our purposes. To overcome this we ussifting tech-
nique (Section 2.4). We first collect many samp(&g)
with i € By andj € B,. We then create a virtual sampler
that first chooses uniformly from B; and then picks the

For a setR, let Ur denote the uniform random variable
overR. Let X (i) denote the probability thaX = ¢, and

for a subse®’ of R, let X(R') &' Yier X(0). If Ais
a random variable ove§ x T, let 7; A denote the random
variable obtained by projecting into thei-th coordinate.
Let A(4, j) denote the probability that = (4, 7).

Let| - | stand for thel,; norm,|| - || for the L, norm, and
| - |loo for the Lo, norm. If|A — B| < ¢, we say thatd is
e-closeto B.

We assume that a distributicfi over R can be specified
in one of two ways. We calK a black-boxdistribution if
an algorithm can only get independent samples fé6mand
otherwise has no knowledge abdut We call X anexplicit
distribution if it is represented by an oracle which on input
i € R outputs the probability mask (7).

2.1. Independence and approximate independence
Let A be a distribution ovejn] x [m]. We say thatd is

independenif the induced distributiong; A andm, A are
independent, i.e., that = (71 4) x (m2A). Equivalently,

first (i, j) we previously sampled. We then create a second 4 is independent if for ali € [n] andj € [m], A(i,j) =

virtual sampler that choosgauniformly from B, and picks
the first(i, j) from the first virtual sampler. We show that
the second virtual sampler, which we caBiave preserves

the dependencies of the original distribution, and has uni-

form projections taB; andB-, so we can apply the uniform

tester described above. We also show that this process onl
costs us a polylogarithmic factor in the number of samples

we need, achieving a tester usifign) samples overall.

Then, we combine these two algorithms in an appropri-

ate manner to exploit their different behavior. In partaul
we partition the elements ¢#] to ‘light’ and ‘heavy’ ele-
ments based om A. We apply the first method to the light

elements, and apply the second method to the heavy eIeTX1 —Yi|+ | Xy = Yy

(w1 A)(i) - (w2 A)(5).
We say thatd is e-independenif there is a distribution
B that is independent arjdl — B| < e. Otherwise, we say
Ais note-independendr is e-far from being independent
Now, closeness is preserved under independence:

¥>roposition 1 Let A, B be distributions oveS x T. If

|A — B| < ¢/3 and B is independent, thepd — (71 4) x
(mA)| <e.

Proposition 1 follows from the following lemmas.

Lemma 2 ([8]) Let X;,Y; be distributions overS and
X>,Ys be distributions oveT". Then|X; xY; — X xYs| <

ments. This asymmetric approach helps us achieve an op- o
timal trade-off in the sample complexities, resulting ieth Lemma 3 Let A, B be distributions ovets x T'. If |A —

O(n?/*m'/3) bound.
2. Some preliminary tools

We use theO notation to hide dependencies on the
logarithm of any of the quantities in the expression, i.e.,

B| < then|myA—mB| < eand|mA — mB| <e.

PROOF OFPROPOSITIONL: Clearly,B = (m1 B) X (w3 B).
Using the triangle inequality, Lemma 2 and Lemm&A8+—
(m1A) x (m2A)| < |A—B|+|B—(mA) x (mA)| = |A-
B|+|(mB) x (m2B) — (m1 A) x (m2A)| < €/3+2¢/3 =¢.

|



2.2. Restriction and coarsening

We begin with the definitions.

Definition 4 Given a random variablé& over R, and§) C
R' C R, therestriction X g is the random variable over
R' with distribution X | g (i) = X (i) / X (R').

Given a random variableX over R, and a partition
R = {Ra,..., Ry} of R, thecoarseningXx, is the ran-
dom variable ovefk] with distribution Xz (i) = X (R;).

The definition of restriction resembles the definition of a
conditional distribution, only a restriction is defined as a

distribution over the subsét’, while a conditional distribu-
tion is defined over the wholRB by padding it with zeros.
In the light of the above definition, it follows that:

Observation 5 If X is a random variable oveR andR =
{Ri,..., Ry} is a partition of R, then for alli in [k] andj
in R;, X(j) = X(ry(i) - X g, (j)-

In words, the probability of picking an elemeptbelong-
ing to the partitionR; according toX is equivalent to the
probability of picking the partitionR; times the probabil-
ity of picking j when restricted to the partitioR;. Us-
ing Observation 5, it follows thati(i,j) = (m1A4)(i) -
(T2 A iy x[m)) (4)-

The following lemma shows that if one considers the re-
striction of X to any of the bucket®;, then the distribution
is close to uniform.

Lemma 8 Let X be an explicit distribution oveR and let
{Ro,...,Rr} = BucketX,R,e). Fori € [k] we have
| Xk —Unr,| < €, [|1X|r,—Ug,|I” < €/|Ri|, and X (Ro) <

1/log|R).

ProoF. Clearly,X(Ry) < 1/log|R|. Fori > 1, consider
an arbitrary (non-empty) subsBt and without loss of gen-
erality, assumer; = {1,...,¢} with X(1) < --- < X (¥).
LetY = Xg,. Then Y({)/Y(1) < 1+ e Also,
by averaging,Y (1) < 1/¢ < Y(¢). HenceY () <
(1+6eY() < (1+€)/L. Similarly it can be shown that
Y(1) > 1/(4(1 +€)) > (1 —€)/L. Thus, it follows that
Y (j) — 1/¢| < ¢/Lforall j = 1,...,¢ and therefore,
jen, [V () U, < andy e, (Y (1)=Un,)? < €/L.
|

Given an “approximation’X of X, the bucketing of has
similar properties as the bucketing &f.

Corollary 9 Let X, X be distributions overR such that
X approximatesX i.e.,,Vi € R, (1 — €)X (i) < X(i) <
(1 + €)X (i) for somee > 0. Then,BucketX,R,¢) is a
partition { Ry, .. ., Ry} of Rwith k = O(¢~' log |R|) such

The following lemma (proof omitted) shows that two that for all i € [#], |X|r, — Ug;| < 3¢ and X(Ro) <
random variables are close if they are close with respect to(1 4 ¢)/1og |R). ' T B

restrictions and coarsening.

Lemma 6 Let X,Y be random variables oveR and let
R = {Ru,..., Ry} be a partition ofR. If for all 7 in [k],
|X\Ri — |Ri| <e€ and|X<R)—Y<R>| < e, thenX-Y| <
€1 + €.

Note that if(1 — €) X (R;) < Y(R;) < (14 €)X (R;) for
everyi € [k], then| X gy — Yigy| <e.

The following lemma (proof omitted) shows a patrtial

In our applications of bucketing, we usually ignore thth
bucketR, since the probability mass on this bucket will be
negligible for our purposes.

2.4. Sieves

In our construction, we will have a distributiohwhose
projections are nearly uniform. By using techniques from

converse: ifX andY are close, then they are close when Goldreich and Ron [4], we can quickly test independence

restricted to sufficiently ‘heavy’ partitions of the domain

Lemma 7 Let X,Y be distributions ovel? and letR’' C
R. Then|X|p — Y|p/| < 2|X - Y|/X(R).

2.3. Bucketing

Bucketing is a general tool that decomposes an arbitrary

explicitly given distribution into a collection of distnittions
that are almost uniform.
Given an explicit distributionX over R, we define

BucketX, R, €) as a partitio Ry, Ry, . .., R } of R with
E = (2/log(l +¢) -log|R|, Ry = {i | X() <
1/(|R|log|R])}, and for alli in [k],
] A+t . (1+¢)? }
Ri:{] = < X)) < =—= ¢ -
Rog R < XY < TRllog R

of distributions whose projections are truly uniform. listh

section, we show how to reduce the nearly uniform case to
the uniform case. We achieve this reduction by constructing

a sievethat collects samples from and sifts out samples
in a way that achieves the desired uniformity.

We use the sieve in batch mode, i.e., given an input pa-

rametert, we outputt samples according to sonig based
on samples we take of the origindl An (A4, B)-sieve is
specified in terms of the relationship between the propertie
of the output distributioB and those of input distribution
A; in our case of aml whose projections are nearly uniform
the sieve will produce & that is close toA, while uni-
formizing its projections, and preserving its independenc

if such existed. The other important parameter is the sam-

ple complexity of the sieve, which is the total number of
samples ofd it uses for a giver and the domain ofl.



We first show that there is a sieve that takes a distribution <3°,; >". 7 |A(i, §) — B(i, j)|

A overS x T for which the first coordinate is close to uni-
form, and produces a new distribution which is close to the
original one, and for which the first coordinate is uniform;
moreover, this sieve preserves independence.

Lemma 10 There exists aifA4, B)-sieve for random vari-
ables ovelS x T such that for any, with high probability,
(1)if A = (m A) x (mpA) thenB = Ug x (m2A), and (2) if
|m1 A—Us| < e/4then|A— B| < e. The sample complexity
of the sieve i€ (max{|S|, t} log® max{|S|,t}).

PROOFE First, we describe the construction of the sieve.
Lett be given and lef = O(t/|S|log|S|logt). The sieve
maintains a data structure which for evérg S, contains a
list L; of £ elements off'. Each list starts out empty and is
filled according to the following steps:

(1) Obtain O(max{|S|,t}log® max{|S|,t}) samples
from A and for each sampl&, j) from A, addj to L; if
|Li| < £.

(2) Foreach’ € S, if |Ly| < ¢, then discard’;-. In this
case, obtairf more samples fromd and for each sample
(,7) from A, addj to L.

Fori € S, let B; be a random variable with the distri-
butionm A ;1«7 if L; was not discarded in step (2) and
with the distributionma A otherwise. Thus[; contains/
independent samples &%;.

Next, we describe the operation of the sieve. Upon a
sample request, the sieve generates a uniformly rando
i €r S. If [L;] > 0, then the sieve picks the first ele-
mentj in L;, outputs(s, j), and deletes the first element in
L;. If |L;] = 0, then the sieve gets a sam|§i& j') from A
and outputgs, j').

First, notice that with high probability (via a Chernoff
bound), noL; becomes empty in any of therequests for
samples. Also, it is clear that the output of the sieve is the
random variabléB defined by generating a uniforireg S
and then simulating the correspondiBg The exact distri-

bution of B may depend on the outcome of the preprocess-

ing stage of the sieve, but we show that with high probability
B satisfies the assertions of the lemma.

For the first assertion, note thatdf = (71 A) x (72 A),
then the second coordinate is independent of the first coor
dinate. SoB; = m A for everyi (regardless of whethdr;
was filled by step (1) or (2)). Thug = Us x (m2A4).

To show the second assertion, et {i | m A({) >
1/(2|S))}. Another application of the Chernoff bound
shows that with high probability, for every € I, B;
is distributed asrs(A ;3 x7) (sinceL; would not be dis-
carded in step (2)). Thus, for evetye I, L; contains
¢ independent samples @&; = m A ;7. Also, since
|m1(A) — Us| < /4, we havdS\I| < €]S|/2. We get
|A—B| = Ez’e[ EjeT |A(7,5) — B(i, 4)]

+ ZieS\I ZjeT |A(Za.7) - B(£;J)|

+ Yiesu 2jer(Ai,5) + B(,4))
=2 ier 2jer T2 A< (J) - ‘WIA(i) - ﬁ‘
+ Yies\(mA@E) + mB(i))

< Yier [m1AG) = k| + Diesn mAG) +
< %e + %e + %6 =€ |
Sieves can be composed, i.e., (@) C)-sieve can be com-
bined with a(C, B)-sieve to give ar( A4, B)-sieve. If the
sample complexity of théA4, C)-sieve is given by the func-
tion f(¢), and that of théC, B)-sieve is given by (t), then
the sample complexity of the combinéd, B)-sieve will
be given byh(t) = f(g(t)).
Corollary 11 There exists an(4, B)-sieve for random
variables overS x T such that if|my A — Us| < €/25,
and |m2 A — Ur| < €/25, then with high probability, (1)
|B — Al < (24/25)¢; (2) if A = (mA) x (mA) then
B = Ugxr; and (3) if A is not e-independent, then
|B—Usxr| > (1/25)e. The sample complexity of the sieve
is O(max{|S| + |T|,t} log® max{|S|, |T|,t}).

PROOFE We apply the( 4, C)-sieve from Lemma 10 on the
first coordinate. Using this sieve we obtain a random vari-
ableC (with high probability) such thaiC' — A| < 4¢/25,

m C = Ug, and such tha€' is independent ifd is inde-
pendent. Now, using Lemma 37.C — mA| < 4¢/25

[S\1]

Ef

rrfnd since by our hypothesisi, A — Ur| < €/25, we get

m2C —Ur| < €/5.

We now construct &C, B)-sieve from Lemma 10, only
this time switching coordinates and sifting on the second
coordinate. Using this sieve, we obtain a random variable
B (with high probability) such thatB — C| < 20¢/25 and
71'2.B = UT.

Moreover, according to Lemma 10 i is independent
(and thus so ar€' and B) thenn; B has the same distribu-
tion asm C = Ug. Sincer; B = Ug, m B = Ur and they
are independent, we get thAtis uniformonS x T.

Clearly,|B—A| < |B-C|+|C—A| < (24/25)e. This
implies that if4 is note-independent, theB is (1/25)e-far
from any independent distribution ghx T', and in partic-
ular fromUsx . |

2.5. Tools from earlier work

We use the following results from earlier work. The first
theorem states that the, norm of a distribution can be
approximated in sublinear time. This can be proved using
techniques from Goldreich and Ron [4].

Theorem 12 (based on [4])Given a black-box distribu-
tion X over R, there is a test usin@ (/| R|e~2log(1/4))
queries that estimatd$X ||? to within a factor of(1 + ¢),
with probability at leastl — §.



The next theorem states that there is a sublinear time test fo3. Testing independence

L4 closeness of two black-box distributions.

Theorem 13 ([1]) Given two black-box distribution¥’, Y
over R, there is a test requiring) (e~* log(1/J)) samples
which (1) if|| X =Y|| < €/2it outputs PASS with probability
atleastl — § and (2) if[| X — Y|| > e it outputs FAIL with
probability at leastl — 4.

The next theorem states that there is a sublinear time test fo
L, closeness of two black-box distributions.

Theorem 14 ([1]) Given two black-box distri-
butions XY over R, there is a test requiring
O(|R|*/3¢*log |R|log(1/6)) samples which (1) if
|X — Y| < max(e?/(32{/|R|),¢/(4+/|R])), it outputs
PASS with probability at leagt— ¢ and (2) if| X — Y| > e,
it outputs FAIL with probability at least — 4.

The next theorem improves this result in the case that theFormaIIy, lets’

L, norms of the distributions are sufficiently small.

Theorem 15 ([1]) Given two black-box distribution¥’, Y’
over R, with || X|lec < ||Y|ls. there is a test requir-
ing O((|RI” X [loolIY llooe™ + /I RIII X lloce™) Log(1/6))
samples that (1) ifX — Y| < ﬁ, it outputs PASS with

probability at leasfl — § and (2) if|[ X — Y| > e, it outputs
FAIL with probability at leastl — 6.

The following theorem states that all sufficiently large en-
tries of a probability vector can be estimated efficiently.

Theorem 16 Given a black-box distributiotX’ over R, a
thresholdt and an accuracy > 0, there is an algorithm
that requiresO(t~1e=2log | R|log (1/8)) samples and out-
puts an estimat& such that with probability at least— 4,
for everyi € R with X (i) > ¢t we have(l — ¢)X (i) <
X(i) < (1 + €)X(i); the algorithm also outputs a set
R' C Rthatincludes{i € R | X (i) > t} and on which
the above approximation is guaranteed.

The proof (omitted) of the above theorem is a simple appli-

In this section we give a test for independence of a dis-
tribution A over[n] x [m]. Without loss of generality, let
n > m. The basic steps are the following. We partition
[n] into “heavy” and “light” prefixes while estimating the
probabilities of the heavy prefixes explicitly. We then appl
different approaches for each of these two classes: For the
distribution restricted to the heavy prefixes, we use bucket
ing and sifting to transform the distribution into one that i
easier to test for independence (Section 3.1). For the light
prefixes, we use a different bucketing and previous results
that allow one to test that such distributions are closeén th
L distance (Section 3.2). Finally we ensure that the distri-
butions restricted to the the different prefixes are coestst

Let € be given and letn = n®. Let0 < a < 1 be
a parameter to be determined later. 19%tdenote the set
of indices in the first coordinate with probability mass at
leastn—%, which we will also refer to as the heavy prefixes.
={i€[n] | (mA)(#) > n"}. Similarly,
we also define:S” = {i € [n] | (mA)@E) > in~>}
Using a total ofO(n®e~2logn) samples, we can estimate
(mA)(i),i € S" by A, (i) to within ane/75 factor using
Theorem 16. LefS be the set of ali for which 4, (i) >
%n*a. Then,S O S', and moreove$ does not contain any
i for which (71 4) (i) < n—2/2.

Our main idea is to first test thalt is independent condi-
tioned on the set of heavy prefixes and then to testAhat
independent conditioned on the set of light prefixes. To cre-
ate these conditionings, we first distinguish (usihg =)
samples) betweefir; A)(S) > € and(m; A)(S) < €/2. If
the latter case occurs, then the distribution conditioned o
the heavy prefixes cannot contribute more thaghto A’s
distance from independence. Otherwise, if we are guaran-
teed that the second case does not occur, we can simulate
the distribution for4, 5, (..., easily—we sample froml un-

til we find a member of x [m] which we output; this takes
O(e~!log(nm)) queries with a high enough success prob-
ability. We then apply an independence test that works well
for heavy prefixes tod g, (,,,;-

Next we_distinguish betweewr; 4)([n]\S) > e and
(m1A)([n]\S) < €/2. Again if the latter occurs, then the

cation of a Chernoff bound to several independent samplesyjstribution conditioned on light elements can contribatte

from X. Finally, by similar methods to Theorem 15 (in
conjunction with those of [4]), we can show the following
(proof omitted):

Theorem 17 Given a black-box distributionX over R,
there is a test that take® (e *\/|R]|log(|R|) log (1/6))
samples, outputs PASS with probability at least ¢ if
X = Ug, and outputs FAIL with probability at leagt— ¢
if | X —Ug| > e.

moste/2 to the distance from independence. Otherwise, if
the latter does not occur, as before we simulate the distri-
bution A, ;11 &) x[m)» @nd use it with a test that works well
for distributions restricted to light prefixes (they willilst
remain light enough provided thét; A)([n]\S) > €/2).

Finally, we obtain a test for independence (Section 3.3)
by merging the testing over light and heavy prefixes and
then applying Theorem 14 to ensure the consistency of the
distributions.



3.1. The heavy prefixes particular, only one of these cases can occur for a distri-

bution satisfying the above conditions). The algorithmsuse
We show that using sieves, the heavy prefixes canO((|S| + |T|)poly(e~')) samples.

be tested for independence using roughly(n® +

m)poly(e~1)) samples. In fact, the following theorem

yields a general algorithm for testing independence; it is

just that the sample complexity is particularly appealimg i

the heavy prefix case. Note that in this cgSp= O(n®).

PrROOF. We apply the(A, B)-sieve from Corollary 11. By

its properties, ifA is independent the® = Ugxr, and

if A is note-close toUgxr, then|B — Usxr| > €/25
(becausdA — B| < %e). We can distinguish between
these cases using Theorem 17, vitfe—/|S x T'|) sam-
Theorem 18 There is an algorithm that given a black-box ples from the sieve, which in itself takes less than a total of
distribution A overS x T: (1) if A is independent, it out- ~ O(e=*(|S|+|T|) log® (e~ '(|S|+|T|))) samples fromd. B
puts PASS with high probability and (2) £ is not 3e-
independent, it outputs FAIL with high probability. The al-
gorithm use®((|S| + |T'|)poly(e~")) samples.

Note that in the application of Lemma 19, its sampling es-
timate should be further multiplied b9 (e " log®(nm)) to

get the total number of samples made frdmbecause it is
PROOF. Let A; be an explicit distribution which approxi-  applied separately to the restriction4fto eachS; x Tj.
matesr; A. Consider the following independence test: We now return to the proof of the theorem Afis inde-
pendent, then for all € [k], j € [£], the restrictiond s, 1,

Algorithm TestHeavyindepender(og, Ay, €) is independent so steps (4)—(6) pass (remember that Lemma

def

(1) S = {So,51,...,Sk} = Bucket(A1, S, €/75). 19 ensures that independent distributions pass step (6)). |
(2) Obtain an approximatiod, of w5 A to within an the above case, alstys 7y is independent, so step (7) and

€/75 factor, on al that includes alj € [m] which thus the entire algorithm passes as well.

have probability at leagin logm)~". Conversely, if for eact € [k] and; € [£] for which step
@) T € {To,Tn,...,T,} =Bucket(4,, T, ¢); add (6) was performedA s, xr, — Us;x;| < € (this step will

T\T to Tp. not pass otherwise by Lemma 19), aptlsx 7y — D| <
(4) For(S;,T}),i € [k],j € [¢] do e whereD over [k] x [£] is an independent distribution,
(5) If A(S; x Tj) is not small, then then we show thatd is 3e-independent. First note that
(6) If A5, 1, is note-independent, then FAIL. A(To) < (1 —€)/logn. Now, we define a new random
(7) If Aisx1y is note/2-independent, then FAIL. variable B over S x T which is defined by first generat-
(8) PASS. ing an (i,j) € [k] x [¢] according toD, and then gen-

erating (i',j') € S; x T; according toUs,x7;. It is
easy to see thaB is independent. Finally, by Lemma 6,
éA —B| <(3/2)e+e+(1—¢€)/logn < 3¢, where the sec-
ond term comes for possibly ignoring pairg for which
A(i,7) < €/(kf) and the third term comes from ignoring
A(Tp).

The sample complexity of this algorithm is dominated by
the complexity for each pair of buckets going through the
test of Lemma 19. It brings us to a total sample complexity
of O((|S| + |T|)poly(e~1)) samples. [

Note that, if needed, 4; can be obtained using
O|S|poly(e~1) samples. After step (2), can be ignored
(as usual). The independence test in step (7) can be don
by brute force, for instance, since the alphabet is only log-
arithmic in |S| and |T'|. Also, by bucketing, we know
that |m A — Us,| < €/25,Vi € [k] and|mA — Ug;| <
€/25,Vj € [¢]. For deciding in step (5) whether to execute
step (6), we distinguish betweel(S; x T};) > €/(k¢) and
A(S; x T;) < €/(2k£), by takingO(k£/€) many samples

of A and counting how many of them are$i x T;. Step

(6) requires sampling o4 s, .7, ; this is done by repeatedly
samplingA until a member of5; x Tj is found. As we are ~ 3.2. The light prefixes
assured in step (6) that(S; x T;) > €/(2k¢), it suffices

to takeO(e ! log®(nm)) samples ofA in order to gener- We show that using the test fdt; distance between
ate a single sample of s, .7, (remember thak and/ are distributions, the light prefixes can be tested for indepen-
logarithmic inn andm). dence using roughl@ ((n>—2*m + n*/3)poly(e~1)) sam-

We now present the independence test in step (6) whichples. Formally, we prove:

is used for each pair of buckets frafhand 7. ) ) ]
Theorem 20 There is an algorithm that given a black-box

Lemma 19 There is an algorithm that given a black-box distribution A over S x T with || A4|lc < 2¢71|S5|®
distribution A over S x T such that|mA — Us| < such that: (1) ifA is independent, it outputs PASS with
€/25,|maA — Ur| < €/25: (1) if A is independent, it  high probability and (2) ifA is not 3e-independent, it
outputs PASS with high probability and (2) 4f is not e- outputs FAIL with high probability. The algorithm uses
close toUsx, it outputs FAIL with high probability (in  O((|S|?>~2*|T| + |S|*/?)poly(e')) samples.



PrRooOF The following is the outline of the algorithm. Note
that{{z} | = € S} is the partition ofS into singletons.

Algorithm TestLightindependent4, €)

(1) Obtain an approximatioA, of 72 A within ane/75
factor, on al” which includes allj € [m] which
have probability at leagtn logm) 1.

Q)T ¥ Ty, T1,...,T,} =Bucket(4,, T, ¢); add
T\T to Tp.

(3)Forj=1,...,£do

(4) If A(S x Tj) is not small, then

%) If |A sxr; — (miA|sx1;) X (T2 A|5%T;)| > €,

then FAIL.

(6) Let ;' be such thatd(S x Tj) > €/(4¢).

(7)Forj =1,...,£do

(8) If A(S x Tj) is not small, then
9) If [Ajsx1, — AsxT;| > € then FAIL.
(10) PASS.

The decisions in step (4) and step (8) are done in a similar
manner to what was done in Theorem 18. We distinguish
betweenA(S x T;) > €/(2¢) and A(S x Tj) < €/(44)

by takingO(£/¢) samples ofd. This guarantees that we
need to take)(poly(log(nm))£/e) samples ofd for every
sample ofA s, 7, required in step (5) and step (9), by re-
samplingA until we obtain a member of the required set
(similarly step (6) guarantees this for sampliApEquj, ).

The projections appearing in step (5) are sampled by
sampling the respective distribution and ignoring a coordi
nate. Obtaining thg’ in step (6) can be done for example
using a brute-force approximation df sy x 7.

The test for the distribution difference in step (5) is done
by using Theorem 15 with parameteand the distributions
Asxr; and(mi Ajsxr;) X (m24]s5x1;); the bound on the
L, norm of the distributions involved will be given below.
The test for the difference in step (9) is done similarly, but
this time using Theorem 14 with parameter

Notice that||A|sx; |l < 2|S[~%/e for everyT; (be-
cause of the bound dfr; Al ), and that|ma A|sx7; o <
(1 + 36)|Tj|_1.

The total sample complexity for steps (3)—(5) is given
by log |T'| times the sample complexity for iteratign The
sample complexity of the latter is given by Theorem 15,
which isO((1+3€) - (IS||T1) -S|~ 1S~ T;| '),
times theO(£/¢) for sampling from the restrictions to the
buckets. This clearly dominates the sample complexity for
step (6), and the sample complexity for steps (7)—(9), which
is O(|S|?/3€~%) by multiplying the estimate of Theorem 14,
the sample complexity of the restricted distributions, and
the number of iterations.

As for correctness, ifA is independent then it readily
follows that the algorithm accepts, while on the other hand
it is not hard to see that if the distribution pairs compared

in step (5) and step (9) are indeedaltlose, themd is 3e-
independent. [ ]

3.3. Putting them together

We now give the algorithm for the general case.

Theorem 21 For n > m, there is an algorithm that given a
distribution A over[n] x [m] and ane > 0: (1) if A is inde-
pendent, it outputs PASS with high probability and (2} if
is not7e-independent, it outputs FAIL with high probability.
The algorithm use®(n?/>m!/3poly(e 1)) samples.

PrRoOOF. The following is the outline of the algorithm.

Algorithm TestIndependen¢d, n, m, )

(1) Lets be such thatn = n®, and setx = (2 + 3)/3.

(2) Obtain an approximatiod; of 71 A to within an
€/ 75 factor, on anS which includes ali € [n] which
have probability at least~* and noi € [n] which
has probability at most—* /2.

(3) If (w1 A)(S) is not small then

(4)  If TestHeavyindependeriok g, ., A1 gt ©)

fails then FAIL.
(5) If (w1 A)([n]\S) is not small then

(6) If TestLightindependen€a, i\ z ) €) fails
then FAIL. .
(7) If both (71 A)(S) and(m; A)([n]\S) are not small
then
then FAIL.
(9) PASS.

In the above algorithm, steps (3), (5) and (7) use sam-
pling to distinguish between the cases where the respec-
tive quantities are at leastand the cases where they are
at moste/2. Step (4) (if required) is done by using Theo-
rem 18, and step (6) is done by using Theorem 20; by the
choice ofa in step (1), the number of queries in both is
O(n?/*m!/3poly(e 1)) times theO (e ! log(nm)) queries
required for sifting the restricted distributions (a facto
which does not change the above estimate).

In step (8) the two distributions are fed into the algo-
rithm of Theorem 14, parametrized to guarantee failure if
these distributions are more theiapart; this uses a number
of queries that is dominated by the terms in the rest of the
algorithm.

It is clear that ifA is independent, then the test will ac-
cept with high probability. We now prove that if the test
accepts, thedl is at leasfe-independent.

If steps (4), (6) and (8) are performed and none of the
above tests fails, then by a final application of Lemma 6,



whereR = {S x [m], ([n]\S) x [m]}, we get that our dis- (4) LetM; = M N R; (preserving repetitions);

tribution is at leaste-independent (because step (8) guar- let¢; = | M;| (counting also repetitions).
antees that the coarsening is not more thdar from be- (5) IfY(R;) > e€e/kthen

ing independent). If steps (4) and (8) are not performed,  (6) If £; < O(y/ne2) then FAIL.

then A(S x [m]) < e, so it contributes no more thanto (7) Estimate]| X g, [|* usingM;. (Thm. 12)
the farness ofd from being independent, and so step (6) (8) If [| X g, [|> > (14 €%)/|R;| then FAIL.
is sufficient to guaranteée-independence. Similarlye- (9) If | X(ry — Yiry| > e then FAIL.

independence holds if steps (6) and (8) are not performed (10) PASS.
since in this casél(([#]\S) x [m]) is small. This covers all

possible cases and concludes the proof. . Theorem 24 Algorithm TestldentityX,Y,n,e) is such
that: (1) if | X - Y| < m, it outputs PASS with high
4. Testing against a known distribution probability and (2) if| X — Y| > 6e, it outputs FAIL with
constant probability. The algorithm uséxy/npoly(e 1))
In this section we assume that the distributidghsndY samples.

are oveln], whereX is a black-box distribution an¥l is
explicitly given. The task is to determine|iX — Y| < e ) 1
using as few samples (frod) as possible. We show that 9Uish betweenX ) —Yiz)| > e and|X(z) —Y(z)| < ze.
this can be done using roughy(/npoly(e—1)) samples. This doe§ not take a.S|.gn|f|cant number of additional sam-
The main technical idea is to use bucketing (Section 2.3) P1€S: ask is logarithmic inn. = ,
to reduce this problem to that of testing that each of several Note that by Chernoff bounds, the probability of fail-
distributions is approximately uniform. We first bucket the N9 in step (6) can be made sufficiently small, unless there
given distributiony’; recall that bucketing gives a partition IS @ large difference betweeki(R;) andY (R;) for some
{Ro, ..., Ry} of the domain so that the distribution is close ¢ SUPPOSe that the algorithm outputs PASS. This implies
to uniform in each of the partition®; (Lemma 8). For  thatfor each partitiod; for which steps (6)-(8) were per-
each partition®;, we sampleX and test ifX, is close to formed (which are those for whicH(R;) > €/k), we have

2 2
uniform onR;. This can be accomplished using Theorem [IX|r:[I” < (1 +€%)/|R;|. From Lemma 23 we get that for

PrROOFE Step (9) can be done by using brute force to distin-

12. each of thesd;, | X|gr, — Y|g,| < 2e.
First, we need an additional step to interpEgtresults We also have that the sum &f(R;) over all E; for
in terms of thel,; norm. which steps (6)—(8) were skipped is at mast Also,
| X =y — Yiry| < € by step (9); so the total difference be-
Lemma 22 For any distribution X over R, [|X||* — tweenX andY over these partitions sums up to no more
IURII* = [IX — Ukgll*. than3e. Adding this to thee difference over the partitions

o that were not skipped in steps (6)—(8) (given by applying
Lemma 23 Let_X,Y be distributions over[@]. and I(_et Lemma 6 With| X|p, — Vg, | < 2¢ and|X gy — Yz | < €),
(Ro,-..,Rr) = Bucke(Y,[n],e). For eachi in [k], if we get that X — Y| < 6e.

Xrl? < (1 + €)/|R;| then|X gz, — Ug,| < € and s
I&'}i’uyl—m |(§ %. e X5 | < On the other hand, suppog® — Y| < T/mlogn: From

the definition of the bucketing algorithm, step (1) will re-
PROOFE By Cauchy-Schwartz|X z, — Upg,| < turn a partition withk = (2/1<_)g(1 + €/V/?2)) - logn < _
/IR |IX\n, — Ug,|l which by Lemma 22, equals (2v/2/¢) - logn elements. Using Lemma 7 for all parti-

tions R; with Y(R;) > €¢/k > €2/(2v/2logn), we have
VIRAX w12 = 0,22 = VR +€) /1Rl - Lwith Y(Ro) 2 <[k > &/(2y2logn), we hav
179 . | X|r; — Yr:| < €/(v/2n). In terms of|| - ||, this im
1/|Ri]) /2 = . As for the second statement, using ...~ : 9 9 9 .
L 8 and trianale i Y v X plies [| Xz, — Yr:|I* < €*/(2n) < €/(2|R;]). Since
Uemma Uan rll;';mg e<|r21equa|wX|Ri ~Yir | <1 Xjg - from Lemma 8||Yg, — Ug||* < €2/(2|R;l), then by the
sl + 1Ums = Yim] < 2e. triangle inequality)| Xz, — Un,|> < |IX\r, — Yim, [ +
IV &, — Uri|> < ¢/|Ri|. So by Lemma 22| X,
Now, we give the complete algorithm to test if a black-box || X|r, — Ur;||* + [|Ur||* < (1 + €*)/|R;|. Therefore the
distributionX is close to an explicitly specified distribution algorithm will pass with high probability on all such parti-
Y. tions; it is also not hard to see that the algorithm will pass
. . step (9) as well. ~
AIgonthmd;I;estIdentIt)QX, Yon, €) The sample complexity i€)(,/ne~2) from step (2),
(DR = {Ro,...,Ri} = BHQCke(Y:”a“?/\/i)- which dominates the sample complexity of step (9) (no
(2) Let M be a set oD(y/ne " logn) samples fromX.. other samples are taken throughout the algorithm). W
(3) For each partitio?; do




5. Lower bound for testing independence Definition 26 For a pair (i,j) € [n] x [m], i is the
prefix —~ An element(i,j) € [n] x [m] such that
Theorem 25 For any algorithmA usingo(n?/3m!/3) sam-  Pr[A (or B) takes on valuéi, j)] = 5. is called a
ples wheneven > m, there exist two joint distributions ~heavy element The prefixi of a heavy element, j) is
over[n] x [m] for any sufficiently larger > m, with one called aheavy prefix Elements and prefixes with non-zero

of them being independent and the other not beihg)-  Probabilities that are not heavy are calléight.
independent, such that cannot distinguish between these
two joint distributions with probability greater than 2/3. When restricted to the heavy prefixes, both joint distri-

butions are identical. The only difference betweérand
PROOF. Fix an algorithmA usingo(n?/3m'/3) samples. B comes from the light prefixes, and the crux of the proof

We first define two joint distributiond, and B, over[n] x will be to show that this difference will not change the rel-
[m]. Let 8 = log,, m anda = (2 + 3)/3. evant statistics in a statistically significant way. We dis th
) _ ) by showing that the only really relevant statistic is the rum
sma  IF1<i<n® ber of prefixes that occur exactly twice and each time with
Pr[A4o = (i,5)] = { mn n/2<i<n different suffix. We then show that this statistic has a very
0  otherwise similar distribution when generated byandB because the
L _ _ expected number of such prefixes that are light is much less
e 1@< _”a than the standard deviation of the number of such prefixes
Pr[Bo = (i,j)] =4 -Z | n/2<i<n and thatare heavy. |
J € _[17"'7m/2] Next, we describe an aggregate representation of the
0 otherwise samples that4 takes. We then prove that we can assume

We now define two joint distributiond andB such that ~ Without loss of generality that is given this representation
A, B modify Ay and B, by randomly relabeling each ele- of the samples as input instead of the samples themselves.
ment in[n] and[m]. First choose random permutatioms Then, we conclude the proof by showing that distributions

of [n] andoy, . . ., o, of [m]. DefineA to be the distribution ~ on the fingerprint when the samples are taken frbor B
such that are indistinguishable.
Pr[A = (00(i),0:(j))] = Pr[4o = (i, 4)] - Definition 27 Fix a set of samples S =
I , o {(z1,41),- -, (zs,y,)} from distributionA4 over[n] x [m].
Likewise defineB to be the distribution such that Say thepatternof prefixz; is & wherec; is the number of

y’'s such that(z;,y) appears exactly times inS. Define
the functionds(é) to be the number of prefixesfor which
the pattern ofc is & We refer tads as thefingerprintof S.
We will just usel(¢) whenS is clear from context.

Pr[B = (00(i), 0i(4))] = Pr[Bo = (i, 4)].

Note thatA and B are actually families of distributions
(indexed by the permutations). Throughout the rest of the
proof, we will refer to A and B, with an abuse of nota-
tion, as individual distributions in these families. Since
we fixed the algorithmA, we could choose the permuta-
tions gy, .. .,0, to obtain the members of these families
that maximizes the error probability of the algoritbn

The distributionA is independent whereas the distribu- Claim 28 Given algorithmA which for joint distributions

tion B is 1-far from independent. This follows frod be- ~ chosen from the familyl or B, correctly distinguishes

ing %_far from m B x m»B and Proposition 1. The distri- Whether the distribution is independentofar from inde-
butionsmi A andm; B are identical, and they give half the Pendent, there exists algorithitl which gets as input only
weight to a small number, namety*, of the elements, and  the fingerprint of the generated sample and has the same
distribute the remaining weight to half of the elements. The correctness probability agl.

distributionmy A is uniform over its domain independent of

the value ofry A. The distributionmy B, however, is uni- The following lemma shows that it is only the heavy pre-
form over its domain only wherm; B outputs an element fixes, which have identical distributions in bathand B,

with the higher weight, otherwise, conditioned on the event that contribute to most of the entries in the fingerprint.
thatr; B takes on a value with the lower probability, B is

uniform only on a subset of its domain that is half the size. Lemma 29 The expected number of light prefixes that oc-
The choice ofr;’s makes the distribution, B uniform on cur at least three times in the sample such that at least two
its domain. of them are the same elemenb{g) for both A and B.

The next claim shows that the fingerprint of the sample
is just as useful as the samples themselves to distinguish
betweend andB.



PrROOF. For afixed light prefix, the probability that at least
three samples will land in this prefix and two of these sam-
ples will collide iso(n=1). Since there are/2 light pre-
fixes, by the linearity of expectation, the expected number
of such light prefixes in the sampledél). |

We would like to have the pattern of each prefix be inde-
pendent of the patterns of the other prefixes. To achieve
this we assume that algorithd first chooses an inte-
ger s; from the Poisson distribution with the parameter
A = s = o(n?3m!/3). The Poisson distribution with
the positive parameter has the probability mass function
p(k) = exp(=A)A\¥ /! Then, after taking; samples from
the input distribution A decides whether to accept or reject
the distribution. In the following, we show that cannot
distinguishA from B with success probability at leat3.
Sinces; will have a value larger thas/2 with probability
atleasftl —o(1) and we will show an upper bound on the sta-
tistical distance of the distributions of two random valésh
(i.e., the distributions on the fingerprints), it will follothat
no symmetric algorithm with sample complexity2 can
distinguishA from B.

Let F}; be the random variable that corresponds to the
number of times that the elemefit j) appears in the sam-
ple. It is well known thatF;; is distributed identically to
the Poisson distribution with parameger= sr;;, wherer;;
is the probability of elemen, j) (cf., Feller [2], p. 216).
Furthermore, it can also be shown that Bj}’s are mutu-

ally independent. The random variakfi¢ lef Z,- Fijis
distributed identically to the Poisson distribution with-p
rametem\ = s rij.

Let D4 andDp be the distributions on all possible fin-
gerprints when samples are taken fretmand B, respec-
tively. The rest of the proof proceeds as follows. We first
construct two processd’, and Pp that generate distribu-
tions on fingerprints such th& is statistically close td 4
andPg is statistically close t@g. Then, we prove that the
distributionsP,4 and Pg are statistically close. Hence, the
theorem follows by the indistinguishability & 4 andDg.

Each process has two phases. The first phase is the same
in both processes. They randomly generate the prefixesl€]

I

of a set of samples using the random varialfieslefined
above. The processes know which prefixes are heavy an
which prefixes are light, although any distinguishing algo-
rithm does not. For each heavy prefix, the distribution on
the patterns is identical il and B and is determined by
choosing samples according to the uniform distribution on
elements with that prefix. The procesgesandPg use the

of the patterns for the light prefixes that appear exactly
twice. These entries are distributed differentlyfma and
Pgp. There are only two patterns to which these remaining
prefixes can contribute2, 0) and (0, 1,0). For each light
prefix that appears exactly twic®,y sets the pattern to be
(2,0) with probability 1 — (1/m) and (0, 1,0) otherwise.
For such light prefixesPs sets the pattern to g, 0) with
probabilityl — (2/m) and(0, 1, 0) otherwise.

Since the patterns for all prefixes are determined at this
point, both process output the fingerprint of the sample they
have generated. We show (omitted):

Lemma 30 The output ofP,4, viewed as a distribution, has
L, distanceo(1) to D4. The output ofPg, viewed as a
distribution, hasL, distanceo(1) to Dp.

Finally, we show (omitted) that the component of the fin-
gerprint that creates the difference betwdenand Pg is
normally distributed in both cases. Moreover, the expecta-
tions of these two distributions are close enough (reldtve
their standard deviations) so that they are indistinguikha
Using this, it can be shown (omitted):

Lemma 31 |P4 — Pg| < 1/6.
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