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Abstract

We study certain classes of supermodular and submodular games which are sym-

metric with respect to material payo¤s but in which not all players seek to maximize

their material payo¤s. Speci…cally, a subset of players have negatively interdependent

preferences and care not only about their own material payo¤s but also about their

payo¤s relative to others. We identify su¢cient conditions under which members of

the latter group have a strategic advantage in the following sense: at all intragroup

symmetric equilibria of the game, they earn strictly higher material payo¤s than do

players who seek to maximize their material payo¤s. These conditions are satis…ed

by a number of games of economic importance. We discuss the implications of these

…ndings for the evolutionary theory of preference formation and the theory of strategic

delegation.
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1 Introduction

A fundamental ingredient of most economic models is the hypothesis of independent prefer-

ences: agents choose their actions with the sole purpose of maximizing their own material

payo¤s regardless of how their actions a¤ect the payo¤s of other individuals. While this

postulate is seldom given explicit justi…cation, it appears to be based on the intuition that

those individuals who are willing to make material sacri…ces to a¤ect the payo¤s of others

will lose wealth relative to those who are unwilling to do so, with the eventual consequence

that the latter will come to dominate the economy. In this case, the maximization of one’s

own material payo¤s would simply be a precondition for survival in an environment where

a competitive selection process is at work. While this intuition may be persuasive in the

context of perfectly competitive environments, it can be seriously misleading when applied

to strategic settings, for it is not generally true in such environments that agents who pur-

sue the maximization of their own material payo¤s will obtain higher material payo¤s in

equilibrium than symmetrically placed individuals who maximize other objective functions.

This last point has been demonstrated in the literature mostly by means of particular

speci…cations of Cournot oligopoly models. For instance, Vickers (1984) and Fershtman and

Judd (1987) have shown in linear versions of such models that a …rm whose objective func-

tion gives a positive weight to its relative pro…ts or sales will outperform absolute pro…t

maximizers in terms of absolute pro…ts. Similar results obtain in some other strategic en-

vironments, such as common pool resource and public good games (Koçkesen et al., 1999),

in which agents with negatively interdependent preferences (that is, those who care about

both absolute and relative payo¤s) may obtain greater absolute payo¤s in equilibrium than

do symmetrically placed absolute payo¤ maximizers. In such environments, interdependent

preferences may be said to yield a strategic advantage to those who possess them.

The broader signi…cance of such …ndings rests on the extent to which they are valid in

a large set of economic environments. Accordingly, our aim in this paper is to provide a

general analysis of the conditions under which negatively interdependent preferences yield

an unambiguous strategic advantage over independent preferences. We consider classes of

supermodular and submodular games in which only a subset of players have independent

objective functions whereas the rest have negatively interdependent preferences. Informally

stated, we identify several sets of su¢cient conditions under which the members of the

latter group have a strategic advantage in the following sense: at all intragroup symmetric

equilibria, the interdependent individuals earn higher material payo¤s than do players who

seek to maximize their own material payo¤s. It turns out that the class of games in which

interdependent preferences have a strategic advantage in this sense is unexpectedly rich.

To motivate the present inquiry from a purely game-theoretic viewpoint, consider a two-

person game in which player 1 wishes to maximize his monetary reward while player 2 cares
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also about ‘beating’ player 1, that is, making more money than player 1. The question we

ask is: which of the two players will make more money in equilibrium? It is not di¢cult

to see that the answer is not trivial, and depends on the structure of the game. Using the

familiar notions of strategic complementarity and substitutability, we show in this paper that

in many (but not all) games of interest, it is, in fact, player 2 who will outperform player

1 in equilibrium. Put di¤erently, we identify subclasses of supermodular and submodular

normal form games in which an envious concern with the payo¤s of others leads one to have

greater absolute payo¤s in equilibrium than those obtained by (absolute) payo¤ maximizers.

We contend that our results achieve a useful level of generality, for our su¢ciency conditions

are satis…ed by a number of games which play central roles in various branches of economic

theory, including strategic market games, search models, input and public good games, and

arms races.

The analysis of strategic advantage also leads to interesting applications two of which

we study here in some detail. Our …rst application concerns the analysis of oligopolistic

industries, and stems from the fact that executive managers may in some circumstances

either choose or be given incentives by owners to incorporate relative pro…t (or market share)

concerns into their decision making. For instance, if managers’ e¤orts are unobservable by

owners and there is some common uncertainty a¤ecting all …rms in the industry, owners

may bene…t from making their managers’ compensation contingent upon relative as well as

absolute pro…ts (Holmström, 1982). As a corollary of our results, we …nd here that such

compensation schemes may yield an unplanned strategic advantage to a …rm in terms of its

absolute pro…ts. This occurs in supermodular market games including the standard Bertrand

model with di¤erentiated products, and submodular games including the standard case of

Cournot competition. In the submodular case, moreover, our results allow us to show that

objective functions which value relative pro…ts may arise as perfect equilibrium outcomes in

two-stage delegation games in which owners select the objective functions of their managers

in the …rst stage. This …nding conforms with, and extends to a class of submodular games,

the results obtained in the theory of strategic delegation by Vickers (1984) and Fershtman

and Judd (1987). It is a useful illustration of the power of the strategic advantage approach

that we develop here.

As a second application, we consider the theory of preference evolution. Evolutionary

models of preference formation are typically based on the assumption that the selection

dynamics are payo¤ monotonic: the population share of those endowed with preferences that

are more highly rewarded materially increases relative to the population share of those who

are less highly rewarded. In the presence of such selection dynamics, our results enable us to

identify the evolutionary stability properties of absolute payo¤ maximizing behavior in a class

of environments in which a …nite population interacts strategically, with each player matched
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with each other player (the “playing the …eld” model.) Speci…cally, we identify environments

in which the long run population composition cannot be a monomorphic one composed

only of absolute payo¤ maximizers. These …ndings are then compared with the earlier

evolutionary literature on the “spiteful e¤ect,” which reaches broadly similar conclusions.

The idea behind the spiteful e¤ect is conceptually close to the idea of strategic advantage,

and it turns out that the presence of the spiteful e¤ect is necessary but not su¢cient for the

strategic advantage of negatively interdependent preferences. Since our su¢cient conditions

are based on the primitives of a game (in contrast with the spiteful e¤ect), they serve also

as a means of identifying games in which the spiteful e¤ect is present.

The paper is organized as follows. In Section 2 we introduce our general framework

and formalize the nature of the present inquiry. Section 3 contains our main results which

identify classes of supermodular and submodular games in which interdependent players have

a strategic advantage over independent players at all intragroup symmetric equilibria. In

Section 4, we elaborate on the implications of our main …ndings for the theories of oligopolistic

competition and preference formation. Section 5 concludes.

2 The Framework

Since our ultimate aim is to compare the performance of di¤erent preference structures in

terms of material outcomes, we shall concentrate on games in strategic form in which no

player has an a priori advantage in terms of the primitives of the game. Consequently, our

focus will be on symmetric games. Given any integer n > 2; we let ¡ stand for a symmetric
n-person game in normal form. That is,

¡ ´ (X; f¼rgr=1;:::;n)

where X and ¼r : Xn ! R are the action space and the absolute payo¤ function of player r;

and where ¼r(x) = ¼q(x0) for all r; q = 1; :::; n and all x; x0 2 Xn such that x0 is obtained from
x by exchanging xr and xq: As is usually done in applied and experimental game theory, we

interpret ¼r as the material payo¤ function of player r: To be able to interpret the notion of

“relative payo¤s” in the usual manner, we assume that ¡ satis…es the following nonnegativity

conditions:

¼r(x) > 0 8x 2 Xn and r = 1; :::; n: (1)

Moreover, we endowX with a linear order % to obtain a chain.1 The class of all ¡ that satisfy
these assumptions is denoted G, and we let N(¡) stand for the set of all Nash equilibria of
¡ 2 G.

1This is not an excessively demanding structural assumption insofar as applications are concerned. In
many economic contexts one has X µ R so that X is linearly ordered in a natural way.
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For much of this paper we shall assume that the set of players consists of two di¤erent

types, namely, independent and (negatively) interdependent types. The independent players

are those who are absolute payo¤ maximizers in the usual sense; the objective function of

an independent player i is precisely her own material payo¤ function ¼i: On the other hand,

(negatively) interdependent players are concerned not only with their absolute payo¤s, but

also with how their absolute payo¤s compare with the average payo¤ in the game. Let

¹¼ ´ 1
n

P
¼r denote the average (absolute) payo¤ function on Xn, and de…ne the relative

payo¤ of player j as follows:2

½j =

(
¼j=¹¼; if ¼j > 0

0; if ¼j = 0:
(2)

The objective function of an interdependent player j is given by x 7! F (¼j; ½j) where F

is an arbitrary strictly increasing real function on R2
+: This particular way of representing

negatively interdependent preferences has recently been proposed and axiomatically char-

acterized by Ok and Koçkesen (1997). In particular, when ¡ is played between individuals

(as opposed to, say, …rms), the preferences represented in this form can be interpreted as a

compromise between the standard case in which individuals are assumed to care only about

her monetary earnings ¼j, and the other extreme in which they are concerned exclusively

with their relative payo¤ ½j.
3 If, on the other hand, ¡ is an oligopoly game, then an inter-

dependent player with such an objective function can be thought of as a …rm (or manager)

which is not only concerned with the level of its pro…ts, but cares also about its pro…t share

in the industry.

Suppose that precisely k 2 f1; :::; n ¡ 1g players in ¡ 2 G are independent, and denote
the set of all strictly increasing F : R2

+ ! R by F: For any F 2 F, we de…ne the n-person
normal form game

¡F (k) ´ (X; fprgr=1;:::;n)
with

pr ´
(
¼r; if r 2 Ik
F (¼r; ½r) ; if r 2 Jk

(3)

where Ik ´ f1; :::; kg and Jk ´ fk + 1; :::; ng. Clearly, in ¡F (k); the set of all independent
players is Ik; and the set of all interdependent players is Jk: The crucial interpretation is

that, while an uninformed outsider may only observe the payo¤s associated with the game

¡, the players themselves are engaged in playing ¡F (k):

2We use the convention of setting ½j(x) = 0 whenever ¼j(x) = 0 to avoid the di¢culty of evaluating the
indeterminate form 0=0:

3Special cases of this representation of interdependent preferences are utilized in numerous economic
contexts ranging from models of optimal income taxation to experimental bargaining games. We refer the
reader to the references cited in Ok and Koçkesen (1997).
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In this paper, we wish to analyze the nature of pure strategy Nash equilibria of an

arbitrary ¡F (k):We note at the outset that there are two immediate di¢culties which shall be

assumed away in much of the analysis that follows. First, the existence of a Nash equilibrium

of ¡F (k) is rather di¢cult to establish in general. Even if we take X µ R` and posit the

standard requirement of quasiconcavity of ¼r in xr for all r (along with continuity of ¼r;

and compactness and convexity of X), the payo¤ function pj ; j 2 Jk; need not inherit this
property. Even the deeper existence theorems established in the literature (such as those

of Topkis, 1979 and Dasgupta and Maskin, 1986) are not readily helpful in settling this

existence problem. It appears that the best strategy at this stage is to ignore the existence

problem, and search for some qualitative properties of the equilibria of ¡F (k); when they

exist. In fact, in many examples of economic interest (such as the Cournot and Bertrand

oligopolies, common pool resource and public good games, arms races, etc.) one can directly

verify that the set of equilibria of ¡F (k) is nonempty, and hence our approach is fruitful.

The second di¢culty is the analytical intractability of certain asymmetric equilibria of an

arbitrary ¡F (k). The analysis is greatly simpli…ed when we focus instead on the intragroup
symmetric Nash equilibria of ¡F (k); denoted Nsym(¡F (k)); which is de…ned as

Nsym(¡F (k)) ´ f([a]k; [b]n¡k) 2 N(¡F (k)) : a; b 2 Xg

where [t]l denotes the l¡replication of the object t. One could, of course, advance a

“focal point” argument to justify interest in Nsym(¡F (k)): Perhaps more importantly, we

shall observe that in most of the economic examples considered below, we actually have

N(¡F (k)) = Nsym(¡F (k)) so a focus on intragroup symmetric equilibria is unrestrictive.

This is trivially the case in all two person games.

Finally, let us clarify what we mean by “studying the nature of Nsym(¡F (k))” given a

¡ 2 G. Put precisely, we are interested in identifying some general subclasses of G where
interdependent players have a strategic advantage over the independent players in terms of

monetary payo¤s, that is, where

¼j(x̂) > ¼i(x̂) 8(i; j) 2 Ik £ Jk and x̂ 2 Nsym(¡F (k)): (4)

As noted in the introduction, there are at least two concrete economic considerations moti-

vating this inquiry. Whether or not interdependent players (who do not directly maximize

their absolute payo¤s) obtain higher absolute payo¤s than all independent players (who do

target the maximization of their absolute payo¤s) is a question of considerable interest in

theories of preference evolution and strategic delegation. These applications are discussed

in Section 4 below.
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3 Main Results

3.1 Supermodular Games

An n-person normal form game ¡ 2 G is said to be supermodular whenever

¼r(x _ y) + ¼r(x ^ y) > ¼r(x) + ¼r(y) 8x; y 2 Xn and r = 1; :::; n,

where x _ y is the lowest upper bound of fx; yg in Xn (with respect to the product order

induced by %) and x ^ y is the greatest lower bound of fx; yg in Xn:4 We say that ¡

is strictly supermodular if the above inequality holds strictly for all r and x; y 2 Xn

such that fx _ y; x ^ yg 6= fx; yg: Supermodular games correspond to games in which the
actions of two distinct players are strategic complements in the sense that the best response

correspondences of the players are increasing (Bulow et al., 1985, Topkis, 1979, Vives, 1990).

It is well known that if X µ R` is open and ¼r is C2; then ¡ is supermodular if and only if

@2¼r=@xr@xq > 0 for all r 6= q (Topkis, 1978).
We next introduce the following subclass of G.
De…nition. An n-person normal form game ¡ 2 G is said to be positively (negatively)

action monotonic if, for all x 2 Xn; xr Â (Á) xq implies ¼r(x) > ¼q(x):
Action monotonicity is a property that requires a tight connection between payo¤s and

actions. While it is not a standard condition for normal form games, action monotonicity

is nevertheless satis…ed by a variety of symmetric games. In general, any ¡ 2 G with

¼r(x) = ª(xr; Ã(x)); where ª : X £R! R+ is strictly increasing (decreasing) in the …rst

component and Ã : Xn ! R is symmetric, is positively (negatively) action monotonic.

Several widely studied symmetric games, including common pool resource extraction and

public goods games, and Cournot oligopolies with constant average costs, are special cases

of this general formulation. Thus all of these games are action monotonic.

Our …rst main result provides an answer to the question stated in the previous section

within the class of all action monotonic strictly supermodular games:

Theorem 1. Let k 2 f1; :::; n ¡ 1g and F 2 F: If ¡ 2 G is strictly supermodular and
action monotonic, then for any x̂ 2 Nsym(¡F (k)) with x̂1 6= x̂n; we have ¼j(x̂) > ¼i(x̂) for
all (i; j) 2 Ik £ Jk:
Proof. Take any x̂ = ([a]k; [b]n¡k) 2 Nsym(¡F (k)) such that a 6= b. Since ¼1 = p1 and x̂ is

an equilibrium, we have ¼1([a]k; [b]n¡k) > ¼1(b; [a]k¡1; [b]n¡k). This, together with symmetry
4This de…nition is slightly more demanding than the usual one, which requires that ¼r has increasing

di¤erences. As will become clear below, however, the present formulation results in little loss of generality
and is very convenient for our purposes.
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of ¡ yields

¼n(b; [a]k¡1; [b]n¡k¡1; a) > ¼n(b; [a]k¡1; [b]n¡k): (5)

By strict supermodularity, since a 6= b, we have

¼n([a]k; [b]n¡k) + ¼n(b; [a]k¡1; [b]n¡k¡1; a) < ¼n([a]k; [b]n¡k¡1; a) + ¼n(b; [a]k¡1; [b]n¡k)

which, together with (5), implies that

¼n(x̂) = ¼n([a]k; [b]n¡k) < ¼n([a]k; [b]n¡k¡1; a) = ¼n(x̂¡n; a): (6)

Now assume that ¡ is positively (negatively) action monotonic, and suppose, by way of

contradiction, that ½n(x̂) · 1. Then we must have either ¼n(x̂) = 0, or ¼n(x̂) > 0 and, by
symmetry,

n¼n(x̂)

k¼1(x̂) + (n¡ k)¼n(x̂) · 1:

In either case, we obtain ¼n(x̂) · ¼1(x̂). This is possible only if a Â (Á) b by action
monotonicity. But then applying action monotonicity again, we …nd ¼n(x̂¡n; a) > ¼j(x̂¡n; a);
j = k+1; :::; n¡1; while (by symmetry) ¼n(x̂¡n; a) = ¼j(x̂¡n; a); j = 1; :::; k. Hence we have
½n(x̂¡n; a) ¸ 1: Therefore, by (6) and the de…nition of pr; we have pn(x̂¡n; a) > pn(x̂) which
contradicts the hypothesis that x̂ is an equilibrium. Therefore, we must have ½n(x̂) > 1 so

that, by symmetry, ¼j(x̂) = ¼n(x̂) > ¼i(x̂) = ¼1(x̂) for all (i; j) 2 Ik £ Jk: Q.E.D.

Theorem 1 states that at any intragroup symmetric equilibrium of an action monotonic

strictly supermodular game, the absolute payo¤s to interdependent players are strictly

greater than those to independent players, unless both groups take the same equilibrium

action.5 The signi…cance of Theorem 1 is limited, however, by the fact that it deals only

with intragroup symmetric equilibria and relies on the property of action monotonicity, which

several important supermodular games do not satisfy.6 We next show that both of these re-

quirements can be relaxed for the case in which only one of the players has interdependent

preferences.

Theorem 2. If ¡ 2 G is strictly supermodular, F 2 F and x̂ 2 N(¡F (n ¡ 1)) satis…es
x̂1 6= x̂n; then ¼n(x̂) > ¼i(x̂) for all i 2 In¡1:
Proof. Take any x̂ 2 N(¡F (n¡ 1)). Suppose …rst that x̂ is intragroup symmetric, so we

may write x̂ = ([a]n¡1; b). Since inequality (6) above was obtained without requiring action

5Theorem 1 remains valid if we replace strict supermodularity with the weaker notion of strict quasisu-
permodularity, which only requires that ¼r(x) > ¼r(x ^ y) imply ¼r(x _ y) > ¼r(y); for all r and x; y 2 Xn

such that fx _ y; x ^ yg 6= fx; yg (Milgrom and Shannon, 1994.)
6One can, however, show that the hypothesis of intragroup symmetry can be relaxed in Theorem 1 if

we assume that ¡ is positively (negatively) action monotonic and has negative (positive) spillovers property
(see Section 3.2), in addition to being strictly supermodular.
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monotonicity, we have ¼n(x̂) < ¼n(x̂¡n; a). If x̂ is an equilibrium, we must therefore have
½n(x̂) > ½n(x̂¡n; a) = ½n([a]k) = 1. The theorem then follows from the symmetry of ¡.

To complete the proof, we show that x̂ 2 Nsym(¡F (n ¡ 1)). This is trivial for the case
n = 2, so suppose that n ¸ 3. If x̂ is not intragroup symmetric, then there exist i and

i0 2 In¡1 such that x̂i 6= x̂i0 . Without loss of generality, let i = 1, i0 = 2, x̂1 = a, and x̂2 = a0
with a 6= a0. Since x̂ is an equilibrium and ¡ is symmetric, we have ¼1(a; a0; x̂3; :::; x̂n) >
¼1(a

0; a0; x̂3; :::; x̂n) and

¼1(a
0; a; x̂3; :::; x̂n) = ¼2(a; a0; x̂3; :::; x̂n) > ¼2(a; a; x̂3; :::; x̂n) = ¼1(a; a; x̂3; :::; x̂n):

But, given that a 6= a0; these two inequalities contradict the strict supermodularity of ¡:
Hence a = a0; and we conclude that x̂ is intragroup symmetric. Q.E.D.

In particular, Theorem 2 shows that the interdependent player unambiguously holds the

upper hand in any strictly supermodular two-person game. This simple case can be used to

provide some intuition for the results of this section. Consider a two-person symmetric and

strictly supermodular game ¡; and let (a; b) 2 X2 be any outcome in which the independent

player 1 has a strictly higher payo¤ than the interdependent player 2. Clearly, the relative

payo¤ of player 2 is strictly less than 1 at this action pro…le. But, as inequality (6) proves

formally, symmetry and (strictly) supermodularity ensures the following: if a 6= b and a is a
best response to b; then a is a (strictly) better response to a than b is. Therefore, if (a; b) was

an equilibrium, by switching to player 1’s action a; player 2 could increase both her absolute

and relative payo¤s, which means that (a; b) cannot be an equilibrium.

This kind of argument underlies the proofs of Theorems 1 and 2. In particular, Theorem

1 states that this intuition generalizes for arbitrary n and k provided that ¡ is also action

monotonic and one restricts attention to intragroup symmetric equilibria; Theorem 2 states

that neither action monotonicity nor intragroup symmetry are required when k = n¡ 1. As
we argue below, the case k = n ¡ 1 is important from an evolutionary perspective, since

it helps us to identify environments in which the extinction of players with interdependent

preferences cannot occur under any payo¤ monotonic evolutionary selection dynamics.

We conclude this section by demonstrating that action monotonicity alone is not su¢cient

to yield any of the above results. The aim of the following example is to illustrate the crucial

role played by supermodularity in Theorems 1 and 2.

Example 1. Consider the two-person game ¡ 2 G represented by the bimatrix

1; 1 1; 1=2 3; 2

1=2; 1 1; 1 2; 0

2; 3 0; 2 2; 2
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Here the strategy space of each agent is the chain f1; 2; 3g: This game is easily checked
to be (negatively) action monotonic but not supermodular. It has three Nash equilibria,

N(¡) = f(1; 3); (3; 1); (2; 2)g. Taking F (z1; z2) = z1z2 for all z1; z2 > 0; and adopting the

convention of treating the column player as player 2, the game ¡F (1) is represented by the

bimatrix
1; 1 1; 1=3 3; 8=5

1=2; 4=3 1; 1 2; 0

2; 18=5 0; 4 2; 2

Clearly, N(¡F (1)) = f(1; 3)g; and ¼1(1; 3) = 3 > 2 = ¼2(1; 3): In this game, therefore, the
player with interdependent preferences is subject to a strategic disadvantage. k
Example 1 demonstrates that action monotonicity is consistent with the possibility of in-

terdependent players having a strategic disadvantage against independent players. It should

thus be formally clear that our main inquiry, that is, determining a general subclass of G the
members of which satisfy (4) is not a trivial one. The following section deals with submodular

games in this subclass.

3.2 Submodular Games with Spillovers

A variety of economically interesting games exhibit a negative (or positive) spillover e¤ect.

In such games, an increase in the level of action taken by a player decreases (or increases)

the absolute payo¤s of all other players. The strong form of this property is, however, too

demanding for our purposes since it is not satis…ed by games in which players have at least

one potential action which would nullify the in‡uence of other players. For instance, in the

classical Cournot model of oligopoly, a …rm may completely escape the e¤ect of quantity

choices of other …rms on its pro…ts simply by choosing to shut down. For this reason, we

shall work here with a slightly weaker notion of the spillover e¤ect (which is present in the

Cournot game).

De…nition. Let A ´ [n¡1k=1fx 2 Nsym(¡F (k)) : F 2 Fg: An n-person normal form game

¡ 2 G is said to have negative spillovers, if for any x 2 A,

t1 Â xr Â t2 implies ¼q(x¡r; t1) < ¼q(x) < ¼q(x¡r; t2)

for all r and q 6= r. Games with positive spillovers are de…ned dually.
It turns out that in games with negative spillovers, there is a tight connection between

action monotonicity and the possibility of ¼j(¹x) > ¼i(¹x) holding for all i 2 Ik and all j 2 Jk,
as stated in the following result.
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Lemma 1. Let k 2 f1; :::; n ¡ 1g and F 2 F: For any ¡ 2 G with negative spillovers
and any x̂ 2 Nsym(¡F (k));

¼j(x̂) > (>) ¼i(x̂) 8(i; j) 2 Ik £ Jk

holds only if x̂j % (Â) x̂i for all (i; j) 2 Ik £ Jk: Moreover, if k = n ¡ 1; then, for any
i 2 In¡1; we have ¼n(x̂) > (>) ¼i(x̂) if and only if x̂n % (Â) x̂i:
This lemma shows that positive action monotonicity at the equilibrium action pro…le is

essentially a necessary condition for (4) to hold in the case of games with negative spillovers.

It can be shown similarly that negative action monotonicity at the equilibrium action pro…le

is a necessary condition for (4) to hold for games with positive spillovers.

An n-person normal form game ¡ 2 G is said to be submodular whenever

¼r(x _ y) + ¼r(x ^ y) 6 ¼r(x) + ¼r(y) 8x; y 2 Xn and r = 1; :::; n.

We say that ¡ is strictly submodular if the above inequality holds strictly for all r and
x; y 2 Xn such that fx_y; x^yg 6= fx; yg: In contrast with supermodular games, submodular
games are those in which actions of any two players are strategic substitutes in the sense

that the best response maps of all players are decreasing (Bulow et al., 1985).

Finally, we shall need the following concept for the analysis of this subsection.

De…nition. An n-person normal form game ¡ 2 G is called symmetric in equilibrium
if it does not possess an asymmetric Nash equilibrium.

While symmetry in equilibrium is admittedly a demanding property, it is satis…ed by

a variety of commonly studied symmetric games such as the stag hunt game, prisoner’s

dilemma, the common pool resource game, many symmetric Cournot and Bertrand oligopoly

models, and public good games. In fact, for a strictly submodular game ¡, this property is

nothing other than the requirement of uniqueness of equilibrium, for, if ([a]n); ([b]n) 2 N(¡);
then

¼1((a; [b]n¡1) ^ (b; [a]n¡1)) + ¼1((a; [b]n¡1) _ (b; [a]n¡1)) = ¼1([a]n) + ¼1([b]n)

> ¼1(b; [a]n¡1) + ¼1(a; [b]n¡1)

so that unless a = b; ¡ cannot be strictly submodular. When combined with symmetry, this

observation leads us to the following

Lemma 2. Let ¡ 2 G be a strictly submodular game such that N(¡) 6= ;: Then, ¡ is
symmetric in equilibrium if, and only if, it has a unique equilibrium.

Our main result takes as primitives those games in G where the common strategy set
of the players is a convex and compact subchain of R`, and the payo¤ function of the rth
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player is continuous and quasiconcave in xr, for all r: Denoting the class of all such games

by G¤; we are now ready to state the following strategic advantage result the interpretation
of which is similar to that of Theorem 1.

Theorem 3. Let ¡ 2 G¤; k 2 f1; :::; n¡ 1g and F 2 F: If ¡ is a positively (negatively)
action monotonic and strictly submodular game with negative (positive) spillovers, and is

symmetric in equilibrium, then, for any x̂ 2 Nsym(¡F (k)) such that x̂1 6= x̂n and ¼r(x̂) > 0
for all r; we have ¼j(x̂) > ¼i(x̂) for all (i; j) 2 Ik £ Jk:
Remark 2. Lemma 1 demonstrates the necessity of action monotonicity for the conclu-

sion of Theorem 3 to hold. Since we think of submodular games with spillovers as primitives

in the above analysis, the only question about the tightness of this result concerns the re-

laxation of the symmetry in equilibrium condition. To see that this condition too cannot be

relaxed in Theorem 3, consider the following “hawk-dove” game represented by the bimatrix

10; 10 5; 15

15; 5 1; 1

and de…ne ¡ as its mixed strategy extension. One can easily verify that ¡ satis…es all the

hypotheses of Theorem 3 except for symmetry in equilibrium, and that ((1; 0); (0; 1)) 2
Nsym(¡F (1)) where F (z1; z2) = (z1 + 1)(z2 + 1) for all z1; z2 > 0: Hence there exists an

equilibrium in which the player with interdependent preferences obtains a strictly lower

absolute payo¤. k
To provide intuition for Theorem 3, let us consider a two-person symmetric and strictly

submodular game ¡ which satis…es positive action monotonicity, negative spillovers, and

symmetry in equilibrium, and let (a; b) 2 X2 be an equilibrium of ¡F (1) in which a exceeds

b and hence the independent player 1 has a strictly higher payo¤ than the interdependent

player 2. By raising her action, player 2 can lower player 1’s material payo¤ (due to negative

spillovers) so if (a; b) is to be an equilibrium of ¡F (1), any such change must also lower player

2’s material payo¤. In fact, since (a; b) cannot be an equilibrium of ¡ (due to symmetry in

equilibrium), player 2’s material payo¤ maximizing response to a must lie strictly below b.

If one constructs a sequence in which, starting from (a; b), each player chooses, in turn, a

material payo¤ maximizing response to the other player’s previous choice, it can be shown

that (due to the strict submodularity of ¡) this sequence leads to increasing choices for player

1, decreasing choices for player 2, and converges to an asymmetric equilibrium of ¡. Hence,

if ¡ is symmetric in equilibrium, the premise that a exceeds b must be false, and hence the

independent player 1 cannot have a higher payo¤ than the interdependent player 2 at an

equilibrium of ¡F (1). While this particular reasoning applies only to the two person case, it

generalizes to yield Theorem 3.

12



In closing, we note that one can again relax the requirement of action monotonicity when

there is only one interdependent player in the game. The following is then a counterpart to

Theorem 2.

Theorem 4. Let F 2 F. If ¡ 2 G¤ is a strictly submodular game with negative or
positive spillovers, and is symmetric in equilibrium, then, for any x̂ 2 Nsym(¡F (n¡ 1)) such
that x̂1 6= x̂n and ¼r(x̂) > 0 for all r; we have ¼n(x̂) > ¼i(x̂) for all i 2 In¡1:
Theorem 4 provides su¢cient conditions for the single player with interdependent pref-

erences to have a strategic advantage with respect to the remaining players in submodular

games. In particular, it implies that if ¡ 2 G¤ is a two-person strictly submodular game
with spillovers and a unique equilibrium, then we have ¼2(x̂) > ¼1(x̂) for any Nash equilib-

rium x̂ of ¡F (1) with x̂1 6= x̂2 and minf¼1(x̂); ¼2(x̂)g > 0. This is analogous to our earlier
observation about two-person supermodular games.

4 Applications

The usefulness of the theorems established above hinges on the degree to which they may

be applied to games of economic interest. There are a variety of environments to which

Theorems 1-4 apply, among which are input and public good games, search models and arms

races. In each of these examples, it is possible to verify that, under standard conditions,

interdependent preferences yield a strategic advantage over independent preferences.7 To

illustrate, we shall discuss here the implications of the strategic advantage results of the

previous section for certain oligopoly games, and in particular, provide an application to the

theory of strategic delegation. We shall then brie‡y discuss the implications of our results

for the theory of preference evolution.

4.1 Strategic Advantage and Delegation in Market Games

4.1.1 Strategic Advantage. Objective functions which incorporate relative payo¤ concerns

are particularly easy to justify in the case of …rms that separate management from owner-

ship. For instance, owners may bene…t from writing contracts with managers in which the

compensation of the latter is based, in part, on the performance of their …rm relative to that

of other …rms, or relative to some industry average (Holmström, 1982). This, in turn, would

provide an incentive for managers to pursue the maximization of interdependent objective

functions. The results of Section 3 can thus be used to show that such contracts may have

the unplanned e¤ect of yielding a strategic advantage to a …rm, enabling it to achieve a

higher level of pro…tability than its pro…t-maximizing competitors.
7For a detailed analysis of these examples we refer the reader to Koçkesen et al. (1997).
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To illustrate, consider the case of Cournot competition. For expositional simplicity, we

consider a duopolistic industry composed of two …rms with identical cost structures producing

a homogenous product.8 Firm r chooses an output level xr 2 X ´ [0; ¹Q]; 0 < ¹Q <1; where
¹Q is interpreted as the capacity limit on a …rm’s output level. The pro…t function of …rm

r is given by ¼r(x) = xrP (x1 + x2)¡ C(xr); x 2 X2; where the inverse demand function P

is a strictly positive and twice di¤erentiable function on [0; 2 ¹Q] and the cost function C is

a twice di¤erentiable function on [0; ¹Q]: We make the standard assumptions that demand is

downward sloping and average cost is non-decreasing: P 0 < 0; C(0) = 0; C 0 > 0; C 00 > 0:
We also assume that the game is strictly submodular.9 These assumptions imply that ¡C has

a unique equilibrium (Corchón, 1996, Proposition 1.3), which must therefore be symmetric.

Let us denote the resulting Cournot game by ¡C 2 G, and make the additional assumptions
that P (2 ¹Q) > C( ¹Q)= ¹Q, to ensure positive pro…ts for each …rm at any output pro…le, and

P (2 ¹Q) + ¹QP 0(2 ¹Q) < C 0( ¹Q) and P (0) > C 0(0) to ensure that the equilibrium occurs in the

interior. The last condition also guarantees that ¡C has the negative spillovers property.

It is a straightforward matter to show that under the stated conditions, any equilibrium

x̂ 2 N(¡CF (1)) satis…es x̂1 6= x̂2:10 Since ¡C is strictly submodular with negative spillovers,
and is symmetric in equilibrium, the following then follows from Theorem 4.

Proposition 1. Take any Cournot duopoly ¡C and F 2 F. Then, at any x̂ 2 N(¡CF (1));
we have ¼1(x̂) < ¼2(x̂); i.e., the …rm with interdependent preferences obtains a strictly higher

pro…t than does the independent …rm at any equilibrium.

While the analysis above pertains to the classical Cournot duopoly, similar results may be

obtained for other market games. For instance, in the case of a Bertrand duopoly with di¤er-

entiated products and constant marginal costs, we may apply Theorem 2 (under the standard

conditions that ensure the supermodularity of the game) to conclude that the interdependent

…rms will be more pro…table than pro…t-maximizing …rms. In such environments, therefore,

managers who include relative pro…t considerations in their decision making process (say,

due to incentive contracts) will obtain higher pro…ts in equilibrium than those who do not.

This …nding has an immediate implication for industries in which the entry and exit of …rms

occurs on the basis of pro…tability: behavior that corresponds to an interdependent objective

function will thrive at the expense of pro…t maximizing behavior in the long run.

8All of our results extend with minor modi…cations to n-…rm industries; we focus on the duopoly case
only to avoid uninteresting technical details.

9That is, P 0 (x1 + x2) + xrP 00 (x1 + x2) < 0 for all x 2 [0; ¹Q]2:
10Suppose x̂ = (a; a). The boundary conditions posited above imply a 2 (0; ¹Q) so that @¼1(a; a)=@x1 = 0

and @p2(a; a)=@x2 = 0: Since, by symmetry, the former equation implies that @¼2(a; a)=@x2 = 0, the latter
equation holds only if (¼2F2=¹¼2)@¼1=@x2 = 0 at the action pro…le (a; a): Yet this is a contradiction, for we
have ¼i(a; a) > 0; i = 1; 2; F2 > 0 and @¼1(a; a)=@x2 < 0 in this model.
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4.1.2 Strategic Delegation. An interesting application of Proposition 1 concerns the theory

of strategic delegation as developed by Vickers (1984) and Fershtman and Judd (1987).

Consider an extension of the Cournot duopoly game ¡C in which one of the …rms has the

option of hiring a manager and delegating the output choice to her. In the …rst stage of

the game, the owner of …rm 2 (henceforth, owner 2) gives a compensation contract to her

manager, the nature of which is common knowledge. In the second stage, the manager and

…rm 1 engage in a standard Cournot competition in which the manager’s objective is to

maximize her compensation, which is determined by the following objective function:

¦(x; µ) ´ (1¡ µ)¼2 (x) + µ½2 (x) 8(x; µ) 2 [0; ¹Q]2 £ [0; 1]; (7)

where ½2 is the relative pro…t of …rm 2 as de…ned in (2). While owner 2 chooses µ to maximize

¼2; we assume for simplicity that the owner of the …rm 1 is a standard pro…t-maximizer.

We denote the resulting 3-person extensive form game by ¡D: The subgame of ¡D that

is reached when owner 2 chooses µ 2 [0; 1] is denoted by ¡Dµ : Clearly, ¡Dµ is identical to the
family of 2-person normal-form games considered in Proposition 1. More formally, we have

¡Dµ = ¡
C
Fµ
(1) where Fµ is de…ned on R2

+ by Fµ(z1; z2) = (1¡µ)z1+µz2: In particular, we have
¡D0 = ¡C : In what follows, we refer ¡D as a delegation game, and assume that ¡D0 carries

the structure of the Cournot duopoly model described in the beginning of this section. The

main issue in the theory of strategic delegation is the question of whether owner 2 will choose

to delegate in equilibria of ¡D, that is, whether she will set µ > 0. Given earlier …ndings

in the literature, our answer will not come as a surprise: delegation occurs in any perfect

equilibrium of ¡D.

Proposition 2. At any subgame perfect equilibrium of ¡D; the owner of …rm 2 chooses

to delegate.

Provided that the contract space is limited to that assumed above, there is reason to

expect managerial compensation schemes to embody relative pro…tability concerns at least

to some extent.11 Since we exogenously limit ourselves to a particular contract space, Propo-

sition 2 cannot be used to predict the form of the equilibrium contract in general. It tells us,

however, that no-delegation cannot be an equilibrium so long as the contract space is rich

enough to include those contracts given by (7). In contrast to Vickers (1984) and Fershtman

and Judd (1987), Proposition 2 shows that this conclusion obtains without assuming the

linearity of the demand and cost functions.12

11We are, of course, neglecting objections that could be raised on the grounds of contract unobservability
(see Katz, 1991 and Koçkesen and Ok, 1999 for more on this issue).
12Formally speaking, however, Proposition 2 does not directly generalize the corresponding result of, say,

Vickers (1984) since Vickers identi…es a compensation contract with the mapping x 7! ¼2(x)¡ µ¹¼(x); µ ¸ 0;
as opposed to (7). However, the proof of Proposition 2 may be easily adapted (by setting Fµ(z1; z2) ´
z1(1¡ µ=z2) so that Proposition 1 may be applied) to account for this case.
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Remark 3. The …ndings of Vickers (1984) have also been generalized by Salas Fumas
(1992), whose Proposition 1(a) is similar to our Proposition 2. Neither result, however,

implies the other. In particular, our hypotheses are posited only on the primitive Cournot

game ¡D0 (as opposed to all the subgames ¡
D
µ ). Perhaps more importantly, our proof (given

in the appendix) is quite elementary and hence readily generalizes to the usual n-…rm sce-

nario. In fact, it is easy to see that the same proof (with only minor modi…cations) enables

one to replace the Cournot game considered in Proposition 2 with essentially any strictly

submodular game that satis…es the hypotheses of Theorem 4. k

4.2 Preference Evolution and the Spiteful E¤ect

While it is conventional in economic models to posit that individuals are material payo¤

maximizers, there is now mounting experimental evidence that contradicts this strong “in-

dependence” hypothesis. The theoretical plausibility of this assumption has accordingly

been questioned recently by several economists on evolutionary grounds.13 The theory of

preference evolution is based on the premise that individual preferences come to being as

a result of an unplanned process in which children inherit the preferences of their parents

either by genetic transmission or imitation. The population composition is typically assumed

to evolve according to a payo¤ monotonic selection dynamic: those behaviors which yield the

highest material rewards are replicated with greatest frequency from one generation to the

next. The evolutionary scenario we consider here is one in which each individual interacts

with each other member of the population in each period; the so-called “playing the …eld”

model. This is an environment in which strategic advantage has particularly transparent

evolutionary implications. Dispensing with formalities for brevity, we brie‡y discuss these

implications next.

Consider a …nite population of size n, such that the constituent individuals are engaged

in playing an n-person game ¡ 2 G: Not all players need be material payo¤ maximizers; we
allow for the possibility that some players are negatively interdependent. With the initial

preference distribution in the population given exogenously, suppose that this distribution

evolves over time in accordance with the hypothesis of payo¤ monotonicity. It is apparent

from Theorem 2 that if ¡ is strictly supermodular, then the long-run population composi-

tion cannot consist exclusively of material payo¤ maximizers unless the initial state consists

exclusively of such preferences. If, due to a ‘mutation’, a single individual in the popula-

tion happens to be negatively interdependent (denote the resulting game by ¡F ), then this

individual would obtain at least as great a material payo¤ as any independent individual,

and consequently, independent preferences could not expel such a mutant.14 On the basis of

13See, for instance, Bester and Güth, 1998, Fershtman and Weiss, 1998, and Koçkesen et al., 1999.
14While the basic idea here is quite transparent, it is nevertheless informal. To examine the issue at
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Theorem 4, the same conclusion holds if ¡ is strictly submodular, symmetric in equilibrium,

and has negative or positive spillovers, provided that all independent agents take the same

action at any equilibrium of ¡F . We therefore conclude that there are evolutionary reasons

to expect that the population will not be composed only of absolute payo¤ maximizers in

the long run.15

Broadly similar conclusions have been reached earlier in the evolutionary literature on

the ‘spiteful e¤ect’. The spiteful e¤ect occurs when it is possible for a player to deviate from

a Nash equilibrium action pro…le in such a manner as to reduce the payo¤s of other players

more severely than the payo¤s of the deviating player are reduced (Rhode and Stegeman,

1996, Vega-Redondo, 1997). In this case payo¤ monotonic selection dynamics will lead to

the spread of a ‘spiteful’ mutant who adopts such a deviation. It turns out that the presence

of the spiteful e¤ect is necessary but not su¢cient for the strategic advantage of negatively

interdependent preferences. To see that it is necessary, consider for simplicity a two-person

game in which the spiteful e¤ect is not present at any equilibrium of ¡. In particular, it is

not present at any equilibrium x̂ at which ¼1(x̂) ¸ ¼2(x̂): Since ¡ is symmetric, there must
exist at least one such equilibrium. In the absence of the spiteful e¤ect, any deviation from

this equilibrium by Player 2 will lower her payo¤s at least as much as it lowers the payo¤

of Player 1. Such a deviation can raise neither the absolute payo¤, nor relative payo¤ of

the deviating player. Hence x̂ is also an equilibrium of ¡F when Player 1 is independent

and Player 2 negatively interdependent. As a result, interdependent players cannot have a

strategic advantage in the absence of the spiteful e¤ect.

To see that the spiteful e¤ect is not su¢cient for strategic advantage, one need only

examine Example 1 above. The game ¡ has three Nash equilibria when both players have

independent preferences, and the spiteful e¤ect is present at each one of them. However,

if exactly one of the players is negatively interdependent, this player may end up with

strictly lower material payo¤s than her opponent at the unique equilibrium of the resulting

game ¡F . Hence the presence of the spiteful e¤ect does not guarantee the existence of

strategic advantage for negatively interdependent preferences. The reason why the two

criteria yield di¤erent predictions is because the spiteful e¤ect is based on the hypothesis that

hand formally, we need a set-valued extension of the concept of an evolutionarily stable state for a …nite
population (Riley, 1979, Sha¤er, 1988) since, if the preference space is su¢ciently rich, there will typically
exist preferences that are behaviorally indistinguishable in particular game forms. (For instance, in the
multi-person prisoners’ dilemma, defection will be a dominant strategy for a very wide range of objective
functions including all negatively interdependent and independent preferences.) Such a stability concept is
introduced in Koçkesen et al. (1997) where the evolutionary ideas discussed above are formalized.
15Other interesting environments in which this issue can be investigated include random matching models

as well as models of local interaction. Results obtained by Fershtman and Weiss (1998) and Bester and Güth
(1998) for pairwise random matching, and by Eshel et al. (1998) for local interaction on a circle suggest that
even altruistic preferences can survive in such cases.
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the incumbent population does not respond optimally to the appearance of the mutant (and

continues, instead, to adopt the same strategies that were previously optimal.) In contrast,

we postulate rational behavior by all players and study the properties of the equilibrium

set conditional on the underlying preference distribution. The introduction of an individual

with interdependent preferences into an incumbent population of absolute payo¤ maximizers

causes the latter to adjust their actions in such a manner as to locate a new equilibrium.

Since the notion of strategic advantage is global (having been de…ned conditional on the

equilibria of ¡F ), it cannot be deduced by examining the consequences of local deviations

from equilibria of ¡, which is what de…nes the spiteful e¤ect. Furthermore, veri…cation of

the presence of the spiteful e¤ect requires one to examine the properties of equilibria, which

are not primitives of a game. In contrast, the strategic advantage results of Section 3 are

obtained by positing conditions on the payo¤ (…tness) functions, and are therefore easily

veri…ed in arbitrary games.16 Given that the spiteful e¤ect is necessary for the strategic

advantage of negatively interdependent preferences, the main results of this paper provide

su¢cient conditions for the presence of the spiteful e¤ect in a given normal form game.

5 Conclusion

We have aimed in this paper to uncover the generality of the statement that negatively in-

terdependent preferences provide individuals with a strategic advantage over others who are

motivated exclusively by a concern with their own material payo¤s. While the plausibility

of this phenomenon has been noted earlier in a variety of contexts, the conditions under

which it arises have not previously been systematically explored. It turns out that there is a

broad class of strategic environments in which such an advantage exists, although this class

is not exhaustive. Our results identify the properties of strategic complementarity and sub-

stitutability as particularly relevant to the possibility that interdependent preferences earn

greater absolute payo¤s than do (absolute) payo¤ maximizers. While we …nd this observa-

tion interesting from a purely game-theoretic viewpoint, it also has important implications

for the theories of strategic delegation and preference evolution. We note, however, that

our results fall short of characterizing the class of games in which interdependent players

have a strategic advantage over independent players (Koçkesen, et al., 1999). Determining

precisely the class of all normal-form games for which this phenomenon occurs remains as

16The only non-primitive property that we used above is symmetry of equilibrium. But this property too
can be replaced by any set of primitive assumptions that ensure uniqueness of equilibrium in our context
(recall Lemma 2). For instance, in Theorems 3 and 4, the symmetry in equilibrium property can be replaced
with the requirements that (i) payo¤ functions are strictly quasiconcave in own actions, and (ii) the associated
best response functions are contraction maps.
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open problem.

Appendix: Proofs

Proof of Lemma 1. Assume that x̂ = ([a]k; [b]n¡k) for some a; b 2 X with a Â b: Then, by
hypothesis, negative spillovers e¤ect, and symmetry of ¡,

¼1([a]k; [b]n¡k) 6 ¼n([a]k; [b]n¡k) < ¼n(b; [a]k¡1; [b]n¡k) = ¼1(b; [a]k¡1; [b]n¡k)

and this contradicts that playing a is a best response for player 1 against ([a]k¡1; [b]n¡k): The
…rst assertion follows by the completeness and antisymmetry of %.
To prove the second assertion, let k = n¡ 1 and notice that all we have to show is that

¼n(x̂) > ¼1(x̂) whenever b Â a: Assume then for contradiction that

b Â a and ¼n([a]n¡1; b) 6 ¼1([a]n¡1; b): (8)

Since ® 7! ®=(¿ + ®) is a strictly increasing mapping in ® > 0 for any ¿ > 0; (8) implies

that
½n(x̂)

n
=

¼n(x̂)

(n¡ 1)¼1(x̂) + ¼n(x̂) 6
¼1(x̂)

(n¡ 1)¼1(x̂) + ¼1(x̂) =
1

n
:

Hence ½n(x̂) · 1 and since b is a best response of player n against [a]n¡1 in ¡F (n¡1); we must
have ¼n([a]n¡1; b) > ¼n([a]n): Therefore, by the negative spillovers e¤ect and symmetry of ¡,
we have ¼1([a]n¡1; b) < ¼1([a]n) = ¼n([a]n) 6 ¼n([a]n¡1; b) which contradicts (8). Q.E.D.

Proof of Theorem 3. This theorem is an immediate consequence of the following

Lemma A. Let ¡ 2 G¤; k 2 f1; :::; n¡ 1g and take any strictly increasing F : R2
+ ! R:

If ¡ is a strictly submodular game with negative spillovers, and is symmetric in equilibrium,

then, for any x̂ 2 Nsym(¡F (k)) with ¼r(x̂) > 0 for all r; we have

x̂j % x̂i 8(i; j) 2 Ik £ Jk:

Proof. Let x̂ = ([a]k; [b]n¡k) 2 Nsym(¡F (k)) for some a; b 2 X: Clearly, since a is a best
response of player 1 against ([a]k¡1; [b]n¡k) in ¡F (k); we have

¼1([a]k; [b]n¡k) > ¼1(t; [a]k¡1; [b]n¡k) 8t 2 X: (9)

We claim that

¼n([a]k; [b]n¡k) > ¼n([a]k; [b]n¡k¡1; t) 8t 2 ft0 2 X : t0 Â bg: (10)

To see this, let us assume for contradiction that

¼n(x̂¡n; t) = ¼n([a]k; [b]n¡k¡1; t) > ¼n([a]k; [b]n¡k) = ¼n(x̂) > 0 (11)
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holds for some t 2 X with t Â b: Since ® 7! ®=(¿ + ®) is a strictly increasing mapping in

® > 0 for any ¿ > 0; we must then have

¼n(x̂)Pn¡1
r=1 ¼r(x̂) + ¼n(x̂)

6 ¼n(x̂¡n; t)Pn¡1
r=1 ¼r(x̂) + ¼n(x̂¡n; t)

(12)

But since t Â b; the negative spillovers e¤ect yields ¼r(x̂) > ¼r(x̂¡n; t) for all r 6= n so that
¼n(x̂¡n; t)Pn¡1

r=1 ¼r(x̂) + ¼n(x̂¡n; t)
<

¼n(x̂¡n; t)Pn¡1
r=1 ¼r(x̂¡n; t) + ¼n(x̂¡n; t)

:

But this inequality, (12) and (11) yield pn(x̂¡n; t) > pn(x̂) which contradicts that x̂ is a Nash
equilibrium of ¡F (k): Therefore, we must conclude that (10) holds.

Now, for any ®; ¯ 2 X; de…ne the correspondences K¯ : X ¶ X and L® : X ¶ X as

K¯(®) ´ argmax
t2X

¼1(t; [®]k¡1; [¯]n¡k) and L®(¯) ´ argmax
t2X

¼n([®]k; [¯]n¡k¡1; t):

We de…ne next the double sequence (am; bm) 2 X2 recursively as follows:

a0 = a; b0 = b; am 2 Kbm(am) and bm 2 Lam¡1(bm); m = 1; 2; :::

Claim 1. (am; bm) is well-de…ned.

Proof of Claim 1. Fix any ®; ¯ 2 X: Since X is a convex compact set, and ¼1 and ¼n are

continuous, K¯ and L® must be nonempty (by Weierstrass’ theorem) and must have closed

graphs (by Berge’s maximum theorem). Moreover, quasiconcavity of ¼1 and ¼n entail that

K¯ and L® are convex-valued. Therefore, by Kakutani’s …xed point theorem, there exist

…xed points of K¯ and L®: Since ® and ¯ were arbitrary in this reasoning, we may conclude

that (am) and (bm) are well-de…ned sequences. k
Let Br : Xn¡1 ¶ X be the best response correspondence of player r in ¡. We note that,

for any ®; ¯ 2 X;
Bi([®]k¡1; [¯]n¡k) = K¯(®) 8i 2 Ik (13)

and

Bj([®]k; [¯]n¡k¡1) = L®(¯) 8j 2 Jk (14)

hold by symmetry of ¡:

Claim 2. If a Â b; then a0 Á a1 Á a2 Á ¢ ¢ ¢ and ¢ ¢ ¢ Á b2 Á b1 Á b0.
Proof of Claim 2. Let a Â b: We shall …rst establish that b1 6= b0: If b1 = b; then

b1 2 La(b1) implies by (14) that b 2 Bj([a]k; [b]n¡k¡1) for all j 2 Jk: But then since a 2
Bi([a]k¡1; [b]n¡k) for all i 2 Ik; it follows that ([a]k; [b]n¡k) 2 N(¡); contradicting that ¡
is symmetric in equilibrium. If, on the other hand, b1 Â b; then (10) yields that ¼n(x̂) >
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¼n([a]k; [b]n¡k¡1; b1): But then by submodularity of ¼n; ¼n([a]k; [b1]n¡k) < ¼n([a]k; [b1]n¡k¡1; b)
which, in turn, contradicts that b1 2 La(b1): We thus conclude that b Â b1:
Next, we claim that a1 % a0: But by (9) and the fact that a1 2 Kb1(a1); we have

¼1([a]k; [b]n¡k) > ¼1(a1; [a]k¡1; [b]n¡k) and ¼1([a1]k; [b1]n¡k) > ¼1(a; [a1]k¡1; [b1]n¡k): Clearly,
given that b Â b1; if a Â a1; the last two inequalities would contradict the strict submodularity
of ¼1: Therefore, a1 % a must hold. In fact, a1 6= a; for otherwise, a1 2 Kb1(a1) and

b1 2 La(b1) would yield that ([a]k; [b1]n¡k) 2 N(¡); and this would contradict ¡’s symmetry
in equilibrium since then a Â b Â b1 would have to hold. By linearity of %; therefore, we
have a1 Â a0:
Finally, we claim that b1 Â b2: (Since we used (10) in establishing that b0 Â b1; this step

is necessary to be able to complete the proof by induction.) This claim follows from the fact

that b1 2 La(b1) and b2 2 La1(b2) imply that ¼n([a]k; [b1]n¡k) > ¼n([a]k; [b1]n¡k¡1; b2) and
¼n([a1]k; [b2]n¡k) > ¼n([a1]k; [b2]n¡k¡1; b1); respectively. If b2 Â b1 held, given that a1 Â a;

these inequalities would contradict the strict submodularity of ¼n: Moreover, if b1 = b2; then

b1 2 La1(b1) holds, and since a1 2 Kb1(a1); we obtain ([a1]k; [b1]n¡k) 2 N(¡) contradicting
that ¡ is symmetric in equilibrium (because a1 Â a Â b Â b1). We conclude that b1 Â b2:
Proof is completed by a straightforward induction argument. k
Since X is compact, there exist convergent subsequences (avm) and (bvm) such that

(avm; bvm) ! (a¤; b¤) 2 X2 as m ! 1. We now claim that (a¤; b¤) 2 N(¡): To see this,
notice that avm 2 Kbvm (avm) implies that

avm 2 B1([avm ]k¡1; [bvm ]n¡k) m = 1; 2; :::

But since X is compact and ¼1 is continuous, B1 must have a closed graph, and therefore,

a¤ = lim
m!1

avm 2 B1
³
lim
m!1

([avm ]k¡1; [bvm]n¡k)
´
= B1([a¤]k¡1; [b¤]n¡k):

Moreover, by symmetry of ¡; a¤ 2 Bi([a¤]k¡1; [b¤]n¡k) for all i 2 Ik: Similarly, we can show
that b¤ 2 Bi([a¤]k; [b¤]n¡k¡1) for all i 2 Jk: We thus conclude that (a¤; b¤) 2 N(¡) as is
sought. Therefore, if a Â b held, by Claim 2 there would exist an (a¤; b¤) 2 N(¡) with
a¤ Â b¤; contradicting that ¡ is symmetric in equilibrium. Q.E.D.

Remark A. (a) If n = 2; we may drop the hypotheses of convexity of X and quasicon-

cavity of ¼rs from the statement of Lemma A, for then one does not need Kakutani’s …xed

point theorem in proving that (am; bm) is well-de…ned.

(b) Lemma A remains valid if the chain X is any compact convex subset of a locally con-

vex topological vector space, and ¼rs are continuous with respect to the subspace topology.

The proof of this claim is essentially identical to that of Lemma A, the only major modi…-

cation being the use of Tychono¤-Fan …xed point theorem (Berge, 1963, p.251) instead of

Kakutani’s theorem in proving Claim 1.
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(c) Continuity of ¼r can be weakened in Lemma A to upper semicontinuity of ¼r and
lower semicontinuity of Vr(x¡r) ´ maxa2X ¼r(x¡r; a) for all x¡r 2 Xn¡1; which is well-de…ned
when ¼r is upper semicontinuous. We only need to check that these conditions guarantee the

nonemptiness of K¯ (and L®) and the closed graph property of Br: The former is immediate

from upper semicontinuity of ¼r: To see the latter, take any sequence xm in Xn such that

xm ! x¤ as m ! 1; and let xmr 2 Br(xm¡r) for all m. If x¤r =2 Br(x¤¡r); then it must be
the case that Vr(x¤¡r) > ¼r(x

¤
¡r; x

¤
r): But then using the upper semicontinuity of ¼r; the fact

that xmr 2 Br(xm¡r) for all m; and the lower semicontinuity of Vr; we reach to the following
contradiction:17

¼r(x
¤
¡r; x

¤
r) > lim sup

m!1
¼r(x

m
¡r; x

m
r ) = lim sup

m!1
Vr(x

m
¡r)

> lim inf
m!1

¼r(x
m
¡r; x

m
r ) > Vr(x¤¡r) > ¼r(x¤¡r; x¤r):

Proof of Theorem 4. Immediate from Lemma 1 and Lemma A. Q.E.D.

Proof of Proposition 2. Let (a; a) 2 N(¡C) and notice that we must have a 2 (0; ¹Q).
Let b1 denote the restriction of the best response correspondence of player 1 to (0; ¹Q) in the

game ¡C : By strict concavity of ¼2; b1 can be considered as a function. De…ne the function

' : (0; ¹Q)! R by ' (q) ´ ¼2 (b1 (q) ; q) : By the implicit function theorem, b1 and ' are C1
on (0; ¹Q); and since a = b1(a) and @¼2 (a; a) =@x2 = 0; we have '0 (a) = aP 0(2a)b01(a) > 0;
where the inequality follows from P 0 < 0 and strict submodularity of P: In view of continuity
of '; we then have

Claim 1: There exists an ¹" > 0 such that ¼2 (b1 (a+ ") ; a+ ") > ¼2 (b1 (a) ; a) for all

" 2 (0; ¹"]:
Claim 2. There exists a ¹µ 2 (0; 1] such that N ¡¡Dµ ¢ 6= ; for all µ 2 [0; ¹µ]:
Proof of Claim 2. Take any " 2 (0; ¹Q) and µ 2 [0; 1]; and consider the 2-person game

¡Dµ;" ´ (X2
" ; f¼1;¦(¢; µ)g) where X" ´ ["; ¹Q]: First, note that ¦(¢; µ) is continuous on X2

" :
18

Second, since

@2¦(x; µ)

@x22
= (1¡ µ) @

2¼2 (x)

@x22
+ µ

@2½2 (x)

@x22
and

@2¼2 (x)

@x22
< 0;

there exists a µ (") 2 (0; 1] such that ¦(x1; ¢; µ) is concave on X" for all µ 2 [0; µ (")] :We can
therefore use Nash’s existence theorem to conclude that N(¡Dµ;") 6= ; for all µ 2 [0; µ (")] :
Now, choose any x(") 2 N(¡Dµ;") with µ 2 [0; µ (")] : Since

lim
"#0
supx22[0;")¦((x1("); x2); µ) = 0 < ¦(x("); µ)

17Dasgupta and Maskin (1986) use an analogous reasoning in proving their Theorem 2.
18Notice, however, that ¦(¢; µ) is not continuous at (0; 0) :

22



there exists an " > 0 such that ¦((x1("); x2); µ) 6 ¦(x("); µ) for all x2 2 [0; "): Choosing
such an " > 0; therefore, x2(") is a best response of player 2 to x1(") in the game ¡Dµ for all

µ 2 [0; µ (")] : That x1(") 2 argmaxx12X ¼1(x1; x2(")) is, on the other hand, easily veri…ed.
Hence, by choosing ¹µ = µ (") ; we have N

¡
¡Dµ
¢ 6= ; for all µ 2 [0; ¹µ]: k

Claim 3. Let x̂(µ) 2 N
¡
¡Dµ
¢
for any µ 2 (0; ¹µ]: There exists a µ0 2 (0; ¹µ] such that

¼2 (x̂(µ)) > ¼2 (a; a) for all µ 2 (0; µ0]:
Proof of Claim 3. Take any sequence µn 2 [0; ¹µ] that converges to 0; and note that, by

Claim 2, N(¡Dµn) 6= ; for all n: Let x̂ (µn) 2 N(¡Dµn); n > 1: Since b1 is strictly decreasing (due
to strict submodularity of ¡C), Proposition 1 implies that x̂2 (µn) > a for all n > 1: There
must then exist a subsequence x̂2(µn`) such that lim x̂2(µn`) > a: Let y2 ´ lim x̂2(µn`); and
notice that x̂(µn`) ! (b1 (y2) ; y2) (as ` ! 1) by continuity of b1: But then we must have
(b1 (y2) ; y2) 2 N

¡
¡C
¢
since Nash equilibrium correspondence has a closed graph. Given

the uniqueness of the equilibrium of ¡C ; it follows that (b1 (y2) ; y2) = (a; a). Thus, since

x̂2 (µn) > a for all n > 1; there exists a positive integer `¤ such that x̂2(µn`) 2 (a; a+¹"] for all
` > `¤; where ¹" is de…ned as in Claim 1. Applying Claim 1, we …nd ¼2(x̂2(µn`)) > ¼2 (a; a)

for all ` > `¤: Choose µ0 = µn`¤ and the claim follows. k

The proof of Proposition 2 is now easily completed. The Nash equilibrium of the subgame

induced by the choice of µ = 0; i.e. N
¡
¡C
¢
; is given by (a; a) where the payo¤ of owner 2 is

¼2 (a; a) : However, Claim 3 shows that there exists a µ0 2 (0; 1] such that ¼2 (x̂(µ)) > ¼2 (a; a)
for all µ 2 (0; µ0] which implies that µ = 0 cannot obtain in any subgame perfect equilibrium
of ¡D. Q.E.D.
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