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Learning to Detect Natural Image Boundaries
Using Local Brightness, Color, and Texture Cues

David Martin, Charless Fowlkes, Jitendra Malik

Abstract— The goal of this work is to accurately detect and localize
boundaries in natural scenes using local image measurements. We formu-
late features that respond to characteristic changes in brightness, color, and
texture associated with natural boundaries. In order to combine the infor-
mation from these features in an optimal way, we train a classifier using hu-
man labeled images as ground truth. The output of this classifier provides
the posterior probability of a boundary at each image location and orienta-
tion. We present precision-recall curves showing that the resulting detector
significantly outperforms existing approaches. Our two main results are
(1) that cue combination can be performed adequately with a simple linear
model, and (2) that a proper, explicit treatment of texture is required to
detect boundaries in natural images.

Keywords—texture, supervised learning, cue combination, natural im-
ages, ground truth segmentation dataset, boundary detection, boundary lo-
calization

I. INTRODUCTION

�
ONSIDER the images and human-marked boundaries
shown in Figure 1. How might we find these boundaries

automatically?
We distinguish the problem of boundary detection from what

is classically referred to as edge detection. A boundary is a con-
tour in the image plane that represents a change in pixel owner-
ship from one object or surface to another. In contrast, an edge is
most often defined as an abrupt change in some low-level image
feature such as brightness or color. Edge detection is thus one
low-level technique that is commonly applied toward the goal
of boundary detection. Another approach would be to recognize
objects in the scene and use that high-level information to infer
the boundary locations.

In this paper, we focus on what information is available in a
local image patch like those shown in the first column of Fig-
ure 2. Though these patches lack global context, it is clear to
a human observer which contain boundaries and which do not.
Our goal is to use features extracted from such an image patch to
estimate the posterior probability of a boundary passing through
the center point. A boundary model based on such local in-
formation is likely to be integral to any perceptual organiza-
tion algorithm that operates on natural images, whether based
on grouping pixels into regions [1], [2] or grouping edge frag-
ments into contours [3], [4]. This paper is intentionally agnostic
about how a local boundary model might be used in a system for
performing a high-level visual task such as recognition.

The most common approach to local boundary detection is to
look for discontinuities in image brightness. For example, the
Canny detector [5] models boundaries as brightness step edges.
The brightness profiles in the second column of Figure 2 show
that this is an inadequate model for boundaries in natural images
where texture is a ubiquitous phenomenon. The Canny detector
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Fig. 1. Example images and human-marked segment boundaries. Each
image shows multiple (4-8) human segmentations. The pixels are darker where
more humans marked a boundary. Details of how this ground-truth data was
collected are discussed in Section III.

fires wildly inside textured regions where high-contrast edges
are present, but no boundary exists. In addition, it is unable to
detect the boundary between textured regions when there is only
a subtle change in average image brightness.

A partial solution is provided by examining gradients at mul-
tiple orientations around a pixel. For example, a boundary detec-
tor based on the eigenspectrum of the spatially averaged second
moment matrix can distinguish simple edges from the multiple
incident edges that may occur inside texture. While this ap-
proach will suppress false positives in a limited class of textures,
it will also suppress corners and contours bordering textured re-
gions.

The significant problems with simple brightness edge models
have lead researchers to develop more complex detectors that
look for boundaries defined by changes in texture, e.g. [6], [7].
While these work well on the pure texture-texture boundaries
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Fig. 2. Local Image Features. In each row, the first panel shows an image patch. The following panels show feature profiles along the patch’s horizontal diameter.
The features are raw image intensity, oriented energy ��, brightness gradient ��, color gradient ��, raw texture gradient ��, and localized texture gradient
���. The vertical line in each profile marks the patch center. The scale of each feature has been chosen to maximize performance on the set of training images –
2% of the image diagonal (5.7 pixels) for OE, CG, and TG, and 1% of the image diagonal (3 pixels) for BG. The challenge is to combine these features in order to
detect and localize boundaries.
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provided by synthetic Brodatz mosaics, they have problems in
the vicinity of simple brightness boundaries. Texture descriptors
computed over local windows that straddle a boundary have dif-
ferent statistics from windows contained in either of the neigh-
boring regions. This inevitably results in either doubly-detected
boundaries or thin halo-like regions along contours (e.g. see im-
ages in [6], [8], [9]). Just as a brightness edge model does not
detect texture boundaries, a pure texture model does not detect
brightness edges effectively.

Clearly, boundaries in natural images can be marked by joint
changes in several cues including brightness, color, and texture.
Evidence from psychophysics [10] suggests that humans make
combined use of multiple cues to improve their detection and
localization of boundaries. There has been limited work in com-
putational vision on addressing the difficult problem of cue com-
bination. For example, the authors of [2] associate a measure of
texturedness with each point in an image in order to suppress
contour processing in textured regions and vice versa. However,
their solution is full of ad-hoc design decisions and hand chosen
parameters.

In this paper, we provide a more principled approach to cue
combination by framing the task as a supervised learning prob-
lem. A large dataset of natural images that have been manually
segmented by multiple human subjects [11] provides the ground
truth label for each pixel as being on- or off-boundary. The task
is then to model the probability of a pixel being on-boundary
conditioned on some set of local image features. This sort of
quantitative approach to learning and evaluating boundary de-
tectors is similar in spirit to the work of Konishi et al. [12] using
the Sowerby dataset of English countryside scenes. Our work is
distinguished by an explicit treatment of texture, enabling supe-
rior performance on a more diverse collection of natural images.

By modeling texture and combining various local cues in a
statistically optimal manner, we demonstrate a marked improve-
ment over the state of the art in boundary detection. Figure 3
shows the performance of our detector compared to the Canny
detector, a detector based on the second moment matrix used
by Konishi et. al. [12], and the human subjects. The remainder
of the paper will present how this improvement was achieved.
In Section II we describe the local brightness, color, and tex-
ture features used as input to our algorithm. In Section III, we
present our training and testing methodology and the dataset of
12,000 human segmentations that provide the ground truth data.
We apply this methodology in Section IV to optimize each local
feature independently, and in Section V to perform cue com-
bination. Section VI presents a quantitative comparison of our
method to existing boundary detection methods. We conclude
in Section VII.

II. IMAGE FEATURES

Our approach to boundary detection is to look at each pixel
for local discontinuities in several feature channels, over a range
of orientations and scales. We will consider two brightness fea-
tures (oriented energy and brightness gradient), one color fea-
ture (color gradient), and one texture feature (texture gradient).
Each of these features has free parameters that we will calibrate
with respect to the training data.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

Pr
ec

is
io

n

F=0.58 @(0.67,0.51) GD
F=0.58 @(0.65,0.53) GD+H
F=0.60 @(0.66,0.55) 2MM
F=0.65 @(0.70,0.60) BG+TG
F=0.67 @(0.71,0.64) BG+CG+TG
Humans
F=0.80 Median Human

Fig. 3. Two Decades of Boundary Detection. The performance of our bound-
ary detector compared to classical boundary detection methods and to the hu-
man subjects’ performance. A precision-recall curve is shown for each of five
boundary detectors: (1) Gaussian derivative (GD), (2) Gaussian derivative with
hysteresis thresholding (GD+H), the Canny detector, (3) A detector based on the
second moment matrix (2MM), (4) our grayscale detector that combines bright-
ness and texture (BG+TG), and (5) our color detector that combines brightness,
color, and texture (BG+CG+TG). Each detector is represented by its precision-
recall curve, which measures the trade-off between accuracy and noise as the
detector’s threshold varies. Shown in the caption is each curve’s F-measure, val-
ued from zero to one. The F-measure is a summary statistic for a precision-recall
curve. The points marked by a ’+’ on the plot show the precision and recall of
each ground truth human segmentation when compared to the other humans.
The median F-measure for the human subjects is 0.80. The solid curve shows
the F=0.80 curve, representing the frontier of human performance for this task.

A. Oriented Energy

In natural images, brightness edges are more than simple
steps. Phenomena such as specularities, mutual illumination,
and shading result in composite intensity profiles consisting of
steps, peaks, and roofs. The oriented energy (OE) approach [13]
can be used to detect and localize these composite edges [14].
OE is defined as:

����� � �� � 	����
� � �� � 	����
� (1)

where � ���� and � ���� are a quadrature pair of even- and odd-
symmetric filters at orientation � and scale �. Our even-
symmetric filter is a Gaussian second-derivative, and the cor-
responding odd-symmetric filter is its Hilbert transform. �����

has maximum response for contours at orientation �. The fil-
ters are elongated by a ratio of 3:1 along the putative boundary
direction.

B. Gradient-Based Features

We include the oriented energy feature in our analysis be-
cause it is the standard means of detecting brightness edges in
images. For more complex features, we introduce a gradient-
based paradigm that we use for detecting local changes in color
and texture, as well as brightness. At a location ��� �
 in the
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image, draw a circle of radius �, and divide it along the diameter
at orientation �. The gradient function ���� �� �� �
 compares
the contents of the two resulting disc halves. A large difference
between the disc halves indicates a discontinuity in the image
along the disc’s diameter.

How shall we describe and compare the two half-disc regions
for each cue? Successful approaches to this problem have com-
monly made use color and texture features based on the em-
pirical distribution of pixel values averaged over some neigh-
borhood. Distributions of color in perceptual color spaces have
been used successfully as region descriptors in the QBIC [15]
and Blobworld [8] image retrieval systems. In addition, the
compass operator of Ruzon and Tomasi [16], [17] uses color
histogram comparisons to find corners and edges in color im-
ages. For texture analysis, there is an emerging consensus that
an image should first be convolved with a bank of filters tuned to
various orientations and spatial frequencies [18], [19]. The em-
pirical distribution of filter responses has been demonstrated to
be a powerful feature in both texture synthesis [20] and texture
discrimination [21].

For brightness and color gradient features, we bin kernel
density estimates of the distributions of pixel luminance and
chrominance in each disc half. The binning was done by sam-
pling each Gaussian kernel out to �� at a rate ensuring at least
two samples per bin. For the texture gradient, we compute
histograms of vector quantized filter outputs in each disc half.
In all three cases, the half-disc regions are described by his-
tograms, which we compare with the �� histogram difference
operator [22]:

���	� 

 �



�

� �	� � 
�
�
	� � 
�

(2)

The brightness, color, and texture gradient features therefore
encode, respectively, changes in the local distributions of lumi-
nance, chrominance, and filter responses.

Each gradient computation shares the step of computing a his-
togram difference at 8 orientations and three half-octave scales
at each pixel.1 In the following subsections, we discuss in de-
tail the possible design choices for representing and comparing
color, brightness and texture.

B.1 Brightness and Color Gradients

There are two common approaches to characterizing the dif-
ference between the color distributions of sets of pixels. The first
is based on density estimation using histograms. Both QBIC
and Blobworld use fully three dimensional color histograms as
region features, and compare histograms using a similarity mea-
sure such as �� norm, �� difference, or some quadratic form.
Blobworld smooths the histograms to prevent the aliasing of
similar colors, while QBIC models the perceptual distance be-
tween bins explicitly.2

�A naive implementation would involve much redundant computation. Ap-
pendix I presents efficient algorithms for computing the gradient features.
�The quadratic form distance function used in QBIC is ���� �� � �� �

������ � ��, where � and � are the histograms to compare, and � is a matrix
giving the similarity ��� between two bins � and �. The QBIC authors indicate
that this measure is superior for their task. We will not consider this histogram
similarity function because it is computationally expensive, difficult to define �,
and similar in spirit to the Earth Mover’s distance.

A second common approach avoids quantization artifacts by
using the Mallows [23] or Earth Mover’s distance (EMD) [24]
to compare color distributions. In addition, the EMD explicitly
accounts for the ”ground distance” between points in the color
space. This is a desirable property for data living in a percep-
tual color space where nearby points appear perceptually simi-
lar. However, once colors in such a space are further apart than
some degree of separation, they tend to appear ”equally distant”
to a human observer. Ruzon and Tomasi use an attenuated EMD
to model this perceptual roll-off, but the EMD remains computa-
tionally expensive. For one-dimensional data, efficient compu-
tation is possible using sorting. In higher dimensions, however,
one must explicitly solve an assignment problem, resulting in a
considerable increase in computational complexity.

We would like a way to model the color distribution accu-
rately with respect to human perception, while retaining com-
putationally feasibility. Our approach is based on binning ker-
nel density estimates of the color distribution in CIELAB us-
ing a Gaussian kernel, and comparing histograms with the � �

difference. The �� histogram difference does not make use of
the perceptual distance between bin centers. Therefore, without
smoothing, perceptually similar colors can produce dispropor-
tionately large �� differences. Because the distance between
points in CIELAB space is perceptually meaningful in a local
neighborhood, binning a kernel density estimate whose kernel
bandwidth � matches the scale of this neighborhood means that
perceptually similar colors will have similar histogram contri-
butions. Beyond this scale, where color differences are percep-
tually incommensurate, �� will regard them as equally differ-
ent. We believe this combination of a kernel density estimate in
CIELAB with the �� histogram difference is a good match to
the structure of human color perception.

For the brightness gradient we compute histograms of L* val-
ues. The color gradient presents additional challenges for den-
sity estimation because the pixel values are in the 2D space (a*
and b*). When using 2D kernels and 2D histograms one typi-
cally reduces both the number of kernel samples and the num-
ber of bins in order to keep the computational cost reasonable.
However, this compromises the quality of the density estimate.

Rather than compute the joint gradient CG��, we compute
marginal color gradients for a* and b* and take the full color
gradient to be the sum of the corresponding marginal gradients:
CG��� � CG� � CG�. This is motivated by the fact that the
a* and b* channels correspond to the perceptually orthogonal
red-green and yellow-blue color opponents found in the human
visual system (see Palmer [25]). The comparison of CG�� to
CG��� is presented in Section IV.

B.2 Texture Gradient

In a manner analogous to the brightness and color gradient
operators, we formulate a directional operator that measures the
degree to which texture of scale � varies at an image location
��� �
 in direction �. We compute the texture dissimilarity in the
two halves of a disk of centered on a point and divided in two
along a diameter. Oriented texture processing along these lines
has been pursued by Rubner and Tomasi [6].

Figure 4a shows the filter bank that we use for texture process-
ing. It contains six pairs of elongated, oriented filters, as well
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(a) Filter Bank (b) Universal Textons (c) Image (d) Texton Map

Fig. 4. Computing Textons. (a) The 13-element filter bank used for computing textons. (b) Example universal textons computed from the 200 training images,
sorted by L1 norm for display purposes. (c-d) An image and its associated texton map. Texton quality is best with a single scale filter bank containing small filters.
Each pixel produces a 13-element response to the filter bank, and these responses are clustered with k-means. In this example, using 200 images with k=64 yields
64 universal textons. The textons identify basic structures such as steps, bars, and corners at various levels of intensity. If each pixel in the image shown in (c) is
assigned to the nearest texton, and each texton is assigned a color, we obtain the texton map shown in (d). The elongated filters have 3:1 aspect, and the longer �
was set to 0.7% of the image diagonal (about 2 pixels).

as a center-surround filter. The oriented filters are in even/odd
quadrature pairs, and are the same filters we used to compute
oriented energy. The even-symmetric filter is a Gaussian second
derivative, and the odd-symmetric filter is its Hilbert transform.
The center-surround filter is a difference of Gaussians. The even
and odd filter responses are not combined as they are in comput-
ing oriented energy. Instead, each filter produces a separate fea-
ture. To each pixel we associate the vector of 13 filter responses
centered at the pixel. Note that unlike [2], we do not contrast-
normalize the filter responses for texture processing. Our exper-
iments indicate that this type of normalization does not improve
performance, as it appears to amplify noise more than signal.

Each disc half contains a set of filter response vectors which
we can imagine as a cloud of points in a feature space with di-
mensionality equal to the number of filters. One can use the
empirical distributions of these two point clouds as texture de-
scriptors, and then compare the descriptors to get the value of
the texture gradient.

Many questions arise regarding the details of this approach.
Should the filter bank contain multiple scales, and what should
the scales be? How should we compare the distributions of filter
responses? Should we use the Earth Mover’s distance, or should
we estimate the distributions? If the latter, should we estimate
marginal or joint distributions, and with fixed or adaptive bins?
How should we compare distributions – some ��-norm or the
�� distance? Puzicha et al. [21] evaluate a wide range of texture
descriptors in this framework and examine many of these ques-
tions. We choose the approach developed in [2], which is based
on the idea of textons.

The texton approach estimates the joint distribution of filter
responses using adaptive bins. The filter response vectors are
clustered using k-means. Each cluster defines a Voronoi cell in
the space of joint filter responses, and the cluster centers define
texture primitives. These texture primitives – the textons – are
simply linear combinations of the filters. Figure 4b shows ex-
ample textons for � � �� computed over the 200 images in the
training set. After the textons have been identified, each pixel
is assigned to the nearest texton. The texture dissimilarities can

then be computed by comparing the histograms of texton labels
in the two disc halves. Figure 4c-d shows an image and the as-
sociated texton map, where each pixel has been labeled with the
nearest texton. Some questions remain, namely what images to
use to compute the textons, the choice of �, the procedure for
computing the histograms, and the histogram comparison mea-
sure.

For computing textons, we can use a large, diverse collection
of images in order to discover a set of universal textons. Al-
ternately, one can compute image-specific textons by separately
clustering filter responses in each test image. The optimal num-
ber of textons, �, depends on this choice between universal and
image-specific as well as the scale � of the texture gradient op-
erator and the size of the image. Experiments exploring both of
these issues are presented in Section IV.

To compute the texton histograms, we use hard binning with-
out smoothing. It is possible to do soft binning in the texton
framework by considering a pixel’s distance to each bin center.
However, this type of soft binning is computationally expensive,
and in our experiments it has not proved worthwhile. It seems
likely that hard binning is not a problem because adjacent pixels
have correlated filter responses due to the spatial extent of the
filters. Consequently, the data is already somewhat smoothed,
and pixels in a disc are likely to cover fewer bins ensuring more
samples per bin. Furthermore, the clutter present in natural im-
ages steers us away from the highly sensitive texture descriptors
which tend to be favored in work on Brodatz mosaics.

Finally, the �� distance is not the only viable measure of his-
togram distance for this task. Both Puzicha et al. [22] and Lev-
ina [26] evaluate various methods for comparing texture distri-
butions, including L1 norm, �� distance, and the Mallows or
Earth Mover’s distance. The optimal distance measure, how-
ever, depends on the task (matching or discrimination) and on
the images used (Brodatz patches or natural images). Our ex-
periments show that for local boundary detection in natural im-
ages, the �� distance is marginally superior to the L1 norm, and
significantly better than the Mallows distance.



6 SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

C. Localization

The underlying function of boundary existence that we are
trying to learn is tightly peaked around the location of image
boundaries marked by humans. In contrast, Figure 2 shows that
the features we have discussed so far don’t have this structure.
By nature of the fact that they pool information over some sup-
port, they produce smooth, spatially extended outputs. Since
each pixel is classified independently, spatially extended fea-
tures are problematic for a classifier, as both on-boundary pixels
and nearby off-boundary pixels will have large gradient values.

The texture gradient is particularly prone to this effect due to
its large support. In addition, the TG produces multiple detec-
tions in the vicinity of brightness edges. The bands of textons
present along such edges often produce a larger TG response on
each side of the edge than directly on the edge. This double-
peak problem is ubiquitous in texture edge detection and seg-
mentation work [6], [8], [9], where it produces double detec-
tions of edges and sliver regions along region boundaries. We
are aware of no work that directly addresses this phenomenon.
Non-maxima suppression is typically used to narrow extended
responses, but multiple detections requires a more general so-
lution. We exploit the symmetric nature of the texture gradient
response to both localize the edge accurately and eliminate the
double detections.

To make the spatial structure of boundaries available to the
classifier, we transform the raw feature signals in order to em-
phasize local maxima in a manner that simultaneously smooths
out multiple detections. Given a feature ���
 defined over
spatial coordinate � orthogonal to the edge orientation, con-
sider the derived feature ����
 � ���

���
, where ���
 �
��� ���
�
� ����
 is the first-order approximation of the distance
to the nearest maximum of ���
. We use the smoothed and sta-
bilized version

����
 � ����
 �
� �� ����

�� ���
� � �

�
(3)

with � chosen to optimize the performance of the feature. By
incorporating the 

���
 localization term, ����
 will have nar-
rower peaks than the raw ���
. ����
 is a smoothed estimate
of the underlying gradient signal that eliminates the double
peaks. To robustly estimate the directional derivatives and the
smoothed signal, we fit a cylindrical parabola over a 2D cir-
cular window of radius � centered at each pixel. 3 The axis of
the parabolic cylinder is constrained to lay parallel to the image
plane and encodes the edge location and orientation; the height
encodes the edge intensity; and the curvature of the parabola
encodes localization uncertainty. We project the data points in-
side the circular fit window onto the plane orthogonal to both
the image plane and the edge orientation, so that the fit may
be performed on a 1D function. The least squares parabolic
fit ��� � �� � � provides directly the signal derivatives as
� ����
 � �� and � ���
 � �, as well as ����
 � �. Thus, the
localization function becomes �� � �������

����� �
, where
� and � require half-wave rectification. This rectification is re-

�Windowed parabolic fitting is known as 2nd-order Savitsky-Golay filter-
ing, or LOESS smoothing. We also considered Gaussian derivative filters
�����

�

���
��

� � to estimate �	� � 	 �

� � 	
��

� � with similar results.

quired to avoid nonsensical sign changes in the signal when �
and � are multiplied together.

The last two columns of Figure 2 show the result of applying
this transformation to the texture gradient. The effect is to re-
duce noise, tightly localize the boundaries, and coalesce double
detections. We found that the localization procedure does not
improve the brightness and color gradient features so our final
feature set consists of ���������������, each at 8 orienta-
tions and 3 half-octave scales.

III. EVALUATION METHODOLOGY

Our system will ultimately combine the cues of the previous
section into a single function ����� �� �
 which gives the poste-
rior probability of a boundary at each pixel ��� �
 and orienta-
tion �. In order to optimize the parameters of this system and
compare it to other systems, we need a methodology for judg-
ing the quality of a boundary detector. We formulate boundary-
detection as a classification problem of discriminating non-
boundary from boundary pixels, and apply the precision-recall
framework using human-marked boundaries from the Berkeley
Segmentation Dataset [11] as ground truth.

The segmentation dataset contains 5-10 segmentations for
each of 1000 images. The instructions to subjects were brief:
You will be presented a photographic image. Divide the image
into some number of segments, where the segments represent
“things” or “parts of things” in the scene. The number of seg-
ments is up to you, as it depends on the image. Something be-
tween 2 and 30 is likely to be appropriate. It is important that
all of the segments have approximately equal importance.

Figure 1 demonstrates the high degree of consistency between
different human subjects. Additional details on the dataset con-
struction may be found in [11]. In addition, the dataset can be
downloaded from the Internet [27] along with code for running
our boundary detection and segmentation benchmark. We use
200 images and associated segmentations as the training data,
and the next 100 images and associated segmentations as the
test dataset.

Our evaluation measure — the precision-recall curve — is a
parametric curve that captures the trade-off between accuracy
and noise as the detector threshold varies. Precision is the frac-
tion of detections that are true positives rather than false posi-
tives, while recall is the fraction of true positives that are de-
tected rather than missed. In probabilistic terms, precision is the
probability that the detector’s signal is valid, and recall is the
probability that the ground truth data was detected.

Precision-recall curves are a standard evaluation technique in
the information retrieval community [28], and were first used
for evaluating edge detectors by Abdou and Pratt [29]. A similar
approach was taken by Bowyer et al. [30] for boundary detector
evaluation with Receiver operating characteristic (ROC) curves.
The axes for an ROC curve are fallout and recall. Recall, or hit
rate, is the same as above. Fallout, or false alarm rate, is the
probability that a true negative was labeled a false positive.

Although ROC and PR curves qualitatively show the same
trade-off between misses and false positives, ROC curves are not
appropriate for quantifying boundary detection. Fallout is not a
meaningful quantity for a boundary detector since it depends on
the size of pixels. If we increase the image resolution by a factor
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of �, the number of pixels grows as ��. Since boundaries are 
-
D (or at least have a fractal dimension less than �) the number of
true negatives will grow as �� while the number true positives
will grow as slow as �. Thus, the fallout will decline by as
much as 

�. Precision does not have this problem since it is
normalized by the number of positives rather than the number
of true negatives.

Other methods of evaluating boundary detectors in a quantita-
tive framework exist, such as the Chernoff information used by
Konishi et al. [12]. Though the information theoretic approach
approach can lead to a useful method for ranking algorithms rel-
ative to one another, it does not produce an intuitive performance
measure.

The precision and recall measures are particularly meaningful
in the context of boundary detection when we consider applica-
tions that make use of boundary maps, such as stereo or object
recognition. It is reasonable to characterize higher level pro-
cessing in terms of how much true signal is required to succeed
R (recall), and how much noise can be tolerated P (precision).
A particular application can define a relative cost � between
these quantities, which focuses attention at a specific point on
the precision-recall curve. The F-measure [28], defined as

� � ��
���� �
� �
� 
 (4)

captures this trade-off as the weighted harmonic mean of � and
�. The location of the maximum F-measure along the curve
provides the optimal detector threshold for the application given
�, which we set to 0.5 in our experiments.

Precision and recall are appealing measures, but to com-
pute them we must determine which true positives are correctly
detected, and which detections are false. Each point on the
precision-recall curve is computed from the detector’s output at
a particular threshold. In addition, we have binary boundary
maps as ground truth from the human subjects. For the moment,
let us consider how to compute the precision and recall of a sin-
gle thresholded machine boundary map given a single human
boundary map. One could simply correspond coincident bound-
ary pixels and declare all unmatched pixels either false positives
or misses. However, this approach would not tolerate any local-
ization error, and would consequently over-penalize algorithms
that generate usable, though slightly mis-localized boundaries.
From Figure 1, it is clear that the assignment of machine bound-
ary pixels to ground truth boundaries must tolerate localization
errors, since even the ground truth data contains boundary local-
ization errors.

The approach of [31] is to add a modicum of slop to the rigid
correspondence procedure described above in order to permit
small localization errors at the cost of permitting multiple de-
tections. However, an explicit correspondence of machine and
human boundary pixels is the only way to robustly count the
hits, misses, and false positives that we need to compute preci-
sion and recall. In particular, it is important to compute the cor-
respondence explicitly in order to penalize multiple detections,
single detection being one of the three goals of boundary detec-
tion formalized in Canny’s work [5] along with good detection
and good localization.

The correspondence computation is detailed in Appendix II,
which provides us the means of computing the precision and

recall for a single human segmentation while permitting a con-
trolled amount of localization error. The segmentation dataset,
however, provides multiple human segmentations for each im-
age, so that the ground truth is defined by a collection collection
of 5-10 human segmentations. Simply unioning the humans’
boundary maps is not effective because of the localization er-
rors present in the dataset itself. The proper way to combine
the human boundary maps would likely require additional cor-
respondences, or even estimating models of the humans’ detec-
tion and localization error processes along with the hidden true
signal.

Fortunately, we are able to finesse these issues in the follow-
ing manner. First, we correspond the machine boundary map
separately with each human map in turn. Only those machine
boundary pixels that match no human boundary are counted as
false positives. The hit rate is simply averaged over the different
humans, so that to achieve perfect recall the machine bound-
ary map must explain all of the human data. Our intention is
that this approach to estimating precision and recall matches as
closely as possible the intuitions one would have if scoring the
outputs visually. In particular, all three desirable properties of
a boundary detector – detection, localization, single detection –
are encouraged by the method and visible in the results.

In summary, we have a method for describing the quality of a
boundary detector that produces soft boundary maps of the form
����� �� �
 or ����� �
. For the latter, we take the maximum
over �. Given the soft boundary image ����� �
, we produce a
precision-recall curve. Each point on the curve is computed in-
dependently by first thresholding �� to produce a binary bound-
ary map, and then matching this machine boundary map against
each of the human boundary maps in the ground truth segmen-
tation dataset. The precision-recall curve is a rich descriptor of
performance. When a single performance measure is required
or is sufficient, precision and recall can be combined with the
F-measure. The F-measure curve is usually unimodal, so the
maximal F-measure may be reported as a summary of the de-
tector’s performance. We now turn to applying this evaluation
methodology to optimizing our boundary detector, and compar-
ing our approach to the standard methods.

IV. CUE OPTIMIZATION

Before combining the brightness, color, and texture cues into
a single detector, we first optimize each cue individually. By
applying coordinate ascent on each cue’s parameters with high
precision and recall as the objective, we can optimize each cue
with respect to the ground truth dataset so that no change in any
single parameter improves performance. For space considera-
tions, we do not present the complete set of experiments, rather
only those that afford interesting observations.

Each of the four cues – oriented energy (OE), brightness gra-
dient (BG), color gradient (CG), and texture gradient (TG) – has
a scale parameter. In the case of OE, the scale � is the bandwidth
of the quadrature filter pair. For the others, the scale � is the ra-
dius of the disc. We determined the optimal one octave range
for each cue. In units of percentage of the image diagonal, the
ranges are 1.4%-2.8% for OE, CG, and TG, and 0.75%-1.5% for
BG. These scales are optimal, independent of whether or not we
use the localization procedure of Section II-C. The middle scale
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(a) Raw OE (b) Raw BG (c) Raw CG (d) Raw TG
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(e) Localized OE (f) Localized BG (g) Localized CG (h) Localized TG
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Fig. 5. Performance of raw and localized features (top and bottom rows respectively). The precision and recall axes are defined in Section III. Curves toward the
top (lower noise) and right (more recovered signal) are better. Each curve is parameterized by 
� and is scored by its maximal F-measure, the value and location
of which are shown in the legend. Each panel in this figure shows four curves: one curve for each of three half-octave spaced scales of the feature, along with one
curve for the combination of the three scales. The three scales are labeled smallest to largest as 0,1,2, and the combination of scales is indicated by a “*”. The
starting scales for OE, BG, CG, and TG are 1.4%, 0.75%, 1.4%, and 1.4% of the image diagonal, respectively. With the exception of Figure 10, we use the logistic
regression to model 
�. In this figure, we see that the localization procedure is marginally helpful for OE, unnecessary for BG and CG, and extremely helpful for
TG. The performance gain for TG is due to the elimination of double-detections along with good localization, as is evident from Figure 2. In addition, TG is the
only feature for which there is benefit from combining scales. Note that each feature’s � and scale parameters were optimized against the training set using the
precision-recall methodology.

(a) Brightness Gradient (b) Color Gradient
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Fig. 6. Kernel bandwidth for BG and CG kernel density estimates. Both BG and CG operate by comparing the distributions of 1976 CIE L*a*b* pixel values
in each half of a disc. We estimate the 1D distributions of L*, a*, and b* with histograms, but smoothing is required due to the small size of the discs. Each curve
is labeled with � and bin count. The accessible ranges of L*, a*, and b* are scaled to 	
� ��. The kernel was clipped at 
� and sampled at 23 points. The bin count
was adjusted so that there would be no fewer than 2 samples per bin. The best values are � � 
�
 for BG (12 bins), and � � 
�� for CG (25 bins).
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(a) Image Specific TG0
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(b) Universal TG0
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(c) Image Specific TG2
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(d) Universal TG2
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(e) Image Specific vs. Universal
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Fig. 8. Image Specific vs. Universal Textons. We can compute textons on a per-image basis, or universally on a canonical image set. (a) and (c) show the
performance of the small and large scales of TG for 8-128 image specific textons; (b) and (d) show the performance of the same TG scales for 16-256 universal
textons; (e) shows the performance of image specific vs. universal textons for the middle TG scale along with the combined TG scales. The optimal number of
universal textons is double the number for image specific textons. In addition, smaller scales of TG require fewer textons. The scaling is roughly linear in the area
of the TG disc, so that one scales the number of textons to keep the number samples/bin constant. Results are insensitive to within a factor of two of the optimal
number. From (e), we see that the choice between image-specific and universal textons is not critical. In our experiments, we use image-specific textons with
k=�12,24,48�. The choice for us is unimportant, though for other applications such as object recognition one would likely prefer the measure of texture provided
by universal textons, which can be compared across images.

(a) CG Middle Scale (b) CG Combined Scales
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Fig. 7. Marginal vs. Joint Estimates of CG. (a) shows the middle scale of
the color gradient, and (b) shows the three scales combined. Our inclination
in estimating pixel color distributions was to estimate the 2D joint distribution
of a* and b*. However, the 2D kernel density estimation proved to be com-
putationally expensive. Since the a* and b* axes in the 1975 CIE L*a*b* color
space were designed to mimic the blue-yellow green-red color opponency found
the human visual cortex, one might expect the joint color distribution to contain
little perceptual information not present in the marginal distributions of a* and
b*. The curves labeled “AB” show the color gradient computed using the joint
histogram (CG��); the curves labeled “A+B” show the color gradient computed
computed as �CG� � CG��. The number of bins in each dimension is 25 for
both experiments, so that the CG�� computation requires 25x more bins and
25x the compute time. The cue quality is virtually identical, and so we adopt the
marginal CG approach.

always performs best, except in the case of raw OE where the
largest scale is superior.

Figure 5 shows the precision-recall (PR) curves for each cue
at the optimal scales both with and without localization applied.
In addition, each plot shows the PR curve for the combination
of the three scales. Each curve is generated from a � ���� �

function that is obtained by fitting a logistic model to the training
dataset. We evaluate the �� function on the test set to produce
the ����� �
 images from which the curve is generated. The �
for each cue’s localization function was optimized separately to
0.01 for TG and 0.1 for all other cues. The figure shows that
localization is not required for BG and CG, but helpful for both
OE and TG. The localization function has two potential benefits.
It narrows peaks in the signal, and it merges multiple detections.
From Figure 2, we see that the scale of OE is rather large so
that localization is effective at narrowing the wide response. TG
suffers from both multiple detections and a wide response, both
of which are ameliorated by the localization procedure.

Figure 6 shows our optimization of the kernel size used in
the density estimation computations for BG and CG. For these
features, we compare the distributions of pixel values in two
half discs, whether those values are brightness (L*) or color
(a*b*). First consider the color gradient ����� computed over
the marginal distributions of a* and b*. With a disc radius rang-
ing from 4 to 8 pixels, kernels are critical in obtaining low-
variance estimates of the distributions. In the figure, we vary
the Gaussian kernel’s sigma from 1.25% to 40% of the diameter
of the domain. In addition, the number of bins was varied in-
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versely in order to keep the number of samples per bin constant,
and above a minimum of two per bin. The kernel was clipped at
�� and sampled at 23 points. The dominant PR curve on each
plot indicates that the optimal parameter for BG is � � ��� (with
12 bins) and � � ��
 for CG (with 25 bins).

The experiments in Figure 6 used the separated version of the
color gradient CG��� rather than the joint version CG��. Fig-
ure 7 shows the comparison between these two methods of com-
puting the color gradient. Whether using a single scale of CG or
multiple scales, the difference between CG��� and CG�� is min-
imal. The joint approach is far more expensive computationally
due to the additional dimension in the kernels and histograms.
The number of bins in each dimension was kept constant at 25
for the comparison, so the computational costs differed by 25x,
requiring tens of minutes for CG��. If computational expense
is kept constant, then the marginal method is superior because
of the higher resolution afforded in the density estimate. In all
cases, the marginal approach to computing the color gradient is
preferable.

The texture gradient cue also has some additional parame-
ters beyond � and � to tune, related to the texture represen-
tation and comparison. The purpose of TG is to quantify the
difference in the distribution of filter responses in the two disc
halves. Many design options abound as discussed in Section II-
B.2. For filters, we use the same even and odd-symmetric filters
that use for oriented energy – a second derivative Gaussian and
its Hilbert transform – at six orientations along with a center-
surround DOG. We experimented with multi-scale filter banks,
but found agreement with Levina [26] that a single-scale filter
bank at the smallest scale was preferable. Figure 4(a) shows
the filter bank we used for texture estimation. As for distribu-
tion estimation issues, we follow the texton approach of Malik et
al. [2] which estimates the joint distribution with adaptive bins
by clustering the filter responses with k-means, and compares
histograms using the �� measure. We verified that none of ��,
��, or �� norm performs better. In addition, we determined
that the Mallows distance computed on the marginal raw filter
outputs performed poorly. The Mallows distance on the joint
distribution is computationally infeasible, requiring the solution
to a large assignment problem.

After settling on the approach of comparing texton histograms
with the �� distance measure, we must choose between image-
specific and universal textons as well as the number of textons
(the � parameter for k-means). For image-specific textons, we
recompute the adaptive texton bins for each test image sepa-
rately. For universal textons, we compute a standard set of tex-
tons from the 200 training images. The computational cost of
each approach is approximately equal, since the per-image k-
means problems are small, and one can use fewer textons in the
image-specific case.

Figure 8 shows experiments covering both texton questions.
One can see that the choice between image specific and univer-
sal textons is not important for performance. We use image-
specific textons for convenience, though universal textons are
perhaps more appealing in that they can be used to characterize
textures in an image-independent manner. Image-independent
descriptions of texture would be useful for image retrieval and
object recognition applications. The figure also reveals two scal-
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(c) Grayscale Model (d) Color Model
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Fig. 9. Cue Combination. After optimizing the parameters of each cue inde-
pendently, we seek to combine the cues effectively. (a) shows that whether or
not we include CG, we are always better off using BG as our brightness cue in-
stead of OE. Note that though the curve is not shown, using OE and BG together
is not beneficial. (b) Although we saw in Figure 5 that we benefit from using
multiple scales of TG, the benefit is significantly reduced when BG is included.
This is because BG contains some ability to discriminate fine scale textures. (c)
Our non-color model of choice is simply the combination of a single scale of
BG with a single scale of TG. (d) Our color model of choice also includes only
a single scale of each of the BG, CG, and TG features.

ing rules for the optimal number of textons. First, the optimal
number of textons for universal textons is roughly double that
required for image specific textons. Second, the optimal number
of textons scales linearly with the area of the disc. The former
scaling is expected, to avoid over-fitting in the image-specific
case. The latter scaling rule keeps the number of samples per
texton bin constant, which reduces over-fitting for the smaller
TG scales.

It may be surprising that one gets comparable results using
both image-specific and universal textons as the image-specific
textons vary between training and testing images. Since the tex-
ture gradient is only dependent on having good estimates of the
distribution in each half-disc, the identity of individual textons is
unimportant. The adaptive binning given by k-means on a per-
image basis appears to robustly estimate the distribution of filter
response and is well behaved across a wide variety of natural
images.

V. CUE COMBINATION

After optimizing the performance of each cue, we face the
problem of combining the cues into a single detector. We ap-
proach the task of cue combination as a supervised learning
problem, where we will learn the combination rules from the
ground truth data. There is some previous work on learning
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(a) One Scale Per Cue (b) Three Scales Per Cue
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Fig. 10. Choice of Classifier. Until this point, all results have been shown using the logistic regression model. This model is appealing because it is compact,
robust, stable, interpretable, and quick to both train and evaluate. However, its linear decision boundary precludes any potentially interesting cross-cue gating
effects. In this figure, we show the result of applying various more powerful models on (a) one scale of each of BG, CG, and TG, and (b) all three scales of each
feature (9 total features). The classification tree model could not be applied in (b) due to the increased number of features. In neither case does the choice of
classifier make much difference. In both cases, the logistic regression performs well. The addition of multiple scales does not improve performance. The logistic is
still the model of choice.

boundary models. Will et. al. [7] learn texture edge models
for synthetic Brodatz mosaics. Meila and Shi [32] present a
framework for learning segmentations from labeled examples.
Most compelling is the work of Konishi et. al. [12], where edge
detectors were trained on human-labeled images.

Figure 9 presents the first set of cue combination experiments
using logistic regression. The first task is to determine whether
any of the cues is redundant given the others. Until this point, we
have presented four cues, two of which – OE and BG – both de-
tect discontinuities in brightness. Panel (a) of the figure shows
that BG is a superior cue to OE, whether used in conjunction
with the texture gradient alone or with the texture and color gra-
dients together. In addition, since we do not gain anything by
using OE and BG in conjunction (not shown), we can safely
drop OE from the list of cues.

We have the option of computing each cue at multiple scales.
Figure 5 shows that only the texture gradient contains signifi-
cant independent information at the different scales. The benefit
of using multiple TG scales does not remain when TG is com-
bined with other cues. Panel (b) of Figure 9 shows the effect
of using multiple TG scales in conjunction with BG and CG.
In both the BG and BG+CG cases, multiple TG scales improve
performance only marginally. The remaining two panels of Fig-
ure 9 show the effect of adding multiple BG and CG scales to
the model. In neither case do multiple scales improve overall
performance. In some cases (see Figure 9(d)), performance can
degrade as additional scales may introduce more noise than sig-
nal.

In order to keep the final system as simple as possible, we will
retain only the middle scale of each feature. However, it is sur-

prising that multi-scale cues are not beneficial. Part of the rea-
son may be that the segmentation dataset itself contains a limited
range of scale, as subjects were unlikely to produce segmenta-
tions with more than approximately 30 segments. An additional
explanation is suggested by Figures 5h and 9b, where we see that
the multiple scales of TG have independent information, but the
benefit of multiple TG scales vanishes when BG is used. The
brightness gradient operates at small scales, and is capable of
low-order texture discrimination. At the smallest scales, there is
not enough information for high-order texture analysis anyway,
so BG is a good small-scale texture feature. The texture gradient
identifies the more complex, larger scale textures.

Until this point, all results were generated with a logistic
model. We will show that the logistic model is a good choice by
comparing a wide array of classifiers, each trained on the human
segmentation dataset. With more powerful models, we hoped to
discover some interesting cross-cue and cross-scale gating ef-
fects. For example, one might discount the simpler boundary
detection of BG when TG is low because the brightness edges
are likely to correspond to edges interior to textured areas. In
addition, the optimal mixing function for the various cues could
well be non-linear, with each cue treated as an expert for a cer-
tain class of boundaries. These are the classifiers that we used:
Density Estimation We do density estimation with adaptive

bins provided by vector quantization using k-means. Each k-
means centroid provides the density estimate of its Voronoi cell
as the fraction of on-boundary samples in the cell. We use k=128
bins and average the estimates from 10 runs to reduce variance.
Classification Trees The domain is partitioned hierarchically

with top-down axis-parallel splits. When a cell is split, it is split
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in half along a single dimension. Cells are split greedily so as
to maximize the information gained at each step. The effect of
this heuristic is to split nodes so that the two classes become
separated as much as possible. A 5% bound on the error of the
density estimate is enforced by splitting cells only when both
classes have at least 400 points present.
Logistic Regression This is the simplest of our classifiers,

and the one perhaps most easily implemented by neurons in the
visual cortex. Initialization is random, and convergence is fast
and reliable by maximizing the likelihood with about 5 Newton-
Raphson iterations. We also consider two variants: quadratic
combinations of features, and boosting using the confidence-
rated generalization of AdaBoost by Schapire and Singer [33].
No more than 10 rounds of boosting are required for this prob-
lem.
Hierarchical Mixtures of Experts The HME model of Jor-

dan and Jacobs [34] is a mixture model where both the experts
at the leaves and the internal nodes that compose the gating net-
work are logistic functions. We consider small binary trees up
to a depth of 3 (8 experts). The model is initialized in a greedy,
top-down manner and fit with EM. 200 iterations were required
for the log likelihood to converge.
Support Vector Machines We use the SVM package lib-

svm [35] to do soft-margin classification using Gaussian ker-
nels. The optimal parameters were �=0.2 and �=0.2. In this
parameterization of SVMs, � provides the expected fraction of
support vectors, which is also an estimate of the degree of class
overlap in the data. The high degree of class overlap in our prob-
lem also explains the need for a relatively large kernel.

We used 200 images for training and algorithm development.
The 100 test images were used only to generate the final results
for this paper. The authors of [11] show that the segmentations
of a single image by the different subjects are highly consistent,
so we consider all human-marked boundaries valid. For train-
ing, we declare an image location ��� �� �
 to be on-boundary if
it is within �� � �

� pixels and ��=30 degrees of any human-
marked boundary. The remainder are labeled off-boundary.

This classification task is characterized by relatively low
dimension, a large amount of data (100M samples for our
240x160-pixel images), poor class separability, and a 10:1 class
ratio. The maximum feasible amount of data, uniformly sam-
pled, is given to each classifier. This varies from 50M samples
for the density estimation and logistic regression to 20K samples
for the SVM and HME. Note that a high degree of class overlap
in any low-level feature space is inevitable because the human
subjects make use of both global constraints and high-level in-
formation to resolve locally ambiguous boundaries.

The CPU time required for training and evaluating the mod-
els varied by several orders of magnitude. For training, the lo-
gistic regression and classification trees required several min-
utes on a 1GHz Pentium IV, while the density estimation, HME,
and SVM models — even with significantly reduced data — re-
quired many hours. For evaluation, the logistic regression and
classification trees were again the fastest, respectively taking
constant time and time logarithmic in the number of data points.
For these, the evaluation time was dominated by the couple of
minutes required to compute the image features. The density
estimation model evaluation is linear in the value of � used for

�-means and the number of runs, adding a constant factor of
1280 to an operation requiring �� operations per pixel, where
� is the number of features. The HME is a constant factor of
at most 15 slower than the logistic, due to our limit of 8 ex-
perts. The SVM model is prohibitively slow. Since 25% of the
training data become support vectors, the SVM required hours
to evaluate for a single image.

Figure 10(a) shows the performance of the seven classifiers
using only the middle scale of BG, CG, and TG. The PR curves
all cross approximately at the maximal F-measure point, and so
all the classifiers are equivalent as measured by the F-measure.
The classification tree and SVM are able to achieve marginally
higher performance in the high recall and low precision regime,
but they perform worse in the low recall and high precision area.
Overall, the performance of all the classifiers is approximately
equal, but other issues affect model choice such as representa-
tional compactness, stability, bias, variance, cost of training, and
cost of evaluation.

The non-parametric models achieve the highest performance,
as they are able to make use of the large amount of training
data to provide unbiased estimates of the posterior, at the cost
of opacity and a large model representation. The plain logistic
is stable and quick to train, and produces a compact and intu-
itive model. In addition, the figure shows that the logistic’s bias
does not hurt performance. When given sufficient training data
and time, all the variants on the logistic – the quadratic logistic,
boosted logistic, and HME – provided minor performance gains.
However, the many EM iterations required to fit the HME re-
quired us to subsample the training data heavily in order to keep
training time within reasonable limits.

The support vector machine was a disappointment. Training
time is super-linear in the number of samples, so the training
data had to be heavily sub-sampled. The large class overlap
produced models with 25% of the training samples as support
vectors, so that the resulting model was opaque, large, and ex-
ceedingly slow to evaluate. In addition, we found the SVM to
be brittle with respect to its parameters � and �. Even at the
optimal settings, the training would occasionally produce non-
sensical models. Minute variations from the optimal settings
would produce infeasible problems. We conclude that the SVM
is poorly suited to a problem that does not have separable train-
ing data.

Panel (b) of Figure 10 shows the performance of each clas-
sifier except the classification tree when all three scales are in-
cluded for each of the three features. The results are much as
before, with virtually no difference between the different mod-
els. Balancing considerations of performance, model complex-
ity, and computational cost, we favor the logistic model and its
variants.

VI. RESULTS

Having settled on a grayscale boundary model using a sin-
gle scale each of BG and TG, and a color model that adds a
single scale of CG, we seek to compare these models to classi-
cal models and the state of the art. The model that we present
as a baseline is MATLAB’s implementation of the Canny [5]
edge detector. We consider the detector both with and without
hysteresis. To our knowledge, there is no work proving the ben-
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(a) Gaussian Derivative (b) GD + Hysteresis (c) 2nd Moment Matrix
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Fig. 11. Choosing � for the classical edge operators. The Gaussian derivative (GD) operator (a) without and (b) with hysteresis, and (c) the 2nd moment matrix
(2MM) operator, fitted as in Figure 12. From these experiments, we choose the optimal scales of �=1 for GD regardless of hysteresis, and �=0.5 for 2MM.

(a) Log10(Sample Count) (b) Empirical Posterior (c) Fitted Posterior
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Fig. 12. Optimizing the 2nd moment matrix model. For this model, the two features are the smaller and larger eigenvalues of the locally averaged 2nd moment
matrix. (a) shows the histogram of samples from the 200 training images along with the 100 samples/bin contour. (b) shows the empirical posterior probability of
a boundary, and (c) shows the fitted posterior using logistic regression. We did not find more complex models of the posterior to be superior. The linear decision
boundary of the fitted logistic is drawn in both (b) and (c). The coefficients of the fitted logistic are -0.27 for the larger eigenvalue and 0.58 for the smaller eigenvalue,
with an offset of -1.

efit of hysteresis thresholding for natural images. We will call
the Canny detector without hysteresis “GD”, as it is simply a
Gaussian derivative filter with non-maxima suppression. With
hysteresis, the operator is called “GD+H”.

The GD and GD+H detectors each have a single parameter to
tune – the � of the Gaussian derivative filters. Figure 11(a) and
(b) show the PR curves for various choices of �. For both cases,
� � 
 pixel is a good choice. Note that the detector threshold is
not a parameter that we need to fit, since it is the parameter of
the PR curves.

We also consider a detector derived from the spatially-
averaged second moment matrix (2MM). It has long been known
that the eigenspectrum of the second moment matrix provides
an informative local image descriptor. For example, both eigen-
values being large may indicate a corner or junction. This is
the basis of the Plessey or Harris-Stephens [36] corner detector
and the Förstner corner detector [37]. One large and one small
eigenvalue may indicate a simple boundary. The Nitzberg edge
detector [38] used by Konishi et al. [12] is based on the differ-

ence between the eigenvalues.

We apply the same training/test methodology to the 2MM de-
tector as we do to our own detectors, using the full eigenspec-
trum as a feature vector. From the 200 training images, we ob-
tain on- and off-boundary labels for pixels and train a logistic
model using both eigenvalues of the 2MM as features. Figure 12
shows the model trained in this manner. Panel (a) shows the dis-
tribution of the training data in feature space. Panel (b) shows
the empirical posterior, and panel (c) shows the fitted posterior
from the logistic model. To perform non-maxima suppression
on the 2MM output, we calculated the orientation of the opera-
tor’s response from the leading eigenvector.

The 2MM detector also has two scale parameters. The inner
scale is the scale at which image derivatives are estimated. We
set the inner scale to a minimum value, estimating the deriva-
tives with the typical 3x3 [-1,0,1] filters. Figure 11(c) shows the
optimization over the outer scale parameter, which is the scale
at which the derivatives are spatially averaged. Only a modest
amount of blur is required (� � ��� pixels). Note that some blur
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(a) GD + Hysteresis
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(b) 2nd Moment Matrix
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(d) BG + CG + TG
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(e) Detector Comparison
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Fig. 14. Detector comparison at various distance tolerances. (a)-(d) show the precision recall curves for each detector as the matching tolerance varies from
�



to
�
�
 pixels. The curves for each detector do not intersect, and so the F-measure is a good representation of the performance regardless of threshold. Panel (e)

shows the relationship between F-measure and the distance tolerance for the four detectors, along with the median human performance. The human curve is flatter
than the machine curves, showing that the humans’ localization is good. The gap between human and machine performance can be reduced but not closed by better
local boundary models. Both mid-level cues and high-level object-specific knowledge are likely required to approach the performance of the human subjects.

is required, or the second eigenvalue vanishes. Less smoothing
is not possible due to pixel resolution.

In Figure 13, we give a summary comparison of the BG, CG,
and TG detectors, along with two combinations: BG+TG for
grayscale images, and BG+CG+TG for color images. It is clear
that each feature contains a significant amount of independent
information. Figure 3 shows the comparison between the two
Gaussian derivative operators (GD and GD+H), the second mo-
ment matrix operator (2MM), our grayscale BG+TG operator,
and our color BG+CG+TG operator.4 First, note that hystere-
sis does impart a marginal improvement to the plain GD opera-
tor, though the difference is pronounced only at very low recall
rates. The 2MM operator does mark a significant improvement
over the Canny detector, except at low recall. The main benefit
of the 2MM operator is that it does not fire where both eigen-
values are large – note the opposite signs of the coefficients in
the model. As a result, it does not fire where energy at multiple
orientations coincide at a pixel, such as at corners or inside cer-
tain textures. Thus, 2MM reduces the number of false positives
from high contrast texture.

The operators based on BG and TG significantly outperform
both classical and state of the art boundary detectors. The main
reason for the improved performance is a robust treatment of
texture. Neither GM nor 2MM can detect texture boundaries.
For the same reason that 2MM suppresses false positives inside
textured areas, it also suppresses edges between textured areas.

�The logistic coefficients for the BG+TG operator are 0.50 for BG and 0.52
for TG with an offset of -2.81. The coefficients for the color model are 0.31
for BG, 0.53 for CG, and 0.44 for TG, with an offset of -3.08. The features are
normalized to have unit variance. Feature standard deviations are 0.13 for BG,
0.077 for CG, and 0.063 for TG.

Figure 3 also shows the performance of the human subjects in
the segmentation dataset. Each plotted point shows the precision
and recall of a single human segmentation when it is compared
to the other humans’ segmentations of the same image. The
median human F-measure is 0.80. The solid line in the upper
right corner of the figure shows the iso-F-measure line for 0.80,
representing the F-measure frontier of human performance.

Each of the curves in Figure 3 uses a fixed distance tolerance
�max = 1% of the image diagonal (2.88 pixels). Figure 14 shows
how each detector’s F-measure varies as this tolerance changes.
The digital pixel grid forces a discretization of this parameter,
and the figure shows the result for �max � ���� ������
��.
Panels (a)-(d) show the PR curves for each detector. Since these
curves do not intersect and are roughly parallel, the F-measure
captures the differences effectively. Panel (e) shows how the
F-measure changes as a function of �max for each detector and
for the human subjects. If a detector’s localization were good to
within 1 pixel, then the detector’s curve would be flat. In con-
trast, all of the machine curves reveal localization error greater
than that shown by the human subjects. Additional work on
local boundary detection will no doubt narrow the gap between
machine and human performance, but large gains will ultimately
require higher-level algorithms. Preliminary work [39] suggests
that human subjects viewing local patches such as those in Fig-
ure 2 perform at a level equivalent to our best detector.

We present qualitative results in Figures 15, 16, and 17. The
first figure shows various versions of our detectors along with
the humans’ boundaries. The second figure shows a comparison
between the GD+H, 2MM, and BG+TG detectors alongside the
humans’ boundaries. The third figure shows close-up views of
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Fig. 15. Boundary images for the gradient detectors presented in this paper. Rows 2-4 show real-valued probability-of-boundary (
�) images after non-maxima
suppression for the 3 cues. The complementary information in each of the three BG, CG, and TG channels is successfully integrated by the logistic function in row
5. The boundaries in the human segmentations shown in row 6 are darker where more subjects marked a boundary.

several interesting boundaries. Each machine detector image
in these figures shows the soft boundary map after non-maxima
suppression, and after taking the maximum over �. In Figure 15,
we see the complementary information contained in the three
channels, and the effective combination by the logistic model.
For example, color is used when present in (b,c,i) to improve
the detector output. Figure 16 shows how the BG+TG detector
has eliminated false positives from texture while retaining good
localization of boundaries. This effect is particularly prominent
in image (e).

The man’s shoulder from Figure 16(e) is shown in more detail
in row (a) of Figure 17. This image illustrates several interesting
issues. The striped shirt sleeve is a difficult texture boundary due
to the large scale of the stripes compared to the width of the re-
gion. Nevertheless, the boundary is successfully detected by TG
with good localization, and without the false positives marked

by brightness-based approaches such as GM. The 2MM detec-
tor also has grave difficulty with this texture because is it not
isotropic, so that the eigengap remains large inside the texture.
Note that no detector found the top edge of the man’s shoul-
der. There is no photometric evidence for this boundary, yet it
was marked by the human subjects with surprising agreement.
It is clear that we cannot hope to find such boundaries without
object-level information.

Examples (e) and (g) in Figure 17 show the reduction in false
positives in our detectors compared to the GM and 2MM de-
tectors. Example (c) shows another difficult texture boundary
along the underside of the boat where the texture is anisotropic,
and its direction is oblique to the object boundary.

Examples (b), (d) and (f) in Figure 17 show how different
feature channels in our detector can cooperate to find composite
boundaries. Especially in example (b), we can see that all three
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Fig. 16. Boundary images for three grayscale detectors. Compare with Figure 15. Rows 2-4 show 
� images for the Gaussian derivative (GD), the 2nd moment
matrix (2MM), and our brightness+texture detector (BG+TG). The human segmentations are shown once more for comparison. The BG+TG detector benefits from
(1) operating at a large scale without sacrificing localization, and (2) the suppression of edges in the interior of textured regions.

channels (BG,CG,TG) have found the boundary of the ear. The
BG has good localization because of its smaller scale, but also
has more false positives inside the ear. The CG has a power-
ful response from the skin tone, but its larger support sacrifices
localization somewhat around the earlobe. The texture gradi-
ent has strong responses around the ear, between the ear and
face, and around the eye, but localization is everywhere a few
pixels off. By combining the three responses, important bound-
aries found in any one channel survive while boundaries found
in multiple channels are reinforced. This reinforcement not only
strengthens the response, but also benefits localization where,
for example, the BG response around the ear pulls the TG re-
sponse into better alignment. The final result is strikingly simi-
lar to the human marked boundaries.

VII. CONCLUSION

We have defined a novel set of brightness, color, and tex-
ture cues appropriate for constructing a local boundary model,
as well as a methodology for benchmarking boundary detection
algorithms. By using a large dataset of human-labeled bound-
aries in natural images, we have formulated the task of cue com-
bination for local boundary detection as a supervised learning

problem. This approach models the true posterior probability
of a boundary at every image location and orientation, which
is particularly useful for higher-level algorithms. The choice of
classifier for modeling the posterior probability of a boundary
based on local cues is not important – a simple linear model is
sufficiently powerful. Based on a quantitative evaluation on 100
natural images, our detector outperforms existing methods, indi-
cating that a proper treatment of texture is essential for detecting
boundaries in natural images.
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Fig. 17. Close-up boundary and non-boundary examples. These examples are taken from the images shown in Figures 15-16. They have been chosen to
illustrate the strengths of the different features, as well as the shortcomings of these various local detectors. Briefly, they show (a) a difficult texture boundary
and an illusory contour, (b) useful CG signal and appropriate scale for TG, (c) a difficult texture boundary (bottom of boat) found by TG, (d) an example where
BC, CG, and TG cooperate effectively, (e-f) more difficult texture boundaries (from images (b) and (i) in Figures 15-16) arguably localized by our detectors but
completely lost in the GM and 2MM responses, and (g) the interior of a textured region (from the wall in image (g)) showing the reduced false positive responses
of our detectors inside a natural texture.
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Gradient Operators
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Fig. 13. Detector Comparison. The performance of the boundary detectors
proposed in this paper, both independently and in combination.

APPENDIX

I. COMPUTING GRADIENT FEATURES

The most computationally expensive part of the gradient com-
putations is the computation of the half-disc feature histograms.
At each pixel, we must compute two histograms over semi-
circular neighborhoods at several orientations and several scales.
Properly structured, this computation can be done efficiently.

The most significant speedup is achieved by optimizing the
loop over orientations. Assuming that we wish to compute the
gradient at � evenly spaced orientations, we can divide the disc
into �� pie slices. If we compute the pixel histogram for each
pie slice, then any half-disc histogram is simply the sum of � ad-
jacent pie slice histograms. In addition, we can compute the his-
tograms for orientation ��
 incrementally from the histograms
from orientation � by subtracting the last slice and adding the
next slice as we spin the disc. Note also that the initial step
of computing the pie slice histograms can be optimized by pre-
computing a slice membership mask.

For the texture gradient, these optimizations are sufficient.
However, the soft binning required by BG and CG suggest other
opportunities for speedup. Each pixel contributes one point to
the histogram for each kernel sample. Simply pre-computing
kernel offsets and values is effective, though this approach is
slow if the number of kernel samples is large. If there are more
kernel samples than bins, then one should pre-compute the total
histogram contribution from each pixel.

Other loops may admit additional optimization opportuni-
ties. In the same way that we split the disc by orientation into
pie slices, one could additionally split the disc into concentric
rings corresponding to the multiple scales. Since our half-octave
scales produce an area increment for the disc of 2x per scale, our
computation is dominated by the larger scale. A smaller scale

S1

S2

S2 Pixels

S 1
Pi

xe
ls

S 2
O

ut
lie

rs

S1 Outliers

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

A B C D E

A B

DC

Fig. 18. Bipartite Graph for Comparing Boundary Maps. We compare two
boundary maps by corresponding boundary pixels. The figure shows the con-
struction of the bipartite graph used in computing the correspondence. The top
panel contains an illustration of the 5 types of edges in the graph. The bottom
panel contains the adjacency matrix for the graph. The two boundary maps 
�
and 
� contribute �� � ���� and �� � ��
� nodes to the graph after prun-
ing isolated pixels. After adding outlier nodes to both sides, we have a square
� � � assignment problem, where � � �� � �� � ����. The adjacency
matrix for the bipartite graph has a block structure. Each block contains the
corresponding edges from the top panel. The top-left block (A) contains the
sparse local connections between pixels – the only “real” edges in the graph.
Blocks B and C contain random outlier connections, and block D contains ran-
dom outlier-to-outlier connections. The E edges lie on the diagonals of the B
and C blocks, providing the safety-net high-cost perfect matching. The entire
matrix has 64,470 non-zeros, for a density of 0.1%.

increment might motivate this optimization.
There is still much redundant computation as we sweep the

disc across a scan-line. The pie slice histograms change slowly
between adjacent pixels, especially when the number of orienta-
tions is not large. It is possible to compute them incrementally
by computing slice update masks. For large radii, this optimiza-
tion achieves an order of magnitude speedup.

II. CORRESPONDING BOUNDARY MAPS

In this section, we present the algorithm used for computing
the correspondence between a thresholded machine boundary
map and a human labeled boundary map. We convert the cor-
respondence problem into a minimum cost bipartite assignment
problem, where the weight between a machine boundary pixel
and a human boundary pixel is proportional to their relative dis-
tance in the image plane. One can then declare all boundary
pixels matched beyond some threshold �max to be non-hits.

The best dense assignment algorithms [40], [41] have typi-
cal runtime complexity somewhere between ����
 and ����
.
This is too slow for our purposes, and so we must formulate
a sparse assignment problem. We use Goldberg’s CSA pack-
age, which implements the best known algorithms for min-cost
sparse assignment [42], [43]. The CSA code appears to run in
time linear in the size of the graph,���
.
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What remains is to construct a sparse version of our assign-
ment problem that conforms to certain practical algorithmic
concerns. In order to make the problem sparse, we include in
the graph only those edges with weight  � �max, since an edge
with  ! �max could only serve to vacuously assign a missed
human boundary to a machine’s false positive. After this spar-
sification step, any isolated node can be removed from the as-
signment problem and immediately counted as a miss or false
positive.

The min-cost assignment problem requires one to specify the
degree of the assignment to restrict the search to non-trivial solu-
tions. Since we cannot know the degree a priori, we must request
a perfect matching, i.e. a matching that involves all nodes. How-
ever, the sparsification step will almost certainly have removed
edges required for a perfect matching. This problem is easily
solved by adding outlier nodes on both sides of the match. All
edges incident on an outlier node have higher weight than any
real edge in the graph, ensuring that they are used only when
necessary to extend the true min-cost partial matching to a valid
perfect matching.

Given a sparse assignment problem with �	 nodes on the left
side and �
 nodes on the right, we add �
 outlier nodes to the
left and �	 outlier nodes to the right. This squared problem has
enough nodes to ensure a perfect matching, but we cannot afford
dense outlier connections. We can, however, exploit the fact that
all the outlier connections have identical weight. Given an as-
signment solution, used outlier edges are interchangeable, and
unused outlier connections could not have affected the solution.
Consequently, dense outlier connections contain enormous re-
dundancy and are overly conservative. By appealing to the high
degree of connectivity present in random graphs, we can keep
the size of our graph linear in the number of nodes by including
a constant number of outlier connections per node. We found
� � � connectivity to be sufficient, so that there are � random
outlier connections to each real node, and � random outlier con-
nections to each outlier node.

One small detail remains, as the graph still does not guarantee
the existence of a perfect matching. As a safety net, we over-
lay a perfect matching of high cost that matches each real node
to an outlier node in a parallel fashion. We add these connec-
tions before the random outlier connections, and add the outlier
connections randomly without replacement. The minimum cost
perfect matching in this graph provides the best correspondence
of pixels between the machine and human boundary maps, with
a maximum localization tolerance of �max. Figure 18 depicts the
graph construction procedure.

The main shortcoming of the algorithm as presented is in
the area of junctions, where assignments can be made between
boundary pixels that occur on boundaries at different orienta-
tions. One can easily incorporate an orientation penalty into the
bipartite graph’s edge weights, but we have verified that this en-
hancement has no perceptible effect on the aggregate precision
and recall values because of the scarcity of junctions relative to
simple edges. One could also count hits, misses, and false pos-
itives in a soft manner by using the values of the edge weights
in the match. However, the simple binary counting is sufficient
given the large number of images we used, not to mention the
lack of a convincing cost function.
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