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Abstract

We present a 3-D shape-based object recognition system for simultaneous recognition of multiple

objects in scenes containing clutter and occlusion. Recognition is based on matching surfaces by

matching points using the spin-image representation. The spin-image is a data level shape descrip-

tor that is used to match surfaces represented as surface meshes. We present a compression

scheme for spin-images that results in efficient multiple object recognition which we verify with

results showing the simultaneous recognition of multiple objects from a library of 20 models. Fur-

thermore, we demonstrate the robust performance of recognition in the presence of clutter and oc-

clusion through analysis of recognition trials on 100 scenes.

This research was performed at Carnegie Mellon University and was supported by the US Depart-

ment of Energy under contract DE-AC21-92MC29104.
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1   Introduction
Surface matching is a technique from 3-D computer vision that has many applications in the area

of robotics and automation. Through surface matching, an object can be recognized in a scene by

comparing a sensed surface to an object surface stored in memory. When the object surface is

matched to the scene surface, an association is made between something known (the object) and

something unknown (the scene); information about the world is obtained. Another application of

surface matching is the alignment of two surfaces represented in different coordinate systems. By

aligning the surfaces, the transformation between the surface coordinate systems is determined.

Surface alignment has numerous applications including localization for robot navigation [29] and

modeling of complex scenes from multiple views [15].

Shape representations are used to collate the information stored in sensed 3-D points so that sur-

faces can be compared efficiently. Shape can be represented in many different ways, and finding

an appropriate representation for shape that is amenable to surface matching is still an open re-

search issue[12]. The variation among shape representations spans many different axes. For in-

stance, shape representations can be classified by the number of parameters used to describe each

primitive in the representation. Representing objects using planar surface patches [8] uses many

primitives, each with a few parameters. On the other hand, representing an object with generalized

cylinders [6] requires fewer primitives, but each has many parameters. Another axis of comparison

is the local versus global nature of the representation. The gaussian image [19] and related spher-

ical representations [11] are global representations useful for describing single objects, while sur-

face curvature [13] measures local surface properties and can be used for surface matching in

complex scenes. The multitude of proposed surface representations indicates the lack of consensus

on the best representation for surface matching.
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Another factor determining the appropriate surface representation is the coordinate system in

which the data is described. Surfaces can be defined in viewer-centered coordinate systems or ob-

ject-centered coordinate systems. Viewer-centered representations [7] describe surface data with

respect to a coordinate system dependent on the view of the surface. Although viewer-centered co-

ordinate systems are easy to construct, the description of the surface changes as viewpoint changes,

and surfaces must be aligned before they can be compared. Furthermore, to represent a surface

from multiple views, a separate representation must be stored for each different viewpoint.

An object-centered coordinate system describes an object surface in a coordinate system fixed to

the object. In object-centered coordinates, the description of the surface is view-independent, so

surfaces can be directly compared, without first aligning the surfaces. Object-centered representa-

tions can be more compact than viewer-centered representations because a single surface represen-

tation describes all views of the surface. Finding an object-centered coordinate system is difficult

because these systems are generally based on global properties of the surface. However, if an ob-

ject-centered coordinate system can be extracted robustly from surface data, then is view indepen-

dence prompts its use over viewer-centered coordinate system.

In 3-D object recognition, an important application of surface matching, an object surface is

searched for in a scene surface. Real scenes contain multiple objects, so surface data sensed in the

real world will contain clutter, surfaces that are not part of the object surface being matched. Be-

cause clutter will corrupt global properties of the scene data, generating object-centered coordinate

systems in the cluttered scenes is difficult. The usual method for dealing with clutter is to segment

the scene into object and non-object components [1][8]; naturally, this is difficult if the position of

the object is unknown. An alternative to segmentation is to construct object-centered coordinate

systems using local features detected in the scene [10][20]; here again there is the problem of dif-
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ferentiating object features from non-object features. Another difficulty occurs because surface

data often has missing components i.e., occlusions. Occlusions will alter global properties of the

surfaces and therefore, will complicate construction of object-centered coordinate systems. Con-

sequently, if an object centered surface matching representation is to be used to recognize objects

in real scenes, it must be robust to clutter and occlusion.

Object representations should also enable efficient matching of surfaces from multiple models, so

that recognition occurs in a timely fashion. Furthermore, the representation should be efficient in

storage (i.e., compact), so that many models can be stored in the model library. Without efficiency,

a recognition system will not be able to recognize the multitude of objects in the real world.

1.1   A Representation for Surface Matching

In our representation, surface shape is described by a dense collection of 3-D points and surface

normals. In addition, associated with each surface point is a descriptive image that encodes global

properties of the surface using an object-centered coordinate system. By matching images, corre-

spondences between surface points can be established and used to match surfaces independent of

the transformation between surfaces. Taken together, the points, normals and associated images

make up our surface representation. Figure 1 shows the components of our surface matching rep-

resentation.

Representing surfaces using a dense collection of points is feasible because many 3-D sensors and

sensing algorithms return a dense sampling of surface shape. Furthermore, from sensor geometry

and scanning patterns, the adjacency on the surface of sensed 3-D points can be established. Using

adjacency and position of sensed 3-D points surface normal can be computed. We use a polygonal

surface mesh to combine information about the position of 3-D surface points and the adjacency
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of points on the surface. In a surface mesh, the vertices of the surface mesh correspond to 3-D sur-

face points, and the edges between vertices convey adjacency. Given enough points, any object can

be represented by points sensed on the object surface, so surface meshes can represent objects of

general shape. Surface meshes can be generated from different types of sensors and do not gener-

ally contain sensor-specific information; they are sensor-independent representations. The use of

surface mesh as representations for 3-D shapes has been avoided in the past due to computational

concerns. However, our research and the findings of other researchers have shown that processing

power has reached a level where computations using surface meshes are now feasible [2][28].

Our approach to surface matching is based on matching individual surface points in order to match

complete surfaces. Two surfaces are said to be similar when the images from many points on the

surfaces are similar. By matching points, we are breaking the problem of surface matching into

many smaller localized problems. Consequently, matching points provides a method for handling

clutter and occlusion in surface matching without first segmenting the scene; clutter points on one

surface will not have matching points on the other, and occluded points on one surface will not be

searched for on the other. If many points between the two surfaces match then the surfaces can be

matched. The main difficulty with matching surfaces in this way is describing surface points so

that they can be differentiated from one another, while still allowing point matching in scenes con-

Figure 1: Components of our surface representation. A surface described by a polygonal surface mesh can
be represented for matching as a set of 3-D points, surface normals and spin-images.

2. Spin-Images1. 3-D Points and Normals
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taining clutter and occlusion.

The idea of matching points to match surfaces is not a novel concept. Stein and Medioni [26] rec-

ognize 3-D objects by matching points using structural indexing and their “splash” representation.

Similarly, Chua and Jarvis [3] match points to align surfaces using principal curvatures and “point-

signatures”[4] Our methods differs from these in the way that points are represented for matching

and the way that points, once matched, are grouped to match surfaces. Instead of matching points

using 3-D curves that need to be aligned before matching, we match points using a rotationally in-

variant image. Because we use and image based representation, many of the techniques from image

processing can be used in our matching algorithms. Consequently, our representation allows for

more elegant solutions to point-based surface matching.

To differentiate among points, we construct 2-D images associated with each point. These images

are created by constructing a local basis at an oriented point (3-D point with surface normal) on the

surface of an object. As in geometric hashing [20], the positions with respect to the basis of other

points on the surface of the object can then be described by two parameters. By accumulating these

parameters in a 2-D histogram, a descriptive image associated with the oriented point is created.

Because the image encodes the coordinates of points on the surface of an object with respect to the

local basis, it is a local description of the global shape of the object and is invariant to rigid trans-

formations. Since 3-D points are described by images, we can apply powerful techniques from 2-

D template matching and pattern classification to the problem of surface matching.

To distinguish our point matching representation from camera images common in computer vision

we have chosen the namespin-image; image because the representation is a 2-D array of values,

andspin because the image generation process can be visualized as a sheet spinning about the nor-
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mal of the point. Previous papers [14] introduced the concept of spin-images and showed how they

can be used to match surfaces. Therefore, in Section 2, we briefly review the spin-image generation

and its application to surface matching. This section also presents an analysis of the parameters

used in spin-image generation showing the effect of different parameter values on the accuracy of

spin-image matching.

The main contribution of this paper is the description and experimental analysis of the use of spin-

images in efficient multi-model object recognition in scenes containing clutter and occlusion. Two

major improvements to spin-image matching enable efficient object recognition. First, localization

of spin-images by reducing spin-image generation parameters enables surface matching in scenes

containing clutter and occlusion. Second, since the large number of spin-images comprising our

surface representation are redundant, statistical eigen-analysis can be employed to reduce the di-

mensionality of the images and speed up spin-image matching. The techniques employed are sim-

ilar to those used in appearance based recognition [21], and in particular, the combination of

localized images and image compression is similar to the work in eigen-features [23] and parts-

based appearance recognition [13]. Section 3 describes our algorithm for multi-model object rec-

ognition using spin-images, and Section 4 describes our experimental validation of recognition us-

ing spin-images on 100 complex scenes. A shorter description of this work has appeared as a

conference paper [16].

2   Surface Matching
This section provides the necessary background for understanding spin-image generation and sur-

face matching using spin-images. More complete description of spin-images and our surface

matching algorithms are given in [14][17].
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2.1   Spin-Images

Oriented points, 3-D points with associated directions, are used to create spin-images. We define

an oriented point at a surface mesh vertex using the 3-D position of the vertex and surface normal

at the vertex. The surface normal at a vertex is computed by fitting a plane to the points connected

to the vertex by edges in the surface mesh.

An oriented point defines a partial, object-centered, coordinate system. Two cylindrical coordi-

nates can be defined with respect to an oriented point: the radial coordinate α, defined as the per-

pendicular distance to the line through the surface normal, and the elevation coordinate β, defined

as the signed perpendicular distance to the tangent plane defined by vertex normal and position.

The cylindrical angular coordinate is omitted because it cannot be defined robustly and unambig-

uously on planar surfaces.

A spin-image is created for an oriented point at a vertex in the surface mesh as follows. A 2-D ac-

Figure 2: Spin-images of large support for three oriented points on the surface of a rubber duck model.
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cumulator indexed by α and β is created. Next, the coordinates (α,β) are computed for a vertex in

the surface mesh that is within the support of the spin-image (explained below). The bin indexed

by (α,β) in the accumulator is then incremented; bilinear interpolation is used to smooth the con-

tribution of the vertex. This procedure is repeated for all vertices within the support of the spin-

image. The resulting accumulator can be thought of as an image; dark areas in the image corre-

spond to bins that contain many projected points. As long as the size of the bins in the accumulator

is greater than the median distance between vertices in the mesh (the definition of mesh resolution),

the position of individual vertices will be averaged out during spin-image generation. Figure 2

shows the projected (α,β) 2-D coordinates and spin-images for three oriented points on a duck

model. For surface matching, spin-images are constructed for every vertex in the surface mesh.

Spin-images generated from two different surfaces representing the same object will be similar be-

cause they are based on the shape of the object, but they will not be exactly the same due to varia-

tions in surface sampling and noise. However, if the surfaces are uniformly sampled then the spin-

images from corresponding points on the different surfaces will be linearly related. (Uniform sur-

face sampling is enforced by preprocessing the surface meshes using a mesh resampling algorithm

[18].) A standard method for comparing linearly related data sets is the linear correlation coeffi-

cient, so we use correlation coefficient between two spin-images to measure spin-image similarity.

As is shown in Section 3, for efficient object recognition, the similarity measure between spin-im-

ages must be changed to the distance between images. Distance between images performs as well

as correlation coefficient for spin-image matching, as long as the images are properly normalized.

2.2   Spin-Image Generation Parameters

Bin size is the geometric width of the bins in the spin-image. Bin size is an important parameter in

spin-image generation because it determines the storage size of the spin-image and the averaging
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in spin-images that reduces the effect of individual point positions. It also has an effect on the de-

scriptiveness of the spin-images. The bin size is set as a multiple of the resolution of the surface

mesh in order to eliminate the dependence of setting bin size on object scale and resolution. Setting

bin size based on mesh resolution is feasible because mesh resolution is related to the size of shape

features on an object and the density of points in the surface mesh. Spin-images generated for the

duck model using different bin sizes are shown in Figure 3. The spin-image generated for a bin size

of four times the model resolution is not very descriptive of the global shape of the model. The

spin-image generated with a bin size of one quarter the mesh resolution does not have enough av-

eraging to eliminate the effect of surface sampling. The spin-image generated with a bin size equal

to the mesh resolution has the proper balance between encoding global shape and averaging of

point positions

Figure 6 gives a quantitative analysis of the effect of bin size on spin-image matching. To create

the graph, first, the spin-images for all vertices on the model were created for a particular bin size.

Next, each spin-image was compared to all of the other spin-images from the model, and the Eu-

clidean distances between the vertex and the vertices corresponding to the best matching spin-im-

ages were computed. After repeating this matching for all spin-images on the model, the median

Euclidean distance (match distance) was computed. By repeating this procedure for multiple bin

Figure 3: The effect of bin size on spin-image appearance. Three spin-images of decreasing bin-size for a point
on the duck model are shown. Setting the bin size to the model resolution creates descriptive spin-images while
averaging during point accumulation to eliminate the effect of individual vertex positions.

4 x mesh resolution 1 x mesh resolution 1/4 x mesh resolution
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sizes using the duck model, that graph at the top of Figure 6 was created. Match distance is a single

statistic that describes the correctness of spin-image matches, the lower the match distance, the

more correct the matches.

The graph shows that for bin sizes below the mesh resolution (1.0) the match distance is large while

for bin sizes greater than the mesh resolution, the match distance increases. Consequently, the best

spin-image matching occurs when bin-size is set close to the mesh resolution; this analysis con-

firms our qualitative observations from Figure 3. For the results in this paper, the bin size is set to

the exactly the mesh resolution.

Although spin-images can have any number of rows and columns, for simplicity, we generally

make the number of rows and columns in a spin-image equal. This results in square spin-images

whose size can be described by one parameter. We define the number of rows or columns in a

square spin-image to be the image width. To create a spin-image, an appropriate image width needs

to be determined. Image width times the bin size is called the spin-image support distance Ds; sup-

20 pixel image width

Figure 4: The effect of image width on spin-images. As image width decreases, the volume swept out by the
spin-image(top) decreases, resulting in decreased spin-image support (bottom). By varying the image width,
spin-images can vary smoothly from global to local representations.

40 pixel image width 10 pixels image width
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port distance determines the amount of space swept out by a spin-image. By setting the image

width, the amount of global information in a spin-image can be controlled. For a fixed bin-size,

decreasing image width will decrease the descriptiveness of a spin-image because the amount of

global shape included in the image will be reduced. However, decreasing image width will also

reduce the chances of clutter corrupting a spin-image. Image width is analogous to window size in

2-D template matching. Figure 4 shows spin-images for a single oriented point on the duck model

as the image width is decreased. This figure shows that as image width decreases, the descriptive-

ness of the images decreases.

Figure 6 shows the effect of image width on spin-image matching. As image width decreases,

match distance decreases. This confirms our observation from Figure 4. In general, we set the im-

age width so that the support distance is on order of the size of the model. If the data is very clut-

tered, then we set the image width to a smaller value. For the results presented in this paper, image

width is set to 15, resulting in spin-images with 225 bins.

The final spin-image generation parameter is support angle As. Support angle is the maximum an-

gle between the direction of the oriented point basis of a spin-image and the surface normal of

Figure 5: The effect of support angle on spin-image appearance. As support angle decreases, the number
of points contributing to the spin-image (top) decreases. This results in reduction in the support of the
spin-images (bottom).

180˚ support angle 90˚ support angle 60˚ support angle
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points that are allowed to contribute to the spin-image. Suppose we have an oriented point A with

position and normal (pA,nA) for which we are creating a spin-image. Furthermore, suppose there

exists another oriented point B with position and normal (pB,nB). The support angle constraint can

then be stated as: B will be accumulated in the spin-image of A if

. (5.1)

Support angle is used to limit the effect of self occlusion and clutter during spin-image matching;.

Figure 5 shows the spin-image generated for three different support angles along with the vertices

on the model that are mapped into the spin-image. Support angle is used to reduce the number of

points on the opposite side of the model that contribute to the model spin-image. This parameter

decreases the effect of occlusion on spin-image matching; if a point has significantly different nor-

mal from the normal of the oriented point, then it is unlikely that it will be visible when the oriented

point is imaged by a rangefinder in some scene data.

Decreasing support angle also has the effect of decreasing the descriptiveness of spin-images.

Figure 6 shows the effect of support angle on spin-image match distance. The graph shows that as

support angle decreases, the match distance increases because the spin-images are becoming less

descriptive. However, a small support angle is necessary for robustness to clutter and occlusion.
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distance.
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We found that a balance can be struck between shape descriptiveness and matching robustness; in

this paper all results are generated for a spin-images generated with a support angle of 60˚.

Figure 7: Localizing generation parameters increases the similarity of spin-images. The top shows a scatter
plot of the model and scene spin-images generated using global parameters. The scatter plot shows that the
spin-images are not particularly correlated. The bottom shows a scatter plot of the model and scene spin-
images generated using local parameters. The scatter plot shows that the spin-images are much more linearly
correlated. Localizing the spin-images throws away image pixels where the images disagree.
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Figure 7 shows how spin-image generation parameters localize spin-images to reduce the effect of

scene clutter on matching. When the spin-images are not localized, the model and scene spin-im-

ages are very different in appearance, a fact which is born out by the correlation coefficient of the

two images (ρ = 0.636). As the spin-images are localized by decreasing the support angle As and

support distance Ds, the spin-images become much more similar. When creating spin-images with

large support angle and distance, many scene points that do not belong to the model are spin-

mapped into the scene spin-image. This causes the scene spin-image to become uncorrelated with

the model spin-image because, as shown in the scatter plot of the two images, scene spin-image

pixels are being corrupted by clutter. When smaller support angle and distance are used, the spin-

images become similar; the pixel values shown in the scatter plot of the images created with local

parameters are linearly related. (ρ = 0.958)By varying spin-image generation parameters, we are

using knowledge of the spin-image generation process to eliminate outlier pixels, making the spin-

images much more similar.

2.3   Surface matching engine

As shown in Figure 8, two surfaces are matched as follows. Spin-images from points on one sur-

face are compared by computing correlation coefficient with spin-images from points on another

surface; when two spin-images are highly correlated, a point correspondence between the surfaces

is established. More specifically, before matching, all of the spin-images from one surface (the

model) are constructed and stored in a spin-image stack. Next, a vertex is selected at random from

the other surface (the scene) and its spin-image is computed. Point correspondences are then estab-

lished between the selected point and the points with best matching spin-images on the other sur-

face. This procedure is repeated for many points resulting in a sizeable set of point correspondences

(~100). Point correspondences are then grouped and outliers are eliminated using geometric con-
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sistency. Groups of geometrically consistent correspondences are then used to calculate rigid trans-

formations that aligns one surface with the other. After alignment, surface matches are verified

using a modified iterative closest point algorithm. The best match is selected as the one with the

greatest overlap between surfaces. Further details of the surface matching engine are given in [14].

3   Object recognition
Surface matching using spin-images can be extended to object recognition as follows. Each model

Figure 8: Surface matching block diagram.
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in the model library is represented as a polygonal mesh. Before recognition, the spin-images for all

vertices on all models are created and stored. At recognition time, a scene point is selected and its

spin-image is generated. Next, its spin-image is correlated with all of the spin-images from all of

the models. The best matching model spin-image will indicate both the best matching model and

model vertex. After matching many scene spin-images to model spin-images, the point correspon-

dences are input into the surface matching engine described in Section 2.3. The result is simulta-

neous recognition and localization of the models that exist in the scene.

This form of surface matching is inefficient for two reasons. First, each spin-image comparison re-

quires a correlation of two spin-images, an operation on order of the relatively large (~200) number

of bins in a spin-image. Second, when a spin-image is matched to the model library, it is correlated

with all of the spin-images from all of the models. This operation is linear in the number of vertices

in each model and linear in the number of models. This linearly growth rate is unacceptable for

recognition from large model libraries. Fortunately, spin-images can be compressed to speed up

matching considerably.

3.1   Spin-Image Compression

Spin-images coming from the same surface can be correlated for two reasons: First, as shown in

Figure 9, spin-images generated from oriented point bases that are close to each other on the sur-

face will be correlated. Second, as shown in Figure 9, surface symmetry and the inherit symmetry

Figure 9: Spin-images generated while traversing a path along the surface of the duck model (left). Spin-
images from proximal oriented points are similar, resulting in one cause of redundancy in spin-
images.Two pairs of similar spin-images caused by symmetry in the duck model (right).

Proximal Point Redundancy Symmetry Redundancy
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of spin-image generation will cause two oriented point bases on equal but opposite sides of a plane

of symmetry to be correlated. Furthermore, surfaces from different objects can be similar on the

local scale, so there can exist a correlation between spin-images of small support generated for dif-

ferent objects.

This correlation can be exploited to make spin-image matching more efficient through image com-

pression. For compression, it is convenient to think of spin-images as vectors in an D-dimensional

vector space where D is the number of pixels in the spin-image. Correlation between spin-images

places the set of spin-images in a low dimensional subspace of this D-dimensional space.

A common technique for image compression in object recognition is principal component analysis

(PCA)[21]. PCA or Karhunen-Loeve expansion is a well known method for computing the direc-

tions of greatest variance for a set of vectors [9]. By computing the eigenvectors of the covariance

matrix of the set of vectors, PCA determines an orthogonal basis, called the eigenspace, in which

to describe the vectors.

PCA has become popular for efficient comparison of images because it is optimal in the correlation

sense. The l2 distance between two spin-images in spin-image space is the same as the l2 distance

between the two spin-images represented in the eigenspace. Furthermore, when vectors are pro-

jected into a subspace defined by the eigenvectors of largest eigenvalue, the l2 distance between

projected vectors is the best approximation (with respect to mean square error) to the l2 distance

between the unprojected vectors, given the dimension of the subspace [9]. By minimizing mean-

square error, PCA gives us an elegant way to balance compression of images against ability to dis-

criminate between images.

PCA is used to compress the spin-images coming from all models simultaneously as follows. Sup-
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pose the model library containsN spin-imagesxi of sizeD; the mean of all of the spin-images in

the library is

. (1)

Subtracting the mean of the spin-images from each spin-image makes the principal directions com-

puted by PCA more effective for describing the variance between spin-images. Let

(2)

be the mean-subtracted set of spin-images which can be represented as anDxN matrix with each

column of the matrix being a mean-subtracted spin-image

. (3)

The covariance of the spin-images is theDxD matrix C given by

. (4)

The eigenvectors ofC are then computed by solving the eigenvector problem

. (5)

Since the dimension of the spin-images is not too large (~200), the standardjacobi algorithm

from Numerical Recipes in C [24] is used to determine the eigenvectors and eigenvalues of

Cm. Since the eigenvectors ofCm can be considered spin-images, they will be calledeigen-spin-

images.

Next the model projection dimension,s, is determined using a reconstruction metric that depends

on the needed fidelity in reconstruction and the variance among images (see[17]). Every spin-im-

age from each model is then projected into thes-dimensional subspace spanned by thes eigenvec-

tors of largest eigenvalue; thes-tuple of projection coefficients,pj, becomes the compressed

representation of the spin-image.
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(6)

The amount of compression is defined bys/D. The compressed representation of a model library

has two components: thes most significant eigenvectors and the set ofs-tuples, one for each model

spin-image. Since the similarity between images is determined by computing thel2 distance be-

tweens-tuples, the amount of storage for spin-images and the time to compare them is reduced.

3.2   Matching Compressed Spin-Images

During object recognition, scene spin-images are matched to compressed model spin-images rep-

resented ass-tuples. Given the low dimension ofs-tuples, it is possible to match spin-images in

time that is sub-linear in the number of model spin-images using efficient closest point search

structures.

To match a scene spin-image to a models-tuple, a scenes-tuple must be generated for the scene

spin-image. The scene spin-image is generated using the model spin-image generation parameters.

Suppose the scene spin-image for scene oriented pointj is represented in vector notation as. The

first step in constructing the scenes-tuple is to subtract the mean of the model spin-images

(7)

Next the mean-subtracted scene spin-image is projected onto the tops library eigen-spin-images

to get the scenes-tupleqj

(8)

The scenes-tuple is the projection of the scene spin-image onto the principal directions of the li-

brary spin-images.

To determine the best matching model spin-image to scene spin-image, thel2 distance between the

scene and model tuples is used. When comparing compressed model spin-images, finding closest

p j x̂ je1
m x̂ je2

m … x̂ jes
m, , ,( )=

y j

ŷ j y j x–=

q j ŷ je1
m ŷ je2

m … ŷ jes
m, , ,( )=
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Figure 10:  Procedure for simultaneous matching of multiple models to a single scene point.
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s-tuples replaces correlating spin-images. Although the l2 distance between spin-images is not the

same as the correlation coefficient used in spin-image matching (correlation is really the normal-

ized dot product of two vectors), it is still a good measure of the similarity of two spin-images.

To find closest points, we use the efficient closest point search structure proposed by Nene and Na-

yar [22]. The efficiency of their data structure is based on the assumption that one is interested only

in the closest point, if it is less than a predetermined distance ε from the query point. This assump-

tion is reasonable in the context of spin-image matching, so we chose their data structure. Further-

more, in our experimental comparison, we found that using their data structure resulted in order of

magnitude improvement in matching speed over matching using kd-trees or exhaustive search. The

applicability of the algorithm to the problem of matching s-tuples is not surprising; the authors of

the algorithm demonstrated its effectiveness in the domain of appearance-based recognition [21],

a domain that is similar to spin-image matching. In both domains, PCA is used to compress images

resulting in set of structured s-tuples that must be searched for closest points. In out implementa-

tion, the search parameter ε was automatically set to the median of the distances between pairs of

closest model s-tuples. Setting ε in this way balances the likelihood of finding closest points

against closest point lookup time.

Spin-image matching with compression is very similar to the recognition algorithm without com-

pression. Figure 10 shows a pictorial description for the procedure for matching of multiple models

to a single scene point. Before recognition, all of the model surface meshes are resampled to the

same resolution to avoid scale problems when comparing spin-images from different models.

Next, the spin-images for each model in the model library are generated, and the library eigen-spin-

images are computed. The projection dimension s is then determined for the library. Next, the s-

tuples for the spin-images in each model are computed by projecting model spin-images onto li-
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brary eigen-spin-images. Finally, models-tuples are then stored in an efficient closest point search

structure.

At recognition time, a fraction of oriented points are selected at random from the scene. For each

scene oriented point, its spin-image is computed using the scene data. Next, for each model, the

scene spin-image is projected onto the model’s eigen-spin-images to obtain a scenes-tuple. The

scenes-tuple is then used as a query point into the current model’s efficient closest point search

structure which returns a list of current models-tuples close to the scenes-tuple. These point

matches are then fed into the surface matching engine to find model/scene surface matches.

3.3   Results

To test our recognition system we created a model library containing twenty complete object mod-

els. The models in the library are shown in Figure11; each was created by registering and integrat-

ing multiple range views of the objects [15]. Next, cluttered scenes were created by pushing objects

into a pile and acquiring a range image with a K2T structured light range finder. The scene data

was then processed to remove faces on occluding edges, isolated points, dangling edges and small

patches. This topological filter was followed by mesh smoothing without shrinking [27] and mesh

resampling [18] to change the scene data resolution to that of the models in the model library. In

all of the following results, the spin-image generation parameters are: a bin-size equal to mesh

Figure 11: 20 Models used for recognition.

faucet

Mr. Potato

y-split

bunny Head
Toy Sub-Library Plumbing Sub-Library

20 Model Library
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Figure 12: Simultaneous recognition of 7 models from a library of 20 models in a cluttered scene.
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Figure 13: Simultaneous recognition of 6 models from a library of 20 models in a cluttered scene.
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resolution, an image width of 15 bins (225 bins per image) and a support angle of 60˚.

Figure12 shows the simultaneous recognition of seven models from the library of twenty models.

In the top right of the figure is shown the intensity image of the scene, and in the top left is shown

the scene intensity image with the position of recognized models superimposed as white dots. In

the middle is shown a frontal 3-D view of the scene data, shown as wireframe mesh, and then the

same view of the scene data with models superimposed as shaded surfaces. The bottom shows a

Figure 14: Additional recognition results using the 20 model library, plumbing library and toy library shown
in Figure 11. Each result shows a scene intensity image and a recognition result with recognized models
overlaid on the scene surface mesh
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top view of the scene and models. From the three views it is clear that the models are closely

packed a condition which creates a cluttered scene with occlusions. Because spin-image matching

has been designed to be resistant to clutter and occlusion, our algorithm is able to recognize simul-

taneously the seven most prominent objects in the scene with no incorrect recognitions. Some of

the objects present were not recognized because insufficient surface data was present for matching.

Figure 13 shows the simultaneous recognition of 6 objects from a library of 20 objects in a similar

format to Figure 12. Figure 14 shows some additional results using the different libraries shown in

Figure 11. These results show that objects can be distinguished even when multiple object of sim-

ilar shape appear in the scene (results B,D,F,G,H). They also show that recognition does not fail

when a significant portion of the scene surface comes from objects not in the model library (results

B,C,D).

4   Analysis of Recognition in Complex Scenes
Any recognition algorithm designed for the real world must work in the presence of clutter and oc-

clusion. In Section 2, we claim that creating spin-images of small support will make our represen-

tation robust to clutter and occlusion. In this section, this claim is verified experimentally.

We have developed an experiment to test the effectiveness of our algorithm in the presence of clut-

ter and occlusion. Stated succinctly, the experiment consists of acquiring many scene data sets,

running our recognition algorithms on the scenes, and then interactively measuring the clutter and

occlusion in each scene along with the recognition success or failure. By plotting recognition suc-

cess or failure against the amount of clutter or occlusion in the scene, the effect of clutter and oc-

clusion on recognition can be determined.
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4.1   Experiments

Recognition success or failure can be broken down into four possible recognition states. If the

model exists in the scene and is recognized by the algorithm, this is termed a true-positive state. If

the model does not exist in the scene, and the recognition algorithm concludes that the model does

exist in the scene or places the model in an entirely incorrect position in the scene, this is termed a

false-positive state. If the recognition algorithm concludes that the model does not exist in the

scene when it actually does exist in the scene, this is termed a false-negative state. The true-nega-

tive state did not exist in our experiments because the model being searched for was always present

in the scene.

In our experiment for measuring the effect of clutter and occlusion on recognition, a recognition

trial consists of the following steps. First, a model is placed in the scene with some other objects.

The other objects might occlude the model and will produce scene clutter. Next, the scene is im-

aged and the scene data is processed as described in Section 3.3 A recognition algorithm that

matches the model to the scene data is applied and the result of the algorithm is presented to the

user. Using a graphical interface, the user then interactively segments the surface patch that be-

longs to the model from the rest of the surface data in the scene. Given this segmentation, the

amounts of clutter and occlusion are automatically calculated as explained below. By viewing the

model superimposed on the scene, the user decides the recognition state; this state is then recorded

with the computed clutter and occlusion. By executing many recognition trials using different

models and many different scenes, a distribution of recognition state versus the amount of clutter

and occlusion in the scene is generated.

The occlusion of a model is defined as
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(9)

Surface area for a mesh is calculated as the sum of the areas of the faces making up the mesh. The

clutter in the scene is defined as

(10)

Clutter points are vertices in the scene surface mesh that are not on the model surface patch. The

relevant volume is the union of the volumes swept out by each spin-image of all of the oriented

points on the model surface patch. If the relevant volume contains points that are not on the model

surface patch, then these points will corrupt scene spin-images and are considered clutter points.

We created 100 scenes for analysis as follows. We selected four models from our library of models:

bunny, faucet, Mr. Potato Head and y-split (Figure11). We then created 100 scenes using these

four models; each scene contained all four models. The models were placed in the scenes without

any systematic method. It was our hope that random placement would result in a uniform sampling

of all possible scenes containing the four objects. Using four models, we hoped to adequately sam-

ple the possible shapes to be recognized, given that sampling of all possible surface shapes is not

experimentally feasible.

4.2   Analysis

For each model, we ran recognition without compression on each of the 100 scenes, resulting in

400 recognition trials.The recognition states are shown in a scatter plot in the top of Figure15.

Each data point in the plot corresponds to a single recognition trial; the coordinates give the amount

of clutter and occlusion and the symbol describes the recognition state. This same procedure using

the same 100 scenes was repeated for the matching spin-images with compression (s/D = 0.1) re-

sulting in 400 different recognition runs. A scatter plot of recognition states for compressed spin-

occlusion 1 model surface patch area
total model surface area
-----------------------------------------------------------–=

clutter clutter points in relevant volume
total points in relevant volume

------------------------------------------------------------------------------=
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images is shown at the bottom of Figure 15. Briefly looking at both scatter plots shows that the

number of true-positive states is much larger than the number of false negative states and false-

positive state. Furthermore, as the lines in the scatter plots indicate, no recognition errors occur be-

low a fixed level of occlusion, independent of the amount of clutter.

Examining the scatter plots in Figure 15, one notices that recognition rate is effected by occlusion.
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Figure 15: Recognition states vs. clutter and occlusion for compressed and uncompressed spin-images.
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At low occlusion values, no recognition failures are reported, while at high occlusion values, rec-

ognition failures dominate. This indicates that recognition will almost always work if sufficient

model surface area is visible. The decrease in recognition success after a fixed level of occlusion

is reached (70%) indicates that spin-image matching does not work well when only a small portion

of the model is visible. This is no surprise since spin-image descriptiveness comes from accumu-

lation of surface area around a point. On the left in Figure 16 are shown the experimental recogni-

tion rates versus scene occlusion. The rates are computed using a gaussian weighted running

average (averaging on occlusion independent of clutter level) to avoid the problems with binning.

These plots show that recognition rate remains high for both forms of compression until occlusion

of around 70% is reached, then the successful recognition rate begins to fall off.

Examining the experiment scatter plots in Figure 15, one notices that the effect of clutter on rec-

ognition is uniform across all levels of occlusion until a high level of clutter is reached. This indi-

cates that spin-image matching is independent of the clutter in the scene. On the right in Figure 16,

plots of recognition rate versus amount of clutter also show that recognition rate is fairly indepen-

dent of clutter. As clutter increases, there are slight variations about a fixed recognition rate. Most

likely, these variations are due to non-uniform sampling of recognition runs and are not actual

trends with respect to clutter. Above a high level of clutter, the successful recognitions decline, but

from the scatter plots we see that at high levels of clutter, the number of experiments is small, so

estimates of recognition rate are imprecise.

In all of the plots showing the effect of clutter and occlusion, the true-positive rates are higher for

recognition with spin-images without compression when compared with the true-positive rates for

recognition with compression. This validates the expected decrease in the accuracy of spin-image

matching when using compressed spin-images. However, it should be noted that the recognition
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rate for both matching algorithms remain high. For all levels of clutter and occlusion, matching

without compression has an average recognition rate of 90.0% and matching with compression has

an average recognition rate of 83.2%. Furthermore, the false-positives rate for both algorithms are

low and nearly the same.

The right graph in Figure 17 shows the result of an experiment that measured the average number

of true positive recognitions for ten scenes versus the number of models in the model library. As

the number of models in the library increases, the number of models correctly recognized increases

linearly. This is caused by the model library containing more and more of the models that are

present in the scene. The graph shows that matching without compression matches slightly more
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models than matching with 10:1 compression, a consequence of uncompressed spin-images being

more discriminating.

The time needed to match a single scene spin-image to all of the spin-images in the model library

as the number of models in the library increases is shown in the graph on the left in Figure 17. All

times are real wall clock times on a Silicon Graphics O2 with a 174 MHz R10000 processor. As

expected, matching of spin-images grows linearly with the number of models in the model library

because the number of spin-images being compared increases linearly with the number of models.

This is true of matching with compression and matching without compression; however, the

matching times with compression grow significantly slower than the matching times without com-

pression. With twenty models in the library, matching with 10:1 compression is 20 times faster

than matching without compression. Since there is only a slight decrease in recognition perfor-

mance when using compression (right in Figure 17,) compressed spin-images should be used in

recognition. Another factor in matching time, is the number of points in the scene. To obtain the

total match time for the algorithms, the match times shown in Figure 17 should be multiplied by

Figure 17: Numbers of models recognized (right) and spin-image matching time (left) vs. library size for
compressed and uncompressed spin-images.
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the number of points selected from the scene for matching.

5   Conclusion
We have presented an algorithm for simultaneous shape-based recognition of multiple objects in

cluttered scenes with occlusion. Our algorithm can handle objects of general shape because it is

based on the spin-image, a data level shape representation that places few restrictions on object

shape. Through compression of spin-images using PCA, we have made the spin-image represen-

tation efficient enough for recognition from large model libraries. Finally we have shown experi-

mentally, that the spin-image representation is robust to clutter and occlusion. Through

improvements and analysis, we have shown that the spin-image representation is an appropriate

representation for recognizing objects in complicated real scenes.

Spin-images are a general shape representation, so their applicability to problems in 3-D computer

vision is broad. This paper has investigated the application of spin-images to object recognition,

however, other spin-image applications exist. For instance, the general nature of spin-images

makes them an appropriate representation for shape analysis, the process that quantifies similarities

and differences between the shape of objects. Shape analysis can lead to object classification, anal-

ysis of object symmetry and parts decomposition, all of which can be used to make object recog-

nition more efficient.Other possible applications of spin-images include 3-D object tracking and

volumetric image registration.

There still exist some algorithmic additions which could be implemented to make spin-image

matching more efficient and robust. Some extensions currently being investigated are multi-reso-

lution spin-images for coarse to fine recognition, automated learning of descriptive spin-images,

and improved spin-image parameterizations.
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