
1

Where do we go from here?

• Visual Basic
– language
– development environment
– building GUI's
– scripting

embedding
viruses

• component-based software
– libraries and software re-use
– COM

creating your own components
– other approaches to components

CORBA, RMI
– C# and .NET

the next generation

• XML and related acronyms

Visual Basic

• Windows graphics model similar to X Windows
– big library, with graphics primitives at the bottom
– event loop
– graphical components

• but different in many respects
– not distributed, not portable
– more complicated
– large library interface

• Visual Basic for building GUI's
– a language at about the same level as Java

also usually interpreted
– controls analogous to Java Swing

similar properties, methods, events
– interactive development environment

draw the interface on the screen
generally don't use layout managers

code templates for binding actions to events
create the code, run, debug within the environment

2

Why study / use Visual Basic?

• one of the most widely used languages / systems
• very easy to start with
• very easy to do useful things

http://www.cs.princeton.edu/courses/archive/
fallxx/cs109/labs/VB1 and VB2

• easy access to Windows environment
– can do almost anything that can be done in Windows

may not be fast
may not scale up to big programs or big data

• embedded in other tools as extension mechanism
– Word, Excel, Powerpoint, …, all contain VB
– can easily augment their capabilities
– scripting language for controlling other programs

(VBScript)

• at the heart of a class of computer viruses

Visual Basic components

• Visual Basic programming language
– modern dialect of Basic (Basic created in 1964 by

John Kemeny ('47, *49) and Tom Kurtz (*56))
– reasonable control flow, data types, arrays, structures
– a bit bulky, verbose, clumsy
– good error checking at "compile" and run time

• toolkit / components
– standard library for math, file I/O, text manipulation
– user interface components: buttons, text, menus, ...
– extensible:

access to Windows API and existing objects
can add own C/C++ code and create new controls

– "glue" language for assembling from pre-built pieces

• integrated development environment
– interactive system for building and testing VB

programs (~1991)
draw interface by dragging and dropping components
fill in behaviors in code templates
set properties like size, color, position, …
manage/edit source code and other resources
run in controlled environment for testing and debugging
compile and export as .EXE file

3

Visual Basic environment

Visual Basic language

• variables & constants
– Boolean Integer Single Double String Const

Dim s As String, i As Integer, d As Double
– Byte Date Currency
– Object Variant user-defined

• arrays
– fixed size

Dim ar(100) as Integer
– dynamic

Dim dyn() as Integer ' declaration
Redim dyn(10) ' set size

– reset size, preserve old contents
Redim Preserve dyn(100) ' like realloc

• operators & expressions
+ - * / \ mod ^
= <> > >= < <=
And Or Not

4

Types, declarations, conversions

• variables declared with Dim statement

Dim i as Integer, s as Single,
d as Double, str as String

– Integer: 32 bits
– Single, Double: approximately 6 or 15 digits with

fractional part
3.14159, 3.14159265358979323846

– String: "any number of characters within quotes"
– Object: object in same sense as Java or C++

• VB usually infers types from context, does
conversions automatically
– sometimes have to be explicit:

CInt(string) if can't tell from context that string is meant
as a number

CStr(double) to produce a string value
– Variant type holds any type

Control Flow

• If Then Else
If i >= 0 Then

print i, " is positive"
ElseIf i = 0 Then

print i, " is zero"
Else

print i, " is negative
End If

• For Next loop
For i = 1 To 10

print i, i * i, 2 ^ i
Next i

can go forward or backward, any step size

• Do While loop
i = 1
Do While i <= 10

print i, i * i, 2 ^ i
i = i + 1

Loop
test at top or bottom; use While or Until;
early exit with Exit Do

5

Subroutines and functions

Sub ask (s As String)
Dim stat As String
stat = MsgBox("Another game?", vbYesNo)
If stat = vbYes Then ...
...

End Sub

Function Randint(n As Integer) As Integer
Randint = Int(n * Rnd) + 1

// function name => return value
End Function

• call by reference by default
– ByVal to specify call by value

• Exit Sub and Exit Function for early exit

Standard VB libraries

• strings
– Len(s), Mid(s, p, n), InStr(target, pat), ...
– s1 Like pat (shell-like pattern match)

• math
– Sqr, Rnd, Sin, Cos, ...

• I/O, etc.
Open fin For Input As #1
Open fout For Output As #2
Do Until EOF(1)

Line Input #1, textline
Print #2, textline

Loop
Close #1
Close #2

• run processes
Call Shell("command…", 1)

6

Controls: Interface components

• buttons, sliders, labels, text boxes, …
– about 25 in basic set
– instances normally created at design time
– if in an array, new ones can be added and deleted at

run time
– menubar builder
– dialog controls

• each control has a fixed set of properties,
events, and methods

• properties:
– size, position, color, caption, name, …) for what it is
– set when drawn (usually) or when program is running

by assignments or functions in your program

• methods:
– the operations it will do, appropriate to what it is

• events:
– external stimuli that it responds to

mouse click, typing, scrolling, size change, window close
– when an event occurs, VB calls the subroutine

associated with it
e.g., Button_Click(), TextBox_KeyPress(), etc.

– what you write in the subroutine determines what the
program does:
you define what the behavior is

7

Software re-use

• how do we re-use code that others have
written?
– "If I have seen further than others, it is because I

have stood on the shoulders of giants."

• source
– e.g., Open Source movement

• libraries
– e.g., -lsocket on Unix,

DLL's on Windows,
Java packages

• classes
– C++ Standard Template Library
– Java Collection classes

• objects

• components

Libraries

• linking to previously compiled code
• static linking

– all called routines are included in executable
• dynamic linking

– called routines located and linked in on demand
shared libraries on Unix
dynamic link libraries (DLL's) on Windows

• lots of advantages
– no cost if a particular routine is not called
– minor startup cost for initialization when called
– minimal cost when running (extra indirection for call)
– library code is shared among all simultaneous uses

• DLL's very much used in Windows

• some disadvantages
– DLL hell: inconsistencies among versions,

especially after installation then uninstallation
– a single-language solution, more or less

VB can call C/C++ DLL's
– DLL runs in same address space

protection issues
not distributed

8

Extending VB by calling libraries

• can call any DLL from the Windows API

• can create and call your own DLL's

COM: Microsoft's component object model

• binary standard for creating & using components
– components can be written in any language

IDL (interface definition language) to describe arguments
and return values, generate necessary code

– components can be in same process,
separate process on same machine,
or on some other machine (DCOM)
DCOM transports include TCP/IP and HTTP

– supporting libraries marshal arguments, call functions,
retrieve results
all happens transparently to process that uses it

– integral part of Microsoft systems
available on non-MS operating systems (sort of?)

• COM components are objects with interfaces
– interface: functions that provides access to methods

based on C++ virtual function calls
implementable in any language

– interface is also a contract between implementor and
user about what the methods do

– 128-bit ID's identify and guarantee uniqueness
stored in Windows registry so others can find it

• COM has had several names, continues to evolve
– .NET is the next version / replacement

9

Using COM components in VB

• a large industry creates 3rd-party controls
– much modern PC software is packaged as objects

whose methods and properties can be accessed from
VB and other programs

• to add a component to a project
– Project / Components / Controls / Add MediaPlayer

• examine its properties, methods, events
– View / Object browser / MediaPlayer

• write code to use it

Private Sub Command1_Click()
MediaPlayer1.Open (filename)

End Sub

• you can make your own controls
– using VB, C++, etc.

Adding a component to a VB form:

10

Check its methods & properties

After adding a media player control:

11

ActiveX

• Microsoft's marketing name for technologies and
services based on COM

• ActiveX components are COM objects
– executable code that packages an object as

.EXE (standalone executable)

.DLL (dynamic link library)

.OCX (VB-like control)
– can run anywhere (client or server)

• ActiveX controls
– COM components with user-interface aspects
– written in C++, Java, VB, …
– can be used in web pages (analogous to applets)
– can be controlled with VBScript, JScript and other

scripting languages
• ActiveX documents

– lets users view and edit non-HTML documents through
the browser

– integrates existing documents into browser or any
other application

CORBA (Common Object Request Broker Architecture)

• an alternate approach to the same problem
– industry consortium (OMG or Object Management Group)

• client-server model, using objects
• object-request broker (ORB)

– communicates client requests to target objects
– finds object implementation, activates it if necessary,

delivers request, and returns response
• IDL (interface definition language) and compiler
for specifying and implementing interfaces
– names, arguments, return values

12

Java RMI and Java Beans

• RMI (Remote Method Invocation)
– a remote procedure call mechanism
– call objects located (usually) on other systems
– very loosely equivalent to (D)COM
– can pass objects, not just primitive types

• Java Beans
– a marketing name for Java components
– an API for writing component software in Java
– components expose features (methods & events)
– visual application builder tools determine properties

by "introspection"
can query an object about its properties

– loosely analogous to ActiveX components

• attempting to solve many of the same problems
as COM and CORBA, but entirely within Java
– access to non-Java code through JNI (Java Native

Interface)

13

Hash table (associative array) COM object

• take existing C hash table code

• put a C++ / COM veneer on it
– using Microsoft Visual C++
– ATL Wizard to create framework and lots of files
– insert semantics into framework

// insert your code here

• use it in VB applications
– add reference to Hashcom object:

Dim h as Object
Set h = New Hashtable
h.put name, val
s = h.get(name)
if h.member(s) then …

• use this in Excel, scripts, etc.

Existing hash table code

typedef struct Array Array;

Array *Anew(int n);
/* make a new empty array with size n */

int Aput(Array *A, char *s, char *v);
/* put an element into an array:
/* A[s] = copy of d */
/* returns 0 if no room, 1 if installed,

2 if already there */

char *Aget(Array *A, char *s);
/* get an element: return A[s],

or 0 if not there */

int Amember(Array *A, char *s);
/* return 1 if A[s] is present, 0 if not */

int Asize(Array *A);
/* return number of current elements */

int Adelete(Array *A, char *s);
/* delete item, return new size */

14

Files created by VC++

IDL: Interface definition language

• COM defines binary format of interface
• IDL is a language for defining these interfaces
• specifies

– type of each argument (int, float *, pointer, etc.)
– role of each argument in call (in, out, inout, retval)
– return type of function
– miscellaneous other stuff

interface IHashtable : Idispatch {
[id(1), helpstring("method put")]

HRESULT put([in] BSTR name, [in] BSTR val,
[out,retval] int*stat);

[id(2), helpstring("method get")]
HRESULT get([in] BSTR name,

[out,retval] BSTR *val);
[id(3), helpstring("method member")]

HRESULT member([in] BSTR name,
[out,retval] int *stat);

...
};

• IDL compiler converts specification into function
templates and code to marshal arguments for
function calls

15

C++ generated by MIDL

MIDL_INTERFACE("24942DFC-6E32-48A0-AF77-
C0C009EEC328")

IHashtable : public Idispatch {
public:
virtual /* [helpstring][id] */
HRESULT STDMETHODCALLTYPE put(
/* [in] */ BSTR name,
/* [in] */ BSTR val,
/* [retval][out] */ int __RPC_FAR *stat)=0;

virtual /* [helpstring][id] */
HRESULT STDMETHODCALLTYPE get(
/* [in] */ BSTR name,
/* [retval][out] */ BSTR __RPC_FAR *val)=0;

virtual /* [helpstring][id] */
HRESULT STDMETHODCALLTYPE member(
/* [in] */ BSTR name,
/* [retval][out] */ int __RPC_FAR *stat)=0;

...

• UUID: universally unique 128-bit identifier
24942DFC-6E32-48A0-AF77-C0C009EEC328

– every COM object has one
– guaranteed unique across everything
– used to identify objects regardless of where they are

Interface specification (IDL)

16

Add semantics to framework

BSTR string data type

• most scalar data types based on C++ types
• strings are special: COM uses BSTR

– 16-bit Unicode characters
– 4-byte length field before the first character
– small, irregular set of functions for manipulating them

• Visual Basic, etc., all use BSTR
• Windows API uses either Unicode (but not BSTR)
or ASCII (8-bit, not 16)

char *bstr2a(const BSTR cmd) // convert cmd to ascii
{
int n, i;
char *buf;

n = SysStringLen(cmd); // length of input

buf = (char *) malloc(n+3);
for (i = 0; i < n; i++) // wide to narrow

buf[i] = (char) cmd[i];
buf[i] = 0;
return buf;

}

BSTR a2bstr(const char *buf1) // cvt buf1 to BSTR
{
int i, n = strlen(buf1);
BSTR buf2 = SysAllocStringLen(NULL, n);
for (i = 0; i < n; i++) // narrow to wide

buf2[i] = buf1[i];
buf2[i] = 0;
return buf2;

}

17

Calling a COM object

• conceptually, what happens when a COM object
is called from a program...

• first time
– find its code

look up in Windows registry
registered during install or when created or by explicit call

– do any initialization
Windows needs to keep track of what DLLs are in use

– link it into current program (if a DLL)
fill in calls with pointer to real code: vtbl

• each subsequent method call
– collect arguments into proper form ("marshalling")
– call function
– convert return value and output arguments into proper

form

• when done
– do any finalization
– release resources

last user tells Windows that DLL is no longer in use

DLL startup code excerpt (machine generated)

// DLL Entry Point

extern "C"
BOOL WINAPI DllMain(HINSTANCE hInstance,

DWORD dwReason, LPVOID /*lpReserved*/)
{

if (dwReason == DLL_PROCESS_ATTACH)
{

_Module.Init(ObjectMap, hInstance,
&LIBID_HASHCOMLib);

DisableThreadLibraryCalls(hInstance);
}
else if (dwReason == DLL_PROCESS_DETACH)

_Module.Term();
return TRUE; // ok

}

// Used to determine whether the DLL
can be unloaded by OLE

STDAPI DllCanUnloadNow(void)
{

return (_Module.GetLockCount()==0)
? S_OK : S_FALSE;

}

18

Use hashtable in VB

Automatically generated usage info

19

Scripting

• every component exposes what it can do as an
object interface: methods, properties

• can control every object from a programming
language that can access objects

• VBScript is a scripting version of VB for
controlling scriptable objects
– can use it to control scriptable programs

• Visual Basic for Applications (VBA) is a version
of VB that lives inside some programs
– notably Word, Excel, Powerpoint, etc.
– can use it to control them and other scriptable

programs

VBScript example
Dim xl
Set xl = WScript.CreateObject("Excel.Application")

xl.Visible = TRUE
xl.WorkBooks.Add

xl.Columns(1).ColumnWidth = 20
xl.Columns(2).ColumnWidth = 30
xl.Columns(3).ColumnWidth = 40

xl.Cells(1, 1).Value = "Property Name"
xl.Cells(1, 2).Value = "Value"
xl.Cells(1, 3).Value = "Description"

xl.Range("A1:C1").Select
xl.Selection.Font.Bold = True
xl.Selection.Interior.ColorIndex = 1
xl.Selection.Interior.Pattern = 1 'xlSolid
xl.Selection.Font.ColorIndex = 2

xl.Columns("B:B").Select
xl.Selection.HorizontalAlignment = &hFFFFEFDD

Dim idx
idx = 2

Sub Show(strName, strValue, strDesc)
xl.Cells(idx, 1).Value = strName
xl.Cells(idx, 2).Value = strValue
xl.Cells(idx, 3).Value = strDesc
idx = idx + 1
xl.Cells(idx, 1).Select

End Sub

20

VBScript example, page 2

Call Show("Name", WScript.Name,
"Application Friendly Name")

Call Show("Version", WScript.Version,
"Application Version")

Call Show("FullName", WScript.FullName,
"Application Context: Fully Qualified Name")

Call Show("Path", WScript.Path,
"Application Context: Path Only")

Call Show("Interactive", WScript.Interactive,
"State of Interactive Mode")

Dim args
Set args = WScript.Arguments
Call Show("Arguments.Count", args.Count,

"Number of command line arguments")

For i = 0 to args.Count - 1
xl.Cells(idx, 1).Value = "Arguments(" & i & ")"
xl.Cells(idx, 2).Value = args(i)
idx = idx + 1
xl.Cells(idx, 1).Select

Next

Call xl.Workbooks.Open("c:\temp\grades.xls")

21

Security issues

• VB embedding and scripting is a mixed blessing
– lots of nice useful properties

can easily extend capabilities
customize behaviors

– lots of not so nice properties
viruses are very easy

• scripts and plug-ins and applets let someone else
run their code on your machine

• how can this be made safe (enough)?

• code-signing (Microsoft's "Authenticode")
– uses cryptographic techniques to assure that code

comes from who it says it does
– and that it hasn't been tampered with
– but NOT that it works properly

doesn't protect against bugs, invasion of privacy, ...

• sandboxing (Java model)
– isolate code inside virtual machine or similar
– limits capabilities (e.g., Java applets)
– doesn't protect against bugs in programs
– or bugs in the security model and implementation

• perfect security is not possible

