
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Lecture 1: Introduction

Algorithms and Data Structures
Princeton University

Spring 2004

Kevin Wayne

2

Overview

What is COS 226?
� Intermediate-level survey course.
� Programming and problem solving with applications.
� Algorithms: method for solving a problem.
� Data structures: method to store information.

union-find

Data Structure

sorting

priority queue

symbol table

weighted quick union with path compression

Algorithms

quicksort, mergesort, heapsort. radix sorts

binary heap

BST, red-black tree, hash table, TST, k-d tree

string KMP, Rabin-Karp, Huffman, LZW, Burrows-Wheeler

graph Prim, Kruskal, Dijkstra, Bellman-Ford, Ford-Fulkerson

3

Imagine a World With No Good Algorithms

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.
Internet. Packet routing, Google, Akamai.
Secure communications. Cell phones, e-commerce.
Information processing. Database search, data compression.
Computers. Circuit layout, file system, compilers.
Computer graphics. Hollywood movies, video games.
Biology. Human genome project, protein folding.
Astrophysics. N-body simulation.
Transportation. Airline crew scheduling, map routing.
. . .

4

Why Study Algorithms

Using a computer?
� Want it to go faster? Process more data?
� Want it to do something that would otherwise be impossible?

Technology improves things by a constant factor.
� But might be costly.
� Good algorithmic design can do much better and might be cheap.
� Supercomputers cannot rescue a bad algorithm.

Algorithms as a field of study.
� Old enough that basics are known.
� New enough that new discoveries arise.
� Burgeoning application areas.
� Philosophical implications.

5

The Usual Suspects

Lectures: Kevin Wayne (Kevin)
� MW 11-12:20, CS 105.

Precepts: Nir Ailon (Nir), Miro Dudik (Miro)
� T 12:30, Friend 005.
� T 1:30, Friend 005.
� T 3:30, Friend 005.
� Clarify programming assignments, exercises, lecture material.
� First precept meets 2/10.

6

Coursework and Grading

Weekly programming assignments: 45%
� Due Thursdays 11:59pm, starting 2/12.

Weekly written exercises: 15%
� Due at beginning of Monday lecture, starting 2/9.

Exams:
� Closed book with cheatsheet.
� Midterm. 15%
� Final. 25%

Staff discretion. Adjust borderline cases.

7

Course Materials

Course web page. http://www.princeton.edu/~cos226
� Syllabus.
� Programming assignments.
� Exercises.
� Lecture notes.
� Old exams.

Algorithms in Java, 3rd edition.
� Parts 1-4 (COS 126 text).
� Part 5 (graph algorithms).

Algorithms in C, 2nd edition.
� Strings and geometry handouts.

note change

Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Union Find

Reference: Chapter 1, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Quick find

Quick union

Weighted quick union

Path compression

10

An Example Problem: Network Connectivity

Network connectivity.
� Nodes at grid points.
� Add connections between pairs of nodes.
� Is there a path from node A to node B?

A

B
23

Network Connectivity

in out evidence
3 4 3 4
4 9 4 9
8 0 8 0
2 3 2 3
5 6 5 6
2 9 (2–3–4-9)
5 9 5 9
7 3 7 3
4 8 4 8
5 6 (5-6)
0 2 (2–3-4–8-0)
6 1 6 1

0 7

2 3

8

4

6 5 9

1

24

Union-Find Abstraction

What are critical operations we need to support?
� N objects.

– grid points
� FIND: test whether two objects are in same set.

– is there a connection between A and B?
� UNION: merge two sets.

– add a connection

Design efficient data structure to store connectivity information and
algorithms for UNION and FIND.

� Number of operations M can be huge.
� Number of objects N can be huge.

25

Other Applications

More union-find applications.
� Hex.
� Percolation.
� Image processing.
� Minimum spanning tree.
� Least common ancestor.
� Equivalence of finite state automata.
� Compiling EQUIVALENCE statements in FORTRAN.
� Micali-Vazarani algorithm for nonbipartite matching.
� Weihe's algorithm for edge-disjoint s-t paths in planar graphs.
� Scheduling unit-time tasks to P processors so that each job finishes between

its release time and deadline.
� Scheduling unit-time tasks with a partial order to two processors in order to

minimize last completion time.

References.

• A Linear Time Algorithm for a Special Case of Disjoint Set Union, Gabow and Tarjan.

• The Design and Analysis of Computer Algorithms, Aho, Hopcroft, and Ullman.

26

Objects

Elements are arbitrary objects in a network.
� Pixels in a digital photo.
� Computers in a network.
� Transistors in a computer chip.
� Web pages on the Internet.
� Metallic sites in a composite system.
� When programming, convenient to name them 0 to N-1.
� When drawing, fun to use animals!

27

Quick-Find

id[tiger] = id[panda] = id[bunny] = id[elephant] = elephant
id[bear] = id[dragon] = id[lion] = lion
id[bat] = id[lobster] = lobster

28

Quick-Find

Union(tiger, bear)

29

Quick-Find

Union(tiger, bear)

30

Quick-Find

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

33

Quick-Find Algorithm

Data structure.
� Maintain array id[] with name for each of N elements.
� If p and q are connected, then they have the same id.
� Initially, set id of each element to itself.

Find. To check if p and q are connected, see if they have same id.

Union. To merge components containing p and q, change all entries with
id[p] to id[q].

for (int i = 0; i < N; i++)
id[i] = i;

return (id[p] == id[q]);

integer between 0 and N-1

int pid = id[p];
for (int i = 0; i < N; i++)

if (id[i] == pid) id[i] = id[q];

1 operations

N operations

N operations

34

Problem Size and Computation Time

Rough standard for 2000.
� 109 operations per second.
� 109 words of main memory.
� Touch all words in approximately 1 second. (unchanged since 1950!)

Ex. Huge problem for quick find.
� 1010 edges connecting 109 nodes.
� Quick-find might take 1020 operations. (10 ops per query)
� 3,000 years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
� New computer may be 10x as fast.
� But, has 10x as much memory so problem may be 10x bigger.
� With quadratic algorithm, takes 10x as long!

35

Quick-Union

Union(Elephant, Skunk)

id[elephant] = skunk

36

Find with Quick-Union

Find(Lobster)

Answer = Skunk

37

Quick-Union

root(Tiger) = Elephant

Union(Tiger, Lobster)

root(Lobster) = Skunk

id[Elephant] = Skunk

38

Quick-Union

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

41

Quick-Union

Data structure: disjoint forests.
� Maintain array id[] for each of N elements.
� Root of element x = id[id[id[...id[p]...]]]

Find. Check if p and q have same root.

Union. Set the id of p's root to q's root.

time proportional to
depth of p and q

public int root(int x) {
while (x != id[x])

x = id[x];
return x;

}

int i = root(p);
int j = root(q);
id[i] = j;

keep going until it
doesn't change

time proportional to
depth of p and q

time proportional to
depth of x

return (root(p) == root(q));

42

Weighted Quick-Union

Quick-find defect.
� UNION too expensive.
� Trees are flat, but too hard to keep them flat.

Quick-union defect.
� Finding the root can be expensive.
� Trees could get tall.

Weighted quick-union.
� Modify quick-union to avoid tall trees.
� Keep track of size of each component.
� Balance by linking small tree below large one.

43

Weighted Quick-Union

weight = 10

weight = 8

Union(Lobster, Tiger)

weight = 18

44

Weighted Quick-Union

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

45

Weighted Quick-Union

Data structure: disjoint forests.
� Also maintain array sz[i] that counts the number of elements in

the tree rooted at i.

Find. Same as quick union.

Union. Same as quick union, but merge smaller tree into the larger tree
and update the sz[] array.

Analysis.
� FIND takes time proportional to depth of p and q in tree.
� UNION takes constant time, given roots.

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }

now, provably at most lg N

46

Weighted Quick-Union

Is performance improved?
� Theory: lg N per union or find operation.
� Practice: constant time.

Ex. Huge practical problem.
� 1010 edges connecting 109 nodes.
� Reduces time from 3,000 years to 1 minute.
� Supercomputer wouldn't help much.
� Good algorithm makes solution possible.

Stop at guaranteed acceptable performance?
� Not hard to improve algorithm further.

47

Path Compression

Find(Piggy)

48

Path Compression

Find(Piggy)

49

Path Compression

Find(Piggy)

50

Path Compression

Find(Piggy)

51

Path Compression

Find(Piggy)

52

Weighted Quick-Union with Path Compression

3-4 0 1 2 3 3 5 6 7 8 9
4-9 0 1 2 3 3 5 6 7 8 3
8-0 8 1 2 3 3 5 6 7 8 3
2-3 8 1 3 3 3 5 6 7 8 3
5-6 8 1 3 3 3 5 5 7 8 3
5-9 8 1 3 3 3 3 5 7 8 3
7-3 8 1 3 3 3 3 5 3 8 3
4-8 8 1 3 3 3 3 5 3 3 3
6-1 8 3 3 3 3 3 3 3 3 3

53

Weighted Quick-Union with Path Compression

Path compression.
� Add second loop to root to compress tree that sets the id of every

examined node to the root.
� Simple one-pass variant: make each element point to grandparent.

� No reason not to!
� In practice, keeps tree almost completely flat.

public int root(int x) {
while (x != id[x]) {

id[x] = id[id[x]];
x = id[x];

}
return x;

}

only one extra line of code

54

Weighted Quick-Union with Path Compression

Theorem. A sequence of M union and find operations
on N elements takes O(N + M lg* N) time.

� Proof is very difficult.
� But the algorithm is still simple!

Remark. lg* N is a constant in this universe.

Linear algorithm?
� Cost within constant factor of reading in the data.
� Theory: WQUPC is not quite linear.
� Practice: WQUPC is linear.

2

N

16
65536
265536

1

lg* N

3
4
5

4 2

55

Another Application: Hex

Hex. (Piet Hein 1942, John Nash 1948, Parker Brothers 1962)
� Two players alternate in picking a cell in a hex grid.
� Black: make a black path from upper left to lower right.
� White: make a white path from lower left to upper right.
� Goal: algorithm to detect when a player has won?

56

Percolation phase-transition.
� Two parallel conducting bars (top and bottom).
� Electricity flows from a site to one of its 4 neighbors if both are

occupied by conductors.
� Suppose each site is randomly chosen to be a conductor or insulator

with probability p. What is percolation threshold p* at which charge
carriers can percolate from top to bottom?

Yet Another Application: Percolation

0 0 0 0 0 0 0 0
2 3 4 0 6 0 8 9
14 15 0 0 0 0 20 21
14 14 28 29 30 31 32 33
14 39 40 1 42 43 32 45
50 1 52 1 54 55 56 57
1 1 1 1 1 1 1 1

0 0 0 0
10 11 12 0
22 23 24 0
34 35 36 0
46 1 1 49
58 1 1 1
1 1 1 1

insulator

~ 0.592746 for square lattices,
but constant only known via simulation

57

Lessons

Union-find summary. Online algorithm can solve problem while
collecting data for "free."

Simple algorithms can be very useful.
� Start with brute force approach.

– don't use for large problems
– can't use for huge problems

� Strive for worst-case performance guarantees.
� Identify fundamental abstractions. union-find, disjoint forests

Quick-find

Algorithm

Weighted

Path compression

M N

Time

N + M log N

N + M log N

Quick-union M N

Weighted + path 5 (M + N)

M union-find ops
on a set of N elements

might be nontrivial to analyze

