Balanced Trees

Splay trees
2-3-4 trees
Red-black trees

Symbol Table Review

Symbol table: key-value pair abstraction.
. Insert avalue with specified key.
. Search for value given key.
. Delete value with given key.

Randomized BST.
. log N time per op (unless you get ridiculously unlucky).
. Store subtree count in each node.
. Generate random numbers for each insert/delete op.

B-frees
This lecture.

. Splay trees.

Reference: Chapter 13, Algorithms in Java, 3¢ Edition, Robert Sedgewick. + 2-3-4 frees.
. Red-black trees.
. B-trees.
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Splay Trees Splay Trees
Splay trees = self-adjusting BST. Splay.

. Tree automatically reorganizes itself after each op.

. After inserting x or searching for x, rotate x up to root using
double rotations.

. Tree remains "balanced" without explicitly storing any balance
information.

Amortized guarantee: any sequence of N ops takes O(N log N) time.
. Height of tree can be N.
. Individual op can take linear time.

Y

. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.

ZI16-ZAG

v




Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
® . ZIG-ZIG: if orientations match, do top rotation first.
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Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.
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Root = Splay Root Insertion Splay Insertion

Splay Example

Search for 1.
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Splay Example

Search for 1.
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Splay Example

Search for 1.
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Search for 1.

Splay Example
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Splay Example

Search for 1.

Search for 1.

Splay Example




Splay Example

Search for 2.

Splay(2)
e

Splay Trees
Intuition.

. Splay rotations halve search path.
. Reduces length of path for many other nodes in free.

insert 1,2, .., 40 insert 1, 2, ..., 40

search for
search 1 random key
search 2 W

search 3 "W
search 4 e

Symbol Table: Implementations Cost Summary

Worst Case Average Case

Implementation Search  Insert Delete Search Insert Delete

sqri(N) t
log N
logNS logN$ logNS logN$ logN$ JogNS§

* assumes we know location of node to be deleted

T if delete allowed, insert/search become sqr(N)
¥ probabilistic guarantee
§ amortized guarantee

Splay: sequence of any N ops in O(N log N) time.
Ahead: Can we do all ops in log N time guaranteed?

2-3-4 Trees

2-3-4 free.
. Scheme to keep tree balanced.
. Generalize node fo allow multiple keys.

Allow 1, 2, or 3 keys per node.

. 2-node: one key, two children.

. 3-node: two keys, three children.

. 4-node: three keys, four children. PR
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2-3-4 Trees: Search and Insert

SEARCH.
. Compare search key against keys in node.
. Find interval containing search key.
. Follow associated link (recursively).

INSERT.
. Search to bottom for key.
. 2-node at bottom: convert to 3-node.

. 3-node at bottom: convert to 4-node. /[\
. 4-node at bottom: ??

2-3-4 Trees: Splitting Four Nodes

Transform free on the way DOWN.
. Ensure that last node is not a 4-node.

Local transformation to split 4-nodes:
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Invariant: current node is not a 4-node.
. One of two above transformations must apply at next node.
. Insertion at bottom is easy since it's not a 4-node.

2-3-4 Trees: Splitting a Four Node

Splitting a four node: move middle key up.
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2-3-4 Trees

Tree grows up from the bottom.




Balance in 2-3-4 Trees

All paths from top to bottom have exactly the same length.

Tree height.
. Worst case: IgN

all 2-nodes
. Bestcase: log,N=1/2IgN all 4-nodes
. Between 10 and 20 for a million nodes.
. Between 15 and 30 for a billion nodes.

Comparison within nodes not accounted for.

2-3-4 Trees: Implementation?

Direct implementation complicated because of:
. Maintaining multiple node types.
. Implementation of getchild.
- Large number of cases for split.

private Node insert(Node h, String key, Object value) {
Node x = h;
while (x !'= null) {
x = x.getChild (key) ;
if (x.is4Node()) x.split();
}
if (x.is2Node () ) x.make3Node (key, value) ;
else if (x.is3Node()) x.makedNode (key, value) ;

Fantasy Code

Red-Black Trees

Represent 2-3-4 trees as binary frees.
. Use "internal" edges for 3- and 4- nodes.

IRR R

. Correspondence between 2-3-4 trees and red-black trees.

. Not 1-1 because 3-nodes swing either way.

Splitting Nodes in Red-Black Trees

Two cases are easy: switch colors.
TR AR
T Kol otk R
Two cases require rotations.
St
W

do single rotation

do double rotation




Red-Black Tree Node Split Example

inserting 6

Red-Black Tree Construction

E
change colors
X A
right rotate R —
M P
left rotate E —
L E
25 26
Balance in Red-Black Trees Symbol Table: Implementations Cost Summary
Length of longest path is at most twice the length of shortest path.
Worst Case Average Case
O Implementation  Search  Insert  Delete Search Insert Delete
n O ~ o O - Sorted array log N N N log N N N
o ° o o O Q ® @ Unsorted list N 1 1 N 1 1
o g9 dl gdh 4 ole o dh R =
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AU K & AR XK KRKMKK A KRN KKK KARAE LK BST N N N_ | logN | logN |sqri(N)*
s o dh o dh Randomized BST | logN * | logN# | logN* | logN log N log N
Splay logN$ | logNS | logN$§ | logNS$ | logNS$ | logN$§
Tree height. Red-Black log N log N log N log N log N log N
. Worst case: 2 Ig N.

Comparison within nodes ARE counted.

* assumes hash map is random for all keys
1 if delete allowed, insert/search become sqrt(N)
¥ probabilistic guarantee

§ amortized guarantee




Red-Black Trees in Practice

Red-black trees vs. splay frees.
. Fewer rotations than splay trees.
. One extra bit per node for color. @ possible to eliminate

Red-black trees vs. hashing.
. Hashing code is simpler and usually faster.
. Arithmetic to compute hash vs. comparison.
. Hashing performance guarantee is weaker.
. BSTs have more flexibility and can support wider range of ops.

Red-black trees are widely used as system symbol tables.
. Java: TreeMap, TreeSet.
. C++ STL: map, multimap, multiset.

Symbol Table: Java Libraries

Java has built-in library for red-black tree symbol table.

. TreeMap = red-black tree implementation.

import java.util.TreeMap;
public class TreeMapDemo {

public static void main(String[] args) {

TreeMap st = new TreeMap() ;
st.put ("www.cs.princeton.edu",
st.put ("www.princeton.edu",
st.put ("www.simpsons.com",
System.out.println(st.get ("www.

"128.112.136.11") ;
"128.112.128.15") ;
"209.052.165.60") ;
cs.princeton.edu")) ;

Duplicate policy.
. Java TreeMap forbids two elements with the same key.
. Sedgewick implementations allows duplicate keys.

B-Trees

B-Tree generalize 2-3-4 trees by allowing up o M links per node.
. Split full nodes on the way down.

Main application: file systems.
. Reading a page into memory from disk is expensive.
. Accessing info on a page in memory is free.
. Goal: minimize # page accesses.
. Node size M = page size.

Space-time tradeoff.
. Mlarge = only a few levels in tree.
. Msmall = less wasted space.
. Typical M =1000, N <1 trillion.

Bottom line: number of PAGE accesses is log,N per op.
. 3or4inpracticel

B-Tree Example
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B-Tree Example (cont)

001 e
017 =
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Symbol Table: Implementations Cost Summary

Worst Case

Average Case
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B-Tree in the Wild Summary
ile systems. oal: implementation with log N guarantee for all ops.
File systems Goal: ST impl tat th log N tee for all ops

. Window HPFS (high performance file system).
. Mac HFS (hierarchical file system).

. Linux: ReiserFS, XFS, Ext3FS, JFS. @

Databases.

« Most common index type in modern databases.
. ORACLE, DB2, INGRES, SQL, PostgreSQL, . . .

Variants.

. Btrees: Bayer-McCreight (1972, Boeing)
. B+ frees: dll data in external nodes.

. B* frees: keeps pages at least 2/3 full.

. R-trees for spatial searching: 6IS, VLSI.

journaling

. Probabilistic: randomized BST.
. Amortized: splay tree, hashing.
. Worst-case: red-black tree. ™ from re-doubling
. Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

. B-tree.




