Balanced Trees

Splay trees
2-3-4 trees
Red-black trees

Symbol Table Review

Symbol table: key-value pair abstraction.
. Insert avalue with specified key.
. Search for value given key.
. Delete value with given key.

Randomized BST.
. log N time per op (unless you get ridiculously unlucky).
. Store subtree count in each node.
. Generate random numbers for each insert/delete op.

B-frees
This lecture.

. Splay trees.

Reference: Chapter 13, Algorithms in Java, 3¢ Edition, Robert Sedgewick. + 2-3-4 frees.
. Red-black trees.
. B-trees.

Princeton University + COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton EDU/~cos226
Splay Trees Splay Trees
Splay trees = self-adjusting BST. Splay.

. Tree automatically reorganizes itself after each op.

. After inserting x or searching for x, rotate x up to root using
double rotations.

. Tree remains "balanced" without explicitly storing any balance
information.

Amortized guarantee: any sequence of N ops takes O(N log N) time.
. Height of tree can be N.
. Individual op can take linear time.

Y

. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.

ZI16-ZAG

v

Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
® . ZIG-ZIG: if orientations match, do top rotation first.

Z16-Z16

v

ZAG-ZAG

A

Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.

©
®
& @ ®
G @ TR &
o
D
®
o™X g ® ©
KR R K £ oP—p
o & ORAD)
D
0
@r (D (9
AR O P—eo a2 B —g
0] [ORRO); Qeomoa lnomoa
®) @ W W 6]
&
o)
@ © ® €)
AR P~ A0, & O—g
O] O, 09 OND %) lﬂo D © X
R K DRPNO;
Root = Splay Root Insertion Splay Insertion

Splay Example

Search for 1.

Z16-ZI6

Splay Example

Search for 1.

Z16-ZI6

Splay Example

Search for 1.

Z16-ZI6

Search for 1.

Splay Example

Z16-ZI6

Splay Example

Search for 1.

Search for 1.

Splay Example

Splay Example

Search for 2.

Splay(2)
e

Splay Trees
Intuition.

. Splay rotations halve search path.
. Reduces length of path for many other nodes in free.

insert 1,2, .., 40 insert 1, 2, ..., 40

search for
search 1 random key
search 2 W

search 3 "W
search 4 e

Symbol Table: Implementations Cost Summary

Worst Case Average Case

Implementation Search Insert Delete Search Insert Delete

sqri(N) t
log N
logNS logN$ logNS logN$ logN$ JogNS§

* assumes we know location of node to be deleted

T if delete allowed, insert/search become sqr(N)
¥ probabilistic guarantee
§ amortized guarantee

Splay: sequence of any N ops in O(N log N) time.
Ahead: Can we do all ops in log N time guaranteed?

2-3-4 Trees

2-3-4 free.
. Scheme to keep tree balanced.
. Generalize node fo allow multiple keys.

Allow 1, 2, or 3 keys per node.

. 2-node: one key, two children.

. 3-node: two keys, three children.

. 4-node: three keys, four children. PR

k<F k<R R<k

TN

ACE HIN 1)

AN

AAAA AAAAAA

16

2-3-4 Trees: Search and Insert

SEARCH.
. Compare search key against keys in node.
. Find interval containing search key.
. Follow associated link (recursively).

INSERT.
. Search to bottom for key.
. 2-node at bottom: convert to 3-node.

. 3-node at bottom: convert to 4-node. /[\
. 4-node at bottom: ??

2-3-4 Trees: Splitting Four Nodes

Transform free on the way DOWN.
. Ensure that last node is not a 4-node.

Local transformation to split 4-nodes:

e A%
P TR

Invariant: current node is not a 4-node.
. One of two above transformations must apply at next node.
. Insertion at bottom is easy since it's not a 4-node.

2-3-4 Trees: Splitting a Four Node

Splitting a four node: move middle key up.

TRe AR

D D Q
KQW K W
a-c E-J L-P R-V X-2 a-c E-J L-P R-V X-2

2-3-4 Trees

Tree grows up from the bottom.

Balance in 2-3-4 Trees

All paths from top to bottom have exactly the same length.

Tree height.
. Worst case: IgN

all 2-nodes
. Bestcase: log,N=1/2IgN all 4-nodes
. Between 10 and 20 for a million nodes.
. Between 15 and 30 for a billion nodes.

Comparison within nodes not accounted for.

2-3-4 Trees: Implementation?

Direct implementation complicated because of:
. Maintaining multiple node types.
. Implementation of getchild.
- Large number of cases for split.

private Node insert(Node h, String key, Object value) {
Node x = h;
while (x !'= null) {
x = x.getChild (key) ;
if (x.is4Node()) x.split();
}
if (x.is2Node ()) x.make3Node (key, value) ;
else if (x.is3Node()) x.makedNode (key, value) ;

Fantasy Code

Red-Black Trees

Represent 2-3-4 trees as binary frees.
. Use "internal" edges for 3- and 4- nodes.

IRR R

. Correspondence between 2-3-4 trees and red-black trees.

. Not 1-1 because 3-nodes swing either way.

Splitting Nodes in Red-Black Trees

Two cases are easy: switch colors.
TR AR
T Kol otk R
Two cases require rotations.
St
W

do single rotation

do double rotation

Red-Black Tree Node Split Example

inserting 6

Red-Black Tree Construction

E
change colors
X A
right rotate R —
M P
left rotate E —
L E
25 26
Balance in Red-Black Trees Symbol Table: Implementations Cost Summary
Length of longest path is at most twice the length of shortest path.
Worst Case Average Case
O Implementation Search Insert Delete Search Insert Delete
n O ~ o O - Sorted array log N N N log N N N
o ° o o O Q ® @ Unsorted list N 1 1 N 1 1
o g9 dl gdh 4 ole o dh R =
e 3 Od O0D 000 JOdad D doQow dhduoog duol Hashing N 1 N 1* 1* 1*
AU K & AR XK KRKMKK A KRN KKK KARAE LK BST N N N_ | logN | logN |sqri(N)*
s o dh o dh Randomized BST | logN * | logN# | logN* | logN log N log N
Splay logN$ | logNS | logN$§ | logNS$ | logNS$ | logN$§
Tree height. Red-Black log N log N log N log N log N log N
. Worst case: 2 Ig N.

Comparison within nodes ARE counted.

* assumes hash map is random for all keys
1 if delete allowed, insert/search become sqrt(N)
¥ probabilistic guarantee

§ amortized guarantee

Red-Black Trees in Practice

Red-black trees vs. splay frees.
. Fewer rotations than splay trees.
. One extra bit per node for color. @ possible to eliminate

Red-black trees vs. hashing.
. Hashing code is simpler and usually faster.
. Arithmetic to compute hash vs. comparison.
. Hashing performance guarantee is weaker.
. BSTs have more flexibility and can support wider range of ops.

Red-black trees are widely used as system symbol tables.
. Java: TreeMap, TreeSet.
. C++ STL: map, multimap, multiset.

Symbol Table: Java Libraries

Java has built-in library for red-black tree symbol table.

. TreeMap = red-black tree implementation.

import java.util.TreeMap;
public class TreeMapDemo {

public static void main(String[] args) {

TreeMap st = new TreeMap() ;
st.put ("www.cs.princeton.edu",
st.put ("www.princeton.edu",
st.put ("www.simpsons.com",
System.out.println(st.get ("www.

"128.112.136.11") ;
"128.112.128.15") ;
"209.052.165.60") ;
cs.princeton.edu")) ;

Duplicate policy.
. Java TreeMap forbids two elements with the same key.
. Sedgewick implementations allows duplicate keys.

B-Trees

B-Tree generalize 2-3-4 trees by allowing up o M links per node.
. Split full nodes on the way down.

Main application: file systems.
. Reading a page into memory from disk is expensive.
. Accessing info on a page in memory is free.
. Goal: minimize # page accesses.
. Node size M = page size.

Space-time tradeoff.
. Mlarge = only a few levels in tree.
. Msmall = less wasted space.
. Typical M =1000, N <1 trillion.

Bottom line: number of PAGE accesses is log,N per op.
. 3or4inpracticel

B-Tree Example

706 e 176 4 176 4 153 e 153 [000 # | i
| | | 706 m— | 601wt | 176 | oo | 176 | ot | 601 o
[[[708 wmm [501 o [513 o [ﬂ
| | | | | | | 706 e | 601 wmee | | 501 e
| | | 706 | St | | 706 a-um
| 773 eteem
\ |
L1
153 ae
176 | #—ne
. 275 | et
insert 275 B
153 e 373 | e
| 276 o 513 8-
. [373 e — 524 A
‘ 000 [| 513 et ‘ 000 & | 000 |
601 = 524 e 373 = 373) =
| | — | 601 ot | s01 .]—\.7J
| | 601 4 | [742] o 601 | i
| 706 mme 706 | o——nm
- | 742 e . 737 |4
| 766 o |
773 | e |
742 | #—pm
M - 5 766 #—=-
- 773 | e
. |
Item = Key = int L]

B-Tree Example (cont)

001 e
017 =
061 e—t-

Symbol Table: Implementations Cost Summary

Worst Case

Average Case

061 .;—- _J
153 4= — i
176 | _J" o7 e Implementation Search Insert Delete Search Insert Delete
— _ 153 etw
| 207 -:—/-’ 22: -}—— : e
| 373 - 277 et - =i 1 1 1
L | — (I EEC N 1 N 1 1 1=
[373 o= i
434 e—a L
— -~ 513 e _ — N N N log N logN | sqri(N)
e @ T [EE me R T
[373 ot .] p— \ 513 ot log N log N log N log N log N log N
| 601 = 527 e | | 526 4 | |
\ﬁml 514 ee] 21 e | L logNS | logNS | logNS$ | logNS | logN$ | logN$
601 | o] (526 o
o L e log N log N log N logN | logN | logN
Cte e fars e
;.7_‘ | 742] = 706 #—tm . — 1 1 1 1
TA2 | e pa 526 BOL | et
e = o
o 742 e i o v
— e = — | e page accesses
—— 766w B-Tree: Number of PAGE accesses is logyN per op.
773 Tl-
L
33 34
B-Tree in the Wild Summary
ile systems. oal: implementation with log N guarantee for all ops.
File systems Goal: ST impl tat th log N tee for all ops

. Window HPFS (high performance file system).
. Mac HFS (hierarchical file system).

. Linux: ReiserFS, XFS, Ext3FS, JFS. @

Databases.

« Most common index type in modern databases.
. ORACLE, DB2, INGRES, SQL, PostgreSQL, . . .

Variants.

. Btrees: Bayer-McCreight (1972, Boeing)
. B+ frees: dll data in external nodes.

. B* frees: keeps pages at least 2/3 full.

. R-trees for spatial searching: 6IS, VLSI.

journaling

. Probabilistic: randomized BST.
. Amortized: splay tree, hashing.
. Worst-case: red-black tree. ™ from re-doubling
. Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

. B-tree.

