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ABSTRACT
Proof checkers for proof-carrying code (and similar) systems
can suffer from two problems: huge proof witnesses and un-
trustworthy proof rules. No previous design has addressed
both of these problems simultaneously. We show the theory,
design, and implementation of a proof-checker that permits
small proof witnesses and machine-checkable proofs of the
soundness of the system.

1. INTRODUCTION
In a proof-carrying code (PCC) system [10], or in other
proof-carrying applications [3], an untrusted prover must
convince a trusted checker of the validity of a theorem by
sending a proof. Two of the potential problems with this
approach are that the proofs might be too large, and that
the checker might not be trustworthy. Each of these prob-
lems has been solved separately; in this paper we show how
to solve them simultaneously.

The general approach is to write a logic program that has a
machine-checked semantic correctness proof; this technique
can be used in other domains (besides “proof-carrying”) to
write logic programs with machine-checked guarantees of
correctness.

1.1 Small proof witnesses
Necula has a series of results on reducing proof size. He
represents logics, theorems, and proofs in the notation of
the Edinburgh Logical Framework (LF) [8]. But the natural
representation of an LF proof contains redundancy (com-
mon subexpressions) that can cause exponential blowup if
the proofs are written in the usual textual representation.
Necula’s LFi [11] data structure eliminated most of this re-
dundancy, leading to reasonable-sized proof terms.

In the PCC framework, given a machine-language program,
the proof is of a theorem that the program obeys some safety
property. It’s natural to compare the size of the representa-
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tion of the proof witness to the size of the binary machine-
language program. Necula’s LFi proof witnesses were about
4 times as big as the programs whose properties they proved.

Pfenning’s Elf and Twelf systems [14, 15] are implementa-
tions of the Edinburgh Logical Framework. In these sys-
tems, proof-search engines can be represented as logic pro-
grams, much like (dependently typed, higher-order) Prolog.
Elf and Twelf build proof witnesses automatically; if each
logic-program clause is viewed as an inference rule, then the
proof witness is a trace of the successful goals and subgoals
executed by the logic program. That is, the proof witness
is a tree whose nodes are the names of clauses and whose
subtrees correspond to the subgoals of these clauses.

Necula’s theorem provers were written in this style, origi-
nally in Elf and later in a logic-programming engine that he
built himself. In later work, he moved the prover clauses
into the trusted checker. In principle, proof witnesses for
such a system can be just a single bit, meaning, “A proof
exists: search and ye shall find it.” However, to guaran-
tee that proof-search time (in the trusted checker) would be
small, Necula invented oracle-based checking [12]: the un-
trusted prover would record a sequence of bits that recorded
which subgoals failed (and therefore, where backtracking
was required). This bitstream serves as an “oracle” that
the trusted checker can use to avoid backtracking. The or-
acle bitstream need not be trusted; if it is wrong, then the
trusted checker will choose the wrong clauses to satisfy sub-
goals, and will fail to find a proof.

Using oracle-based checking, the proof witness (the oracle
bitstream) is about 1/8 the size of the machine code.1 The
key idea is to run a simple Prolog engine in the trusted proof
checker; the oracle is just an optimization to ensure that the
checker doesn’t run for too long.

1Unfortunately, this statistic is somewhat misleading. A
“pure” PCC system would transmit two components from
an untrusted code producer to a code consumer: a machine-
language program and a proof witness. The SpecialJ proof-
carrying Java system on which Necula measured oracle-
based checking transmits three components: The machine
code, the proof, and a Java “class file”. The Java class file,
as is usual in any Java system, contains descriptions of the
types of all procedures (methods) in the program, including
formal parameter and result types. This information should
really be considered part of the proof witness.



1.2 Trustworthy checkers
Necula’s oracle-based checker for PCC comprises approxi-
mately 26,000 lines of code:

23,000 Verification-condition generator, written in C
1,400 LF proof checker, written in C

800 Oracle-based Prolog interpreter, in C
700 Axioms for type system, written in LF

26,000 Total trusted lines of code

The largest component is the verification condition gener-
ator (VC-Gen), which traverses the machine-language pro-
gram and extracts a formula in logic, the verification condi-
tion, which is true only if the program obeys a given safety
policy.

This 26,000 lines forms the trusted code base (TCB) of the
system: any bug in the TCB may cause an unsafe program
to be accepted. The large VC-Gen component is a concern,
but so are the axioms of the type system: if the type system
is not sound, then unsafe programs will be accepted, and
League et al. [9] have shown that one of the SpecialJ typing
rules is unsound.

The goal of our research [2] has been to check proofs of pro-
gram safety using a much smaller TCB. We do this by elim-
inating the VC-Gen component—we reason directly about
machine code in higher-order logic, instead of the two-step
process of extracting the verification condition and then
proving it; and we write the rules of our type system as
machine-checkable lemmas, instead of axioms. We have
shown that the TCB for a proof-carrying code system can
be reduced below 2700 lines, as follows [6]:

803 LF proof checker, written in C
135 Axioms & definitions of higher-order logic, in LF
160 Axioms & definitions for arithmetic, in LF
460 Specification of Sparc instruction encodings, in LF

1,005 Specification of Sparc instruction semantics, in LF
105 Specification of safety predicate, in LF

2,668 Total trusted lines of code

Unfortunately, in this prototype system the proof witnesses
are huge: the DAG representation of a safety proof of a pro-
gram might be 1000 times as large as the program. Proof
size is approximately linear in the size of the program,2

so this factor of 1000 will not grow substantially worse for
larger programs. However, while this early prototype is use-
ful in showing how small the TCB can be made, it is im-
practical for real applications because the proof witnesses
are too big.

1.3 Synthesis
In this paper we will show that Necula’s insight (run a
resource-limited Prolog engine in the trusted checker) can be
combined with our paranoia (don’t trust the logic-program-
ming rules used by such a Prolog engine) to make a PCC
checker with small witnesses and a small trusted base.
2Technically, proof size is expected to be roughly propor-
tional to the size of the program multiplied by the average
number of live variables on entry to a basic block; this is
superlinear but much less than quadratic, for typical pro-
grams.

Our approach is as follows. We write a type-checking al-
gorithm in a subset of Prolog with no backtracking, a very
limited form of unification, and with efficiently indexed dy-
namic atomic clauses. We show that the operators of such
a Prolog program can be given a semantics in higher-order
logic, such that the soundness of each clause can be proved
as a machine-checkable lemma. We show that this Prolog
subset is adequate for writing efficient type-checkers for PCC
and for other “proof-carrying” applications.

Our trusted checker will be sent the Prolog clauses, with
machine-checkable soundness proofs; it will check these proofs
before installing the clauses. Then it will be sent a theorem
to check (i.e., in a PCC application, the safety of a particular
machine-language program) and a small proof witness. The
Prolog program will traverse the theorem and proof witness;
this traversal succeeds only if the theorem is valid.

The TCB of our new checker is only 244 lines larger than
our previous prototype. It includes all the components of our
previous system (2668 lines) plus a concise implementation
of an interpreter for our Prolog subset.

2. A FOUNDATIONAL TYPE CHECKER
We will illustrate our approach using an example—a type
checker for a very simple programming language. In this
example we illustrate the following points, which are com-
mon to many proof-carrying applications:

• The specification of the theorem to be proved is quite
simple (in this case, that the program evaluates to an
even number).

• The proof technique involves the definition of a care-
fully designed set of predicates that allow a simple,
syntax-directed decision procedure (in this case, we
define a syntax-directed type system for evenness and
oddness).

• The syntax-directed rules are provable, from the def-
initions of the operators, as machine-checkable lem-
mas in the underlying higher-order logic (this is what
foundational means: the rules are provable from the
foundations of logic).

• The syntax-directed rules require management of a
symbol table, or context, that would lead to an O(N 2)
algorithm if implemented naively; we want a linear-
time prover, and we’ll show how to make one.

• The language being typechecked in a proof-carrying
code system (or in proof-carrying authentication) is
the output of another program—the compiler (or a
prover). Such languages don’t need all of the syn-
tactic sugar that human-readable languages have, and
processing them is therefore easier.

2.1 Example: even-valued expressions
Consider a simple calculus for expressions with constants,
variables, addition, and let-binding, as shown in Figure 1.

A program consists of a list of declarations and an expres-
sion. An expression is either a variable, a natural number,



type τ ::= even | odd
decl d ::= · | let x = e; d
expr e ::= x | n | e1 + e2

prog p ::= (d; e)

Figure 1: Syntax of even-odd system.

Var ≡ Num
State ≡ Var → Num → Form
Decl ≡ State → Form
Exp ≡ State → Num → Form
Program ≡ 〈Decl ,Exp〉

(d; e) ≡ 〈d, e〉
· ≡ λs. true
let x = e; d ≡ λs. d s ∧ (∀a.e s a⇒ s x a)
x ≡ λs.λa. s x a
n ≡ λs.λa. a = n
e1 + e2 ≡ λs.λa. ∃a1.∃a2.

e1 s a1 ∧ e2 s a2 ∧
a = a1 plus a2

safe ≡ λp. ∀s. fst(p) s⇒
∃a. snd(p) s a ∧ isEven(a)

Figure 2: Safety specification.

or the sum of two expressions. Here is an example:

let x = 4 ; let y = x+ 8 ; x+ y

There are two declarations followed by an expression; the
program evaluates to 12.

2.2 Safety specification
In this simple example, we define that a “safe” program is
one that evaluates to an even number. In order to define
the safety theorem, we need to know what a program means
and how to evaluate a program. The safety theorem, along
with a conventional denotational semantics of the language
in consideration, is shown in Figure 2.

All of these definitions are treated as axiomatic by our checker;
that is, they are trusted. Variables are represented as num-
bers. A abstract State maps a variable to its content, i.e.
a number. A program is a pair of a declaration and an ex-
pression; its semantics is the pair of semantics of the corre-
sponding declaration and expression. Declaration Decl is a
predicate on states. Expression Exp is a predicate on a state
and a number; that is, given a state the expression evalu-
ates to a number. The semantics of concrete expressions is
straightforward from definitions.

Finally, the safety theorem is based on the semantics of lan-
guage constructs.3 Given a program p, it is “safe” if: for all
states s, if the declaration of the program, i.e. fst(p), holds

3For our PCC application, there are only two language con-
structs for the machine code to be proved safe. The machine
code is a sequence of integers encoding machine instructions;
so we only need cons and nil.

`p p : even
safe(p)

SafeTy
· `d (d; e) : τ
`p (d; e) : τ

ProgTy

Γ `e e1 : τ1 Γ[x : τ1] `d (d; e) : τ
Γ `d (let x = e1; d; e) : τ

DeclConsTy

Γ `e e : τ
Γ `d (·; e) : τ

DeclNilTy
Γ(x) = τ

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1
�
τ2 = τ

Γ `e e1 + e2 : τ
PlusTy

even
�

even = even
�

ee odd
�

odd = even
�

oo

even
�

odd = odd
�

eo odd
�

even = odd
�

oe

Figure 3: Typing rules with static context.

on s, then there exists a number a such that the expression
of the program, i.e. snd(p), evaluate to a and a is even.

2.3 Type checker
The typing rules appear in Figure 3. There are three kinds
of typing judgements. The judgement for a program `p
checks that the program evaluates to a number whose type
is τ . The declaration judgement `d states that, assuming
the environment built so far, and assuming the remaining
declarations hold, the expression has a certain type. The
expression judgement `e asserts that an expression has cer-
tain type under typing context Γ.

These typing rules can be read as a Prolog-like logic pro-
gram. Each rule is a clause of the logic program. The con-
clusion of a rule is the head of the clause, and each premise of
the rule is a subgoal. The typing rules are designed such that
the conclusions of these typing rules are disjoint. Therefore,
when running the type checker (as a logic program) there
is no need to backtrack; we say that such a type system is
syntax-directed.

Furthermore, if we give denotational semantics based on
higher-order logic to typing judgements such as `p, `d, and
`e, each typing rule can be proved as a lemma in the sys-
tem, thus its soundness is guaranteeed with respect to the
foundations of logic. The denotational sematics of typing
judgements is given in Figure 4. Proofs of the typing rules
are quite straightforward and thus omitted here. The deno-
tational semantics of the type operators are part of the safety
proof, not part of the safety specification. That is, they are
not trusted. It is straightforward to prove the safety theo-
rem from the conclusion of type checking rule ProgTy if we
pass τ even when invoking the type checker, as shown in the
SafeTy rule.

Our checker will determine the validity of the safety pred-
icate by determining whether a proof exists. It will not
exactly construct such a proof as a data structure: instead,
it will traverse a trace of such a proof, composing lemmas
in a syntax-directed way. We call our set of lemmas a type
system: our machine-checked safety proof of a program P



Ty ≡ Num → Form
Env ≡ State → Form
even ≡ λx.∃n. isInt(n) ∧ x = 2n
odd ≡ λx.∃n. isInt(n) ∧ x = 2n + 1

`p p : τ ≡ fst(p) s⇒ ∃a. snd(p) s a ∧ τ a
Γ `d (d; e) : τ ≡ ∀s. (d s ∧ Γ s)⇒ ∃a. (e s a ∧ τ a)
Γ `e e : τ ≡ ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)
τ1

�
τ2 = τ ≡ ∀n1.∀n2. τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

Γ[x : τ ] ≡ λs. Γ s ∧ ∃a. s x a ∧ τ a
Γ(x) = τ ≡ ∀s. Γ s⇒ ∃a. s x a ∧ τ a

Figure 4: Definitions of types and judgements.

consists of (1) a proof of soundness for the type system, and
(2) the successful syntax-directed execution of the typing
clauses as applied to P .

Efficiency and proof size problem. When type checking a
program, we build a type environment, or context, from the
declarations for variables that appear in the expression. The
rules for traversing a list of declarations and building the
corresponding type contexts are DeclConsTy and DeclNilTy .
When a variable is encountered, we look up its type in the
context. However, the typing rule VarType does not specify
a context lookup algorithm. Consider the following variable
type-lookup rules.

Γ[x : τ ] ` x : τ
VarTyHit

Γ ` x : τ x 6= y

Γ[y : τ ′] ` x : τ
VarTyMiss

Suppose the context is simply organized as a list in these two
rules; each element of the list is a pair: a variable and its
type. Then each context lookup takes linear time, and type-
checking a whole program will take quadratic time. Further-
more, the size of the generated proof for a lookup operation
is linear with respect to the size of the context, and thus
the safety proof for a program has a quadratic blowup. In
the next section, we give a more efficient algorithm that still
has a provably sound semantic model, and generates concise
proofs.

3. EFFECTIVE CONTEXT MANAGEMENT
As we have explained, we avoid sending (very large) proofs
to the trusted checker by sending a proof scheme (with
a soundness proof for the proof scheme). We want the
proof scheme to “execute” efficiently, that is, in linear time
with respect to the size of the program-safety-theorem be-
ing proved. And we want the proof schemes to be written
in the “smallest possible” Prolog-like language: what set of
language features are useful?

Here we will show an efficient proof scheme for contexts;
because this scheme requires dynamic clauses in the Prolog
subset, we have included a limited form of dynamic clause
in our language design.

3.1 Dynamic clauses and local assumptions
Many logic programming systems provide a facility for man-
aging dynamic clauses at run time. In Prolog, users can as-
sert a fact or clause into database or retract back a clause
dynamically. The assert/retract mechanism can be expen-
sive if the dynamic clause in consideration is not atomic (i.e.,
has subgoals) because the dynamic clause has to be compiled
and integrated into the program’s decision trees. If the dy-
namic clause is atomic, with input-mode arguments that
are integers or hashable, the assert/retract operation can be
cheap: Prolog systems usually provide efficient support for
asserting or retracting an atomic clause by using hash ta-
bles. That is, asserting, retracting, and querying indexable
atomic clauses can be done in constant time per operation.

In Logical Framework (LF) [8], or its implementaion Twelf
[13, 15], one can use local assumptions [16] to check dynamic
clauses into database. Since these assumptions are local,
their static scopes control their lifetimes; there is no need to
provide an explicit retract mechanism. A clause of the form

{x : τ} A x→ B x

introduces a local assumption A x into the context and then
solves the goal B x under this assumption.4 When proof
search on goal B has finished, assumption A is automatically
retracted. That is, Twelf uses a dynamically well-scoped
version of assert/retract. One can use Prolog assert/retract
mechanism to simulate Twelf’s local assumptions, however.
We can give semantics to local assumptions and generate
concise proofs so that clauses are guaranteed to be correct.

Local assumptions are particularly effective—efficient, se-
cure (with a provably sound model), and concise—when we
need to deal with big environemnts and generate proofs of
lookups in the environment as well.

3.2 Typing rules
In this subsection, we present an efficient type checking algo-
rithm using dynamic clauses. We give semantics in the next
subsection. Figure 5 shows typing rules with a dynamic
context management scheme.

The rule ProgTy calls a declaration checking rule and passes
declaration d to it. The declaration d appears twice in the
premise: The declaration checking rules traverses one d, and
the other d is used to pass the original declatation all the
way to the expression checking rules.

The rule BindTy is worth some explanation. Informally,
it scans the list of declarations, checks them in dynami-
cally, and continues type checking. It first checks that the
expression e1 has type τ1, then asserts this fact as a dy-
namic clause (or local assumption) bind(x, τ1,Γ) and con-
tinues type checking.

When type checking a variable expression, the rule VarTy
tries to match the previous checked-in local assumptions.
The lookup operation takes constant time and the proof
generated for it is concise. The

�
rules remain the same as

before.

4It is a dependent type on local parameter x.



`p p : even
safe(p)

SafeTy
d `d (d; e) : τ
`p (d; e) : τ

ProgTy

Γ `e e1 : τ1 bind(x, τ1,Γ) → Γ `d (d; e) : τ
Γ `d (let x = e1; d; e) : τ

BindTy

Γ `e e : τ
Γ `d (·; e) : τ

BindNil
bind(x, τ1,Γ)

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1
�
τ2 = τ

Γ `e e1 + e2 : τ
PlusTy

even
�

even = even
�

ee odd
�

odd = even
�

oo

even
�

odd = odd
�

eo odd
�

even = odd
�

oe

Figure 5: Typing rules with dynamic context.

In a conventional Prolog implementation that supports ef-
ficient assert/retract operations for atomic dynamic clauses
like bind(x, τ1,Γ), the type checking algorithm above is lin-
ear. Moreover, it is provably sound as shown in the next
subsection.

3.3 Foundational semantics and proofs
The safety specification remains the same as presented in
Figure 2. The definitions of types and typing judgements
remain untouched except for `d and the new constructor
bind .

Γ `d (d; e) : τ ≡ ∀s. (Γ v d ∧ Γ s)⇒
∃a. (e s a ∧ τ a)

bind(x , τ,Γ) ≡ ∀s. Γ s⇒
∃a. (s x a ∧ τ a)

d1 v d2 ≡ ∀s. d1 s⇒ d2 s

The semantics of dynamic clause bind(x , τ,Γ) is very similar
to that of the static binding operator Γ[x : τ ] and lookup
operator Γ(x) = τ . It serves both purposes. From these def-
initions it is straightforward to prove the typing rules as lem-
mas and the safety theorem can be proved from the success-
ful type checking of a program from the goal `p (d; e) : even.
Here we give the proof for rule BindTy .

Lemma 1 (BindTy).

Γ `e e1 : τ1 bind(x, τ1,Γ) → Γ `d (d; e) : τ
Γ `d (let x = e1; d; e) : τ

Proof . By definition of `d, for all state s, we assume Γ v
(letx = e1; d) and Γ s, then we prove ∃a. (e s a∧ τ a). This
can be obtained from Γ `d (d; e) : τ . In order to use this
fact, we need to prove the local assumption bind(x, τ1,Γ),
which can be proved from the premise Γ `e e1 : τ1 and the
assumption Γ v (letx = e1; d). �

The machine checkable proof for this rule can be found in
Appendix A.

4. FLIT
The previous section illustrated that efficient syntax-directed
type-checking uses certain logic-programming constructs (dy-
namic clauses) but not others (backtracking), and that each
Horn clause can be proved sound as a lemma in higher-
order logic. This section describes a suitable logic program-
ming interpreter implemented in Flit, our trusted LF proof
checker. Other aspects of Flit are described in another pa-
per [6]. To achieve a concise and efficient implementation,
we impose several restrictions on the form of goals and pro-
grams. If these are violated, the interpreter will remain
sound but may fail to be complete. This section discusses
these restrictions and the implementation of the interpreter.
We begin with a few basic definitions from logic program-
ming.

4.1 Basic definitions
Flit’s logic programming interpreter can solve goals with
respect to logic programs containing dynamic clauses and
simple arithmetic. Goals are atomic formulas (also called
atoms) of first-order logic. Logic programs are conjunctions
of clauses, where each clause is either a universally quanti-
fied atom or else a universally quantified implicational for-
mula formed from atoms using only conjunctions and impli-
cations. Implications other than the topmost one must be in
the antecedents of other implications. Nested implications
give rise to dynamic clauses. As usual, the head of a clause
is the clause itself for atomic clauses and the consequent of
the topmost implication for implicational clauses. The body
of a clause is its antecedent if it is an implicational clause,
and TRUE if it is an atomic clause. We assume the usual
notion of unification of atoms, based on the usual notion
of substitution for a finite set of variables. A substitution
is ground if all terms in its range are ground. Goals and
subgoals are just atoms. A solution for a goal G with re-
spect to a logic program P is a substitution σ such that
(A ∪ P) ` σ(G), where ` is provability in first-order logic
and A are axioms for addition, multiplication, and truncat-
ing division on 32-bit natural numbers. These arithmetic
operations are represented as three-place relations, where
the last place gives the output of the operation.5

For reasoning about our logic programming interpreter, we
will make use of a standard natural deduction proof system
for first-order logic. Then a use of a clause C in a proof is
either an assumption of C, if C is atomic; or an application
of modus ponens whose implicational argument is C. The
subgoals produced while solving a goal G are just the atomic
formulas contained in the proof of G from A ∪ P.

4.2 Flit’s logic programming language
Flit’s logic programming interpreter is sound for arbitrary
logic programs with dynamic clauses. It is complete for
5Since the 32-bit natural numbers are not closed under addi-
tion or multiplication, goals such as multiply 220 220 X are
not satisfiable. However, our underlying higher-order logic
has the complete theory of the integers; the 32-bit numbers
are just a way of writing some of the constants and evalu-
ating some of the expressions in that theory.



solving goals G with respect to logic programs P, under
certain conditions. The first two of these are not obviously
statically checkable, while the rest are statically checkable.

1. Deterministic program. The program P must be
deterministic for G, in the following sense. Suppose G is
provable from P. Then G has a proof where every subgoal
S is proved by a use of the first clause of D∪P whose head
unifies with S, where D are the active assumptions (corre-
sponding to active dynamic clauses). Under this condition
of determinism, the interpreter need not backtrack to be
complete. It is never necessary to try later clauses if a proof
cannot be found from a use of the first unifying clause.

2. Bounded execution. P must be bounded for G. This
means that if G is provable from P, then there exists a proof
whose size is no more than some fixed constant MAX PROOF.
This assumption is used to avoid dynamic allocation of mem-
ory while trying to solve G.

3. Argument modes. Some of the restrictions needed for
the completeness of the interpreter are most easily stated
in terms of correct modings. A correct moding indicates
how ground terms and numeric constants move through the
clauses of the program as inputs, outputs, and indices which
will be used for efficient lookup of dynamic clauses. We
define a moding of a logic program to be a function assigning
to each argument position of each predicate of the program
a mode, which is either input, index, or output ; and assigning
to some argument positions of function symbols the mode
index. The arithmetic operations complicate the definition
of correct moding, so we give the definition first for programs
not using the arithmetic operations.

A moding is correct for a program without arithmetic iff for
each clause C of the program with head H and body B, the
following is true. Let σ1 be any ground substitution for just
the variables in H such that σ1(H) contains only ground
terms in input position and distinct numeric constants in
index positions. Let σ2 be any ground substitution for just
the variables in output positions in B. Let C ′ be σ1(σ2(C)),
and let B′ be the body of C ′. Then all input positions
and output positions of C ′ contain only ground terms, and
the index positions of B′ contain distinct numeric constants,
where these are the same numeric constants that occur in
σ1(H).

For programs with arithmetic, the definition of correct mod-
ing is similar, except for how addition is handled. Instead
of computing with primitive addition and subtraction op-
erators, we use the addition operator for both: the goal
add 3 4 X finds the sum of 3 and 4, while add 3 X 7 finds
the difference between 7 and 3. Unfortunately, this means
that addition does not have a simple, global moding. We
require instead that for any substitution σ1 as above, there
exists an assignment of modes to the argument positions of
the different occurrences of addition in the body B of the
clause. For each occurrence, at most one argument position
is assigned the mode output and the others are assigned
mode input. This now ensures that every argument position
of C is moded, without requiring a static moding of addi-
tion. We then require that for any σ2 as above, all the same
conditions on σ1(σ2(C)) as stated above hold.

Note that our requirement of correct moding ensures that
all index positions in the body of a clause are either numeric
constants or variables which occur in index positions in the
head of the clause. In particular, we disallow using the out-
put of a subgoal, particularly an arithmetic subgoal, as an
index. A simple inductive argument then shows that all nu-
meric constants used as indices in subgoals while solving a
goal must occur in index positions of that goal.

Correctness of a moding can be statically checked with a
simple linear-time algorithm. Flit does not check modings
statically, however, because incorrect moding will lead only
to incompleteness, not unsoundness.

4. Dynamic clauses must be atomic.

5. Output arguments. All output positions in the goal
and the program must contain either a ground term or a
variable. If an output position of an atom A contains a
variable v, then v is called an output variable of A.

6. No repeated output variables. No output variable
can be used twice in the goal or in the same atom of the
program.

Prolog interpreters typically enter atomic dynamic clauses
in hash table for efficient matching, using one of the pred-
icate’s arguments as the hash key. Our logic programs can
be written with a very restricted form of clause indexing:

7. Index position. The first argument position of any
predicate used in a dynamic clause must be its only index
position.

8. Bounded indexes. The numeric constants appearing
in index positions must be smaller than some fixed constant.
MAX INDEX.

Example. The even-odd proof scheme of Figure 5 is a
logic program that conforms to these restrictions. The proof
scheme is (1) syntax-directed, (2) executes in linear time and
space, (3) is well moded, (4) the dynamic clauses bind(x, τ,Γ)
are all atomic, and the output arguments of predicates con-
form to rules (5) and (6). In our implementation of this
proof scheme, we put the x argument of bind(x, τ,Γ) in the
first position to conform to the (7) index position rule; and
(8) all the indices x are manifest constants that are small
integers.

Our LTAL proof scheme used in the real PCC system also
obeys all these restrictions.

4.3 Constructing programs
A logic program is presented to Flit’s interpreter as a set
of LF terms, represented using an expression data structure
(expr). These terms are built from the LF constants de-
clared in the trusted computing base. They represent proofs
of theorems derivable from the axioms represented by the
constants. The type of each term represents the lemma that
it proves. The set of these lemmas is essentially the logic
program to use. To massage the LF type into a form that
is convenient for logic programming, however, the following
transformations are applied in order:



Strip pi. The LF type is of the form

Πx1 : τ1. . . . Πxn : τn.Πa1 : G1. . . . Πan : Gn.G

where x1, . . . , xn are the typed logic variables, G1, . . . , Gn
are the subgoals of the clause, and G is the head of the
clause. Flit distinguishes Π-abstractions declaring logic vari-
ables and Π-abstractions stating subgoals by checking whether
the type of a Π-abstraction is an application of a logic pro-
gramming predicate or not. The interpreter is told which
are the predicates by marking the exprs with a flag. The
type is then transformed to

Πa1 : G1. . . . Πan : Gn.G

The logic variables x1, . . . , xn are marked with a different
flag, for use in subsequent processing.

Massage type. As it stands so far, the head of the clause
is buried beneath Π-abstractions stating the subgoals of the
clause. For more efficient matching, we next massage the
type to get the following:

G← (Gn, (. . . , (G2, G1)))

This puts the head at the top of the expr, and ensures that
subgoals will be solved in the appropriate order, with Gn
solved first.

Rename vars. Finally, all the logic programming variables
of the clause are replaced by distinct fresh variables.

This variable renaming establishes the following property,
which is an invariant of the interpreter for all logic programs
and goals that satisfy the requirements of Section 4.2:

Invariant 1. The set of logic variables of any goal is dis-
joint from the set of logic variables of the logic program.

This invariant is needed for completeness, not soundness, of
the interpreter. How it is used is explained in Section 4.5
below.

Finally, for a clause to add an atomic dynamic clause when
checking a particular subgoal G, it should contain an ex-
pression of the form Πa : G.G′ in its list of subgoals.

4.4 Solving goals
After a logic program has been obtained in the way described
in the previous Section, Flit’s logic programming interpreter
can solve goals with respect to that program. The algorithm
to do this is given in pseudocode in Figure 6. This run lp()
function returns a boolean indicating whether or not a solu-
tion was found for the goal. It always terminates, even if one
of the conditions described in Section 4.2 is violated. In the
latter case, the function may abort where a more powerful
interpreter would succeed. If a solution is found, a single
global substitution is updated to hold the unifier.

There are three cases in the code of Figure 6. The first is
for solving a pair of subgoals. This is done by first solving
the first. If this succeeds, then the global unifier has been
updated with the solution to the goal. This unifier is applied
to the second subgoal, and the result is solved. For efficiency,

applying the global unifier to an expression always renames
the logic variables of that expression which are not being
mapped by the unifier. This ensures that logic variables in
subgoals are always different from the logic variables in the
program. This helps preserve Invariant 1.

The second case of run lp() is for dynamic clauses. We add
the dynamic clause G, then solve the subgoal G’, and then
remove the dynamic clause. The restrictions on programs
in Section 4.2 ensure that the index position of the dynamic
clause, which is its first argument position, will always be a
numeric constant n less than some fixed compile-time bound
at this point. So we just update a global array, which is
declared to be of size equal to this compile-time bound, at
index n to hold the dynamic clause. The restrictions on
programs also ensure that no dynamic clause with the same
index n will be added by the call run lp(G’) which is made
while this new dynamic clause is active. So there is no need
to worry about collisions in our array of dynamic clauses.

The default case of run lp() is for atomic goals. This is
the only other form of goal allowed by the conditions of Sec-
tion 4.2. To solve an atomic goal, we try to find a clause
whose head unifies with the goal. If this fails, run lp()
aborts, indicating that the goal cannot be solved. Other-
wise, it either succeeds if the clause is atomic, or else applies
the unifier to the clause’s subgoals and tries to solve them
by recursive call to run lp(). If a clause has more than
one subgoal, they are already packaged up in order using
commas, so the first case of run lp() will be used in the
recursive call to solve them in order.

Finally, statements at the beginning and end of run lp()
are used to recycle the memory for all the expressions gen-
erated during the execution of run lp(). This is done just
by resetting the index of the next expression node to take
out of the global fixed-size array of expression nodes when
creating a new expression. Recycling all those expressions
seems to be important for keeping memory usage reasonably
low. The condition of boundedness in Section 4.2 above en-
sures that if a goal is solvable, it has a proof whose size s is
less than some fixed constant MAX PROOF. By recycling
expressions after each recursive call to run lp(), we guar-
antee that run lp() can actually find a proof using memory
proportional to the longest path through s, rather than s
itself. The next section discusses an implementation trick
needed for soundness of this optimization.

4.5 Unification
The top-level routine for solving a goal given in Figure 6
relies on a subroutine to find a clause whose head unifies with
an atomic goal. This subroutine works as follows. First, it
checks if goal is an arithmetic goal. If so, it tries to solve for a
single variable, following the moding constraints described in
Section 4.2 above. Note that arithmetic goals where overflow
or division by zero occurs are considered to fail. If the goal
is not an arithmetic one, the subroutine next checks if the
first argument of the goal is a numeric constant n. If so, it
first tries to unify the goal with the dynamic clause, if there
is one, in the global array of dynamic clauses at index n. If
there is no unifying clause there, then the subroutine tries to
unify the goal with the head of each clause of the program
in order. If it cannot find a unifying clause, it returns null.



bool run_lp(expr goal) {
int cur_expr_index = _next_expr_index;
case goal of
(G,G’) =>

(run_lp(G); run_lp(apply_unifier(G’)));
(G -> G’) =>

int i = add_dynamic_clause(G);
run_lp(G’);
remove_dynamic_clause(i);

default =>
expr clause = find_unifying_clause(G);
if (!clause) abort();
else if (clause has subgoals S)

run_lp(apply_unifier(S));
esac
_next_expr_index = cur_expr_index;

}

Figure 6: Logic program interpreter

Otherwise, it returns the clause.

Figure 7 gives pseudocode for unification algorithm used by
the interpreter. A helper function add to unifier if() is
defined in Figure 8, which changes the global substitution
to map the pattern to the target and returns true, iff the
pattern is a variable not already mapped in the global sub-
stitution to some different expression. A single global uni-
fier is implemented by using a field subst of the expr data
structure: e.subst points to expression E iff e is a variable
mapped to E by the unifier.

To check whether or not a goal unifies with the head of a
clause, we call unif() with the goal given as the target and
the head of the clause as the pattern. The algorithm pro-
ceeds much like a standard syntactic matching algorithm,
except for the case where the target is a variable. Under
the requirements of Section 4.2, the target must either be
ground or a variable. If it is a variable and the pattern is
not, then the then-part of the first if statement of unif()
will be executed. The second call to add to unifier() will
then succeed, as long as target was not already mapped to
another expression. The latter case can only happen if the
same output variable occurs twice in an atom in the goal
or the program, which violates a requirement of Section 4.2.
The variable will be placed on a list of output variables.
Something similar happens in the case where the target and
pattern are both variables. If the pattern is already mapped
by the substitution to some expression e, then the target is
also mapped to e, and stored in the list of output variables.
If the pattern and target are both variables but the pattern
is not mapped by the substitution, then we map the pattern
to the target. This means that output variables of the goal
will be pushed into the subgoals of the clause when the uni-
fier is applied. This enables run lp() to recycle all expres-
sions generated while solving subgoal G, without needing to
account for the case where some of those are output vari-
ables that are mapped to by an output variable of an earlier
subgoal G′.

We clear the bindings in the global unifier for the set of
output variables before trying to match a goal against the
head of a new clause. This is the purpose of maintaining the
list output vars. Since no two clauses of the logic program

bool unif(expr pattern, expr target) {
if (pattern.op != target.op)
return (add_to_unifier_if(pattern,target,

match_vars)
|| add_to_unifier_if(pattern,target,

output_vars));
case pattern.op of
VAR =>
if (pattern.subst) {

insert(target, output_vars)
if (target.subst)
return false;

target.subst = pattern.subst;
return true;

}
else return add_to_unifier_if(pattern,

target, match_vars);
APPLY =>
return (unify(pattern.kid0,target.kid0)

&& unify(pattern.kid1,target.kid1));
default =>
return (pattern == target);

esac
}

Figure 7: The unification algorithm

bool add_to_unifier_if(expr pattern, expr target,
list varlist) {

if (pattern.op != VAR) return false;
if (pattern.subst) return (pattern.subst != target);
insert(pattern, varlist);
pattern.subst = target;
}

Figure 8: A helper function for unification

contain the same logic variable by Invariant 1, we need to
clear the variables from the program just before trying to
find a matching clause for a new goal. We keep track of the
variables from program clauses in the list match vars.

5. PROOF WITNESSES
Our even-odd example is overly simplistic in that there is a
syntax-directed decision procedure for the main safety the-
orem: for an expression E, if the formula safe(E) is true,
then the proof is easily found. In a real proof-carrying code
application, the program e is in machine language; loops and
recursion in the program, and quantified types in the type
system, make type inference impossible.

Thus, in a PCC application, the input to the prover in-
cludes the program E and also an untrusted hint H. The
hint provides loop invariants, type annotations, and other
information which can be used by the prover. Because the
hint is provided by the same adversary who provides the
program, H cannot be assumed accurate, but it can still be
useful in constructing the proof.

We will illustrate using the even-odd example. Let us pro-
vide a hint H which is a list of type annotations, x1 : τ1, x2 :
τ2, . . . , xn : τn. We will write a prover that uses this hint
(even though for this simple language the hint is not neces-
sary). The root goal is now `p H E instead of safe(E).



In addition to running the logic program on the root query
`p H E, the checker verifies a (static) proof of the lemma,

`p H E

safe(E)
.

We can’t use this as a logic-programming rule, i.e. we can’t
use safe(E) as our query, because then the logic program
would have to “guess” H, which could require unbounded
backtracking.

The hint H serves as a proof witness for E, in conjunction
with the Prolog program (i.e. proof scheme) and its seman-
tic soundness proof.

5.1 Layers of specification and proof
To handle proof-checking with hints, the checker software
must process separately several layers of specification, se-
mantics, proof, and logic-programming clauses. It is useful
to think in terms of a proof consumer and an adversary.

Axioms stage 1
Trusted↑ Expression Operators

Untrusted↓ Semantic stage 2
Model

Hint Operators
Proof scheme Clauses

Theorem to be proved Expression stage 3
Proof witness Hint

Stage 1. The proof consumer specifies the Axioms of a
logic, and defines the kinds of theorems she wants to check—
that is, the language of expressions for which she wants
safety theorems—by defining Expression Operators. One of
the expression operators must be a predicate called safe.

Stage 2. Then the adversary sends a proof scheme, that is,
a logic program (the syntactic type checker in the even-odd
example). This program manipulates goals expressed using
the Expression Operators and the Hint Operators. All the
hint operators must be defined in terms of the underlying
logic—the adversary is not permitted to add uninterpreted
operators to the logic. All the Clauses of the logic program
must be proved as derived lemmas in the logic, from the
definitions of the expression and hint operators, as Lemma 1
does.

The Semantic Model, sent by the adversary, is simply a set
of supporting definitions and lemmas, defined in terms of
the underlying logic, that can be useful in defining the hint
operators and the clauses.

The adversary may define as many hint operators and clauses
as he likes; however, there must be one operator called `p,
and the semantic model must contain a lemma of the form,

`p H E

safe(E)
.

The proof consumer uses the logical framework (LF) to
check the wellformedness of all the definitions and the proofs
of all the lemmas. Then she loads the Clauses into the
subset-Prolog interpreter.

Stage 3. Finally, the adversary sends an Expression and

Axioms
A⇒ B A

B
imp e

∀x.A(x)
A(B)

∀ e
et cetera

Expression Operators
Var ≡ Num
State ≡ Var → Num → Form
Decl ≡ State → Form
Exp ≡ State → Num → Form
Prog ≡ 〈Decl ,Exp〉
(d; e) ≡ 〈d, e〉 · ≡ λs. true
let ≡ λx.λe.λd. λs. d s ∧ (∀a.e s a⇒ s x a)
x ≡ λs.λa. s x a
n ≡ λs.λa. a = n
+ ≡ λe1.λe2. λs.λa. ∃a1.∃a2.

e1 s a1 ∧ e2 s a2 ∧ a = a1 plus a2

safe ≡ λp. ∀s. fst(p) s⇒
∃a. snd(p) s a ∧ isEven(a)

Semantic ModelTy ≡ Num → Form
Env ≡ State → Form
∃! ≡ λF. ∃x. F x ∧ ∀y. F y ⇒ x = y
upd ≡ λx.λa.λs. λy.λb. if (x = y) (a = b) (s y b)
even ≡ λx.∃n. isInt(n) ∧ x = 2n
odd ≡ λx.∃n. isInt(n) ∧ x = 2n + 1
`p ≡ λh.λp.λτ. fst(p) s⇒ ∃a. snd(p) s a ∧ τ a
`d ≡ λΓ.λh.λd.λe.λτ. ∀s. (Γ v d ∧ Γ s)⇒

∃a. (e s a ∧ τ a)
`e ≡ λΓ.λe.λτ. ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)

� ≡ λτ1.λτ2.λτ. ∀n1.∀n2.
τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

bind ≡ λx.λτ.λΓ. ∀s. Γ s⇒ ∃a. (s x a ∧ τ a)
v ≡ λd1.λd2. ∀s. d1 s⇒ d2 s

Hint Operators
Ty Env even odd typeof ·

Clausessafe(p) ← `p p : even.
`p (d; e) : τ ← d `d (d; e) : τ.
Γ `d (typeof x : τ1;h) ‖ (let x = e1; d) ; e : τ ←

Γ `e e1 : τ1 ←
(bind(x, τ1,Γ) → Γ `d (h ‖ d ; e) : τ ).

Γ `d (·‖·; e) : τ ← Γ `e e : τ.
Γ `e x : τ ← bind(x, τ1,Γ).
Γ `e e1 + e2 : τ ← Γ `e e1 : τ1 ←

Γ `e e2 : τ2 ← τ1
�
τ2 = τ.

even
�

even = even. even
�

odd = odd.
odd

�
odd = even. odd

�
even = odd.

Expression
let x = 4 ; let y = x+ 8 ; x+ y

Hinttypeof x even (typeof y even ·)

Figure 9: Proof scheme for even-odd system. Not
shown are the proofs (in higher-order logic) of all
the clauses.

a Hint. The consumer needs to verify that the expression
obeys her desired safety property—this was the point of the
whole exercise!—and she will do it using the adversary’s
proof scheme. Since the proof scheme was proved sound
(and she has checked the proof), then if the logic program
completes successfully, then safe(E) must be valid.
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Figure 10: Foundational PCC Framework. Trusted
components are shaded.

For the even-odd system, the implementation of these stages
is shown in Figure 9; sample source code written in Twelf is
in Appendix A.

What is a proof witness? Stage 1 (loading axioms and
safety predicate) needs to be done only once per safety
policy. In a PCC application, stage 2 (loading the proof
scheme) would need to be done when there are substantial
modifications to the the untrusted compiler. Stage 3 is re-
peated for each compiled program sent from the compiler to
the consumer. Clearly, any work done in stages 1 and 2 can
be amortized over many executions of stage 3. Although
the foundational proof derives from information transmit-
ted in stages 2 and 3, in measuring the effective size of proof
witnesses we can consider just the Hint sent in stage 3.

6. APPLICATION: FOUNDATIONAL PCC
The even-odd type system is just a toy example to demon-
strate some of the principles. Our real applications are
in proof-carrying code and distributed authorization. Our
checking system scales up to these examples quite well, as
we will explain.

In our application to foundational PCC, the hint H is an
expression in a calculus called LTAL [7], and the expression
E is a machine-language program, that is, a sequence of
32-bit natural numbers.

Figure 10 shows the major components of our foundational
proof-carrying code framework. The LTAL clauses are a set
of clauses in our restricted Prolog subset. Axioms & Archi-
tecture Spec comprise our Trusted Computing Base (TCB),
and are preloaded into our Checker. Between these two com-
ponents are proofs, based on the axioms, of all the LTAL
clauses.

A source program is compiled into a machine-code program
and a Low-level Typed Assembly Language (LTAL) expres-
sion. The compiler is not trusted, because it is a large pro-
gram that may have bugs. The trusted checker receives the

programs P ::= (M, ~B, ls)
basic blocks B ::= f [~α](v1 :τ1, . . . , vn :τn)S

maps M ::= (L,R, T )
label map L ::= {l1 7→ a1, . . . , ln 7→ an}
register map R ::= {v1 7→ r1, . . . , vn 7→ rn}
type abbrev . map T ::= {t1 7→ τ1, . . . , tn 7→ τn}

instr . sequence S ::= ι;S | branch | jmp
instructions ι ::= add vd, v1, v2 | · · · (53 more)

types τ ::= α | > | ⊥ | int32 | ∃α.τ | · · ·

Figure 11: LTAL Syntax

LTAL clauses, along with their soundness proofs in higher-
order logic; checks the soundness proofs; and then runs the
LTAL checker, which is a syntax-directed computation in
our subset Prolog.

Chen et al. [7] describe the LTAL and the compiler that
produces it; Tan et al. [19] describe the semantic model
of the LTAL. In this paper we focus on the aspects of the
LTAL calculus that enable it to be type-checked by our tiny
trusted checker.

Because a source-language programmer never sees the LTAL
program, we can design the LTAL calculus to be checkable
in our very restricted language. To use the checker’s limited
support for dynamic clauses, we have arranged the LTAL so
that: All identifiers in LTAL are small integers. No variables
have the same identifier. Program labels, local variables,
and type abbreviations are represented by disjoint sets of
integers. To make the LTAL type system entirely syntax-
directed, we use explicit coercions to guide the typing rules,
instead of relying on subtyping which would require a search.

We use the simple and limited arithmetic provided by the
checker: addition, multiplication, and truncating division on
32-bit natural numbers. Other operators are synthesized:
for example, such as A > B is div B A 0, using truncating
division.

6.1 Syntax
The syntax is illustrated in Figure 11. An LTAL program
consists of various maps (including type abbreviation decla-
rations, label map, and register map), a set of function decla-
rations, and a start label. Function declaration f [~α](m, v1 :
τ1, . . . , vn : τn)S defines a function (basic block) with label
f , type parameters ~α, formal parameters v1 : τ1, . . . , vn : τn,
and function body S which is a sequence of LTAL instruc-
tions. The function label f is assigned a code pointer type
codeptr[~α](v1 :τ1, . . . , vn :τn).

The label environment L is a map from program labels to
their addresses. The register-allocation environmentR maps
variables to temporaries (registers or spill locations). The
type abbreviation environment T maps type abbreviations
to their expansions. Type abbreviations are used to gain
concise type expressions and the type checker opens a type
abbreviation only when needed.



(1) LRT ; ρ; Φ `v x : int32 (2) LRT ; ρ; Φ `v y : int32

(3) `′ = `+ 4
(4) R(v) = tv (5) R(x) = tx
(6) realreg(tv) = rv (7) realreg(tx) = rx
(8) ym = match reg or imm(y)
(9) Φ′ = {v : int32} ∩ (Φ\v)
(10) decode list ` `′P P ′ i ADD(rx, ym, rv)

LRT ; Γ `ι (`; ρ; � ; Φ;P ){v ← x+ y}(`′; ρ; � ; Φ′;P ′)

Figure 12: The typing rule of add instruction.

6.2 Typing rules
The LTAL has hundreds of clauses. Here we will show just
one: a rule for Sparc add instruction, shown in Figure 12.

The first and second premises state that both x and y have
type int32, 32-bit integer type. Environment LRT is label,
register allocation, and type abbreviation maps. Address `
is the location of current instruction v ← x + y; address `′

is the location of the next instruction. Premise (3) specifies
that this instruction is 4 bytes long.

Premises (4), (5), (6), and (7) map variables to “tempo-
raries” and temporaries to registers. They use the R com-
ponent of the LRT environment; R is a context managed
with dynamic clauses.

Premise (8) matches a particular Sparc addressing mode;
premise (9) relates the value typing contexts Φ,Φ′ before
and after execution of the current instruction. The Φ con-
text is small (it just maps currently live local variables) and
is represented as a list, not with dynamic atomic clauses.

The decode list relation in premise (10) maps an instruc-
tion encoding (i.e., an integer) to its semantics. Specif-
ically, it says that the instruction word at the beginning
of machine code P with length `′ − ` is an add instruction
i ADD(rx, ym, rv). Machine code P is a sequence of integers
(instruction words); the pair (P, P ′) is a conventional Prolog
difference-list.

The conclusion is like a Hoare-logic judgement. In environ-
ment LRT , the instruction v ← x + y is at location `; the
length of the instruction is `′−`; this instruction does not af-
fect type contexts ρ or heap allocation environment � ; value
context Φ becomes Φ′ after execution; the machine code at
location `′ is P ′.

For a real-life program, the generated maps L, R, and T are
very large: the sizes of L and R are approximately linear in
the size of the program, and we intend to be able to type-
check programs with millions of instructions. In this typing
rule, premises (4) and (5) look up the temporaries of v and
x in map R; premise (8) looks up the temporary of y if it
is not an immediate. Therefore, an efficient environment
management scheme really is necessary.

Such typing rules, though bigger and more complicated than
the rules we presented for the even-odd system, can be exe-
cuted by our simple subset Prolog interpreter.

7. EXPERIMENTAL RESULTS
We have measured our trusted checker on the even-odd mi-
crobenchmark (we expect to have measurements of the full-
scale LTAL in the final version of this paper). Gross statis-
tics about these proof schemes are as follows:

EvenOdd LTAL
Core Axioms 341 341 lines of LF
App-specific 10 1522 lines of LF
Expr. Ops. 40 2 lines of LF
Sem. Model 218 ∼100,000 lines of LF
Hint Ops. 10 500 lines of LF
Clauses 12 3,500 lines of LF

Expression 7N 2N tokens
Hint 4N 30N tokens

Lines of LF does not include blank lines and comments.
Expression sizes for EvenOdd are measured with N as the
number of declarations, each declaration of the form let xi =
xj + xk; which is 7 tokens per declaration. Expression sizes
for LTAL are measured with N as the number of machine
instructions (32-bit integers) in the program to be proved
safe, with two tokens per integer, for example:

2551193600 next_word 2181292040 next_word 2214748172 end

From this it should be clear why LTAL has only two Expres-
sion Operators; everything shown in Figure 11 is actually
Hint Operators.

The logic program is the set of LTAL typing rules. There
are several hundred LTAL clauses or typing rules, some of
which take dozens of lines to write down, such as the one we
showed in Section 6.2 for Sparc add instruction. The LTAL
semantic model, which provides proofs of all these clauses,
is rather intricate and is the subject of several other papers
[4, 5, 1, 19].

Since the clauses are written in a subset of Prolog, we can
execute them in a standard Prolog system. For each bench-
mark, we compare execution time in the (highly optimized)
SICStus Prolog compiler with execution time in the (tiny)
Flit interpreter.

EvenOdd LTAL
Stage SICS Flit SICS Flit
1 (load axioms) n/a 0.01 n/a ?
2 (check scheme) n/a 0.07 n/a ?
3 (run scheme)
N = 100 0.002 0.01 n/a n/a
N = 1000 0.030 0.79 n/a n/a
N = 10000 1.460 61.90 n/a n/a
N = 870 n/a n/a 0.106 ?
N = 1816 n/a n/a 0.206 ?

All times are in seconds on a 2.2 GHz Pentium IV. The
system parses axioms and proof-check clauses once, and then
it is prepared to accept arbitrary expressions (with hints)
and to execute clauses to check safety. Flit is slower than
SICStus Prolog, but its speed is still adequate for many
kinds of applications. For LTAL, Flit can be expected by be
slower by a larger factor, because clause-search takes time
linear in the number of static clauses, and the LTAL proof-



scheme has many more clauses.

Of course, execution in SICStus loses the benefits of the
tiny trusted base: in that mode we don’t mechanically con-
nect the soundness proof for the LTAL clauses to the actual
SICStus execution, and the SICStus Prolog compiler and
interpreter also become part of the trusted base.

The Flit software itself now comprises about 1100 lines of
C code: about 800 as described in Section 1 for parsing the
axioms, reading proof graphs, and LF checking the proofs,
about 200 for the logic-program interpreter, and about 100
to manage the stages described in Section 5.1.

Necula’s oracle-based Prolog interpreter [12] is about 800
lines of C code. It should be straightforward to use our style
of LF proof-checking of Prolog clauses, but use oracle-based
execution instead of our interpreter. Then, instead of an
1100-line C program, we would have an 1700-line program.
In such a system, the proof witnesses would be just as tiny
as Necula’s, and the trusted base would be somewhat larger
than that of the system we have described in this paper.

8. CONCLUSION
To make a trustworthy proof-checker with small witnesses,
one should define a language for proof-schemes, with a way
to represent and check soundness theorems for the proof
schemes; then one should implement an interpreter to exe-
cute the proof scheme on the theorem and the witness.

Pollack explained much of this in “How to believe a machine-
checked proof” [17], as follows:

... I suggest that the “programming language”
for the checking program be a logical framework
[such as] the Edinburgh Logical Framework ....
we [could] program a checker in the internal lan-
guage of the framework .... The question then
arises: where will we find a believable implemen-
tation of a logical framework?

We ask you to believe very little. Our implementation is
based on LF, higher-order logic, and a small subset of pure
Prolog, all of which are well understood; and our implemen-
tation is about as small as possible—that is, to trust our
system there are only 1100 lines of code that you have to
understand.
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APPENDIX
A. MACHINE CHECKABLE PROOFS
To illustrate the format of the machine-checked soundness
proofs of the type-checking clauses, here we will show the
proofs related to the rule BindTy .

Since the proof is written in LF, we begin with a brielf in-
troduction to LF. LF is based on the λ-calculus with de-
pendent types, and it has syntactic entities at three lev-
els: objects, types, and kinds. Types classify objects and
kinds classify families of types. A deductive system is repre-
sented in LF using the judgements-as-types and derivations-
as-terms principle [8]: judgements (theorems) are repre-
sented as types, and derivations (proofs) are represented as
terms whose type is the representation of the judgement
(theorem) that they prove. In this way proof checking of
the object logic is reduced to type checking of the LF terms.

In general, a definition in Twelf (an implementation of LF
with many extended features) has the form: name : τ = exp.
including the dot. The type τ encodes the theorem to be
proved, and exp is a term of type τ . By judgements-as-types
and derivations-as-terms principle, term exp is a proof of
the theorem that τ encodes. And the name stands for the
whole term exp with type τ , i.e. the theorem and the proof.
LF and Twelf also permit introducing constructors with the
form name : τ . In our case, we have:

check_decl_cons:
|-d (typeof V Tv HINT) (let V Ev D) Gamma E T <-
|-e Gamma Ev Tv <-
(bind V Tv Gamma

-> |-d HINT D Gamma E T) =
[p1: bind V Tv Gamma -> |-d HINT D Gamma E T]
[p2: |-e Gamma Ev Tv]
|-d_i [s]

[p3: pf (sub_env @ Gamma @ (let V Ev D))]
[p4: pf (Gamma @ s)]

cut (bind_i [s_v]
[p7: pf (Gamma @ s_v)]

|-e_l p2 p7 [a_v]
[p5: pf (Ev @ s_v @ a_v)]
[p6: pf (Tv @ a_v)]

cut (let_e1 (sub_env_e p3 p7) p5)
[p8: pf (s_v @ c V @ a_v)]

exists_i a_v
(and_i p8 p6))

[p10: bind V Tv Gamma]
cut (sub_env_i [s’]

[p12: pf (Gamma @ s’)]
let_e2 (sub_env_e p3 p12))

[p20: pf (sub_env @ Gamma @ D)]
|-d_e (p1 p10) p20 p4.

The name of this theorem is check decl cons (in Section 3,
we used BindTy for presentation purpose). The theorem
itself is the type between : and =; and the proof is the term
after =.

A logic programming clause in Twelf of the form:

f x y A ← g y ← h x A.

corresponds to the following Prolog clause:

f(x, y,A) :- g(y) , h(x,A).

So apprarently the type above between : and = encodes
the BindTy rule with the forward arrow → interpreted as
dynamic clauses as we discussed in Section 3.1.

The notation “[x:t]A” denotes λx : t.A. The proof above
we first introduce two λ-bindings; that is, we assume that
the two premises of the typing rule hold. Then we use the
|-d introduction rule |-d i to get a proof of

|-d (typeof V Tv HINT) (let V Ev D) Gamma E T,
i.e. the conclusion.

The rule |-d i introduces three λ-bindings: s, p3, and p4.
Note that the type of s is omitted and Twelf will reconstruct
it to a State type. Lemma cut is as follows:

cut: pf A -> (pf A -> pf B) -> pf B =
[p1:pf A][p2:pf A -> pf B] imp_e (imp_i p2) p1.

The imp i and imp e (modus ponens) are introduction and
elimination lemmas for implication. In general, it means if
we have a proof of A, and a function which maps a proof of
A to a proof of B, then we can get a proof of B. This is very
similar to imp e or modus ponens, but cut use LF function
type → instead of object implication. When using cut, we
first prove some formula A, then bind this proof (give it a
name so that we can refer to it later) and continues to prove
the goal (B in this case). The @ is the object logic level
term application.

In this way, it should be quite straightforward to follow the
proofs above. Thus the description of the remaining proofs
is omitted.


