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Proofs by induction are very common in mathematics and are undoubtedly
familiar to the reader. One also encounters quite frequently—without being
conscious of it—definitions by induction. An example is the definition mentioned
above of @" by ¢ = 1, a’** = @'q. Definition by induction is not as trivial as it
may appear at first glance. This can be made precise by the following

RECURSION THEOREM. Let Sbheaset, pa map of S into itself, a an element
of S. Then there exists one and only one map f from N to S such that

1. /(0) = a, 2. fn*) = @(f(n), n e N.8

Proof. Consider the product set N x §. Let I' be the set of subsets U of
N x § having the following two properties: (i) (0, a) € U, (ii) if (n, b) € U then
(77, p(b)) € U. Since N x S has these properties it is clear that I' % 2. Let f be
the intersection of all the subsets U contained in I'. We proceed to show that fis
the desired function from N to S. In the first place, it follows by induction that
ifn € N, there exists a b € S such that (n, b) €/. To prove that fisa map of N to .S
it remains to show that if (n, b) and (, b") e fthen b = b'. This is equivalent to
showing that the subset 7' of # € N such that (n,0) and (n, b") € fimply b = b’ is
all of N. We prove this by induction. First, 0 € 7. Otherwise, we have (0, @) and
(0,a’) e f but @ # a'. Then let /* be the subset of f obtained bv deleting the
element (0, @) from f. Then it is immediate that /" satisfies the defining condi-
tions (i) and (ii) for the sets U € I'. Hence f* = f. But f' & fsince f* was obtained
by dropping (0, @') from f. This contradiction proves that 0 € 7. Now suppose
we have a natural number r such that re T but r*= ¢ 7. Let (r, ) €f. Then
(r*, @(b)) € fand since r * ¢ T, we have a ¢ # @(b) such that (r*, ¢) € /. Now con-
sider the subset /' of f obtained by deleting (»*, ¢). Since »* # 0 and / contains
(0, a), f’ contains (0, @). The same argument shows that if »n € N and »n # » and
(n,d)ef’ then (n*,¢(d))ef’. Now suppose (r,b’)ef’ then b' = b and
(r*, @(b)) € f" since (r*, (b)) was not deleted in forming /' from f. Thus we see
that /” € I' and this again leads to the contradiction: /' = f, /" < f We have
therefore proved thatif r € T'then r* € 7. Hence T = N by induction, and so we
have proved the existence of a function f satisfying the given conditions. To
prove uniqueness, let g be any map satisfying the conditions. Then ge T so
g = f.Butg = ffor two maps [ and g implies f = g, by the definition of a map.
Hence f is unique.

‘3 One is tempted to say that one can define finductively by conditions 1 and 2. However,
thl? (_iqes not make sense since in talking about a function on N we must have an a priori
dghmlmn of f(n) for every ne N, A proof of the existence of /' must use @/l of Peano’s
axioms, An_ cxample illustrating this is given in exercise 4, p. 19. For a fuller account of
these Questions we refer the reader to an article, * On mathematical induction,” by Leon
Henkm. in the American Mathemarieal Moanthly, vol. 67 (1960), pp. 323-338. Henkin gives
a proof of the recursion theorem based on the concept of * partial” functions on N. The

proofl we shall give is due independently to P. Lorenzen, and to D. Hilbert and P. Bernays
(jointly),



