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1 Angluin’s Algorithm

1.1 From Last Time

Q = states
q0 = start state
δ : Q× {a, b} → Q (transition function)
v : Q→ {0, 1} (accept/reject)
qs : state reached by executing s from q
M(s) = v(qos)
n = |Q|

•Maintain set T ( initially T = {λ})
•Use T and membership queries to maintain tree and to build M̂
• Make equivalence query M̂
• If M = M̂ done
• else use counterexample to add to T .

1.2 How to grow T in order to find the FSM
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Figure 1: FSM M which we want to find

Let’s run through the algorithm by using Fig. 1. Initially T = {λ}.
Fig. 2 shows how M̂ , in Fig. 3, is built by starting with T = {λ}.



Figure 2: The tree shows how M̂ is built by
starting with T = {λ}.

Figure 3: M̂ obtained by starting
with T = {λ}.

Figure 4: Shows that number of internal nodes cannot be larger than number of states

Number of internal nodes will never be larger than n. This can be seen from figure 4.

Now we will use a counterexample to grow T . Counterexample: baaa (In Fig. 1
you get 0, but in M̂ , Fig. 3 you get 1)

[s] = state reached in M̂ on string s (name of the reached state)(Note: Name of a state is
the string that brings you to that state from the initial state.)
[aba] = a
[aab] = λ
M̂(s) = v̂(q̂os) = v(qo[s]) = M([s]) = M̂([s])

where, M̂(s) is the output of the machine when s is executed. Here, M̂(s) = M̂([s])
because both s and [s] reach the same state in M̂ .

Fact: [[s]w] = [sw]. This can be seen from Fig. 5.
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Figure 5: [[s]w] = [sw]

We are trying to figure out what to add to T = {λ}. Suppose we can find:
s: internal node
e ∈ {a, b}
t: that distinguishes se from [se], i.e. M(set) 6= M([se]t)
Claim: If we add t to T , se will become an internal node, i.e., the number of internal nodes
will increase. Because M(set) 6= M([se]t)This can be seen from Fig. 6.

Figure 6: If we add t to T the number of internal nodes will increase

Now, we will use the counterexample baaa to figure out what we should add to T.

M([λ]baaa) = M(baaa) = 0
M̂(baaa) = M([baaa]) = 1
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So, we got a 0 and a 1. Now we will fill in between step by step, and find two consec-
utive outputs that are different.

M([λ]baaa) = 0
M(λaaa) = M([b]aaa) = 0
M(aaa) = M([ba]aa) = 0
M(aa) = M([baa]a) = 1

M([baaa]) = 1

M([ba]aa) 6= M([baa]a), so we can set:
s = [ba]
e = a, and
t = a
Let’s double check to see that t distinguishes se from [se].
se = [ba]a
[se] = [[ba]a] = [baa] (from the above fact)
So, M(set) = M([ba]aa) 6= M([baa]a) = M([se]t).

Number of equivalence queries≤ n (because every time we use an equivalence query, we
increase the number of internal nodes by 1 and the total number of internal nodes ≤ n).

Number of membership queries ≤ O(n2 + rn) where r is the length of the longest
counterexample.

2 Reinforcement Learning

Figure 7: Summary of reinforcement learning

Agent decides on an action based on the state. We want to find a way to choose the actions
to maximize the reward.
Policy: A mapping from states to actions.

s0
a0−→
r1
s1

a1−→
r2
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a2−→
r3
. . . (1)
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Two things to consider:
- Delayed reward
- The tradeoff between exploration and exploitation. (Should you try different things or
always go with the way you know?)

Rewards and states are random variables.

We will assume that Pr[st+1|st, at, st−1, at−1, · · · ] = Pr[st+1|st, at] and also that ri depends
only on si−1 and ai−1. These assumptions are called the ”Markov property”.

Example: In Fig. 8, when you choose to go up, you may fall down with probability
0.01, or reach next level with probability 0.99. When you fall down, you get a negative
reward depending on how high you were before you fell down. When you reach the top
level you get a reward of 100.

In a Markov Decision Process (MDP), we have:
S: States,
A: Actions,
distribution defining Pr[st+1 = s′|st = s, at = a] = Pr[s′|s, a], and
distribution defining (rewards): Pr[rt+1|st, at]
We will be more interested in E[rt+1|st = s, at = a] = r(s, a).

Policy π : S → A
Goal: Find the best π that maximizes the total reward.
How do we define ”best”?: The value of a policy is the reward we get when we use that
policy.

the value of π at state s = V π(s) = Eπ[rt+1 + rt+2 + · · · |st = s]
at = π(st): the action recommended by π

Rt = rt+1 + rt+2 + · · · : return

The rewards in the future will be made less valuable, in other words, we will discount the
future rewards. So Rt will be:
Rt = rt+1 + γrt+2 + γ2rt+3 + · · · where γ ∈ [0, 1)
Thus if γ is large, we are interested in longer term. If |rt| ≤ K, then

| Rt |≤ K + γK + γ2K + · · · = K
1−γ

The goal is: maxπ V π(s) for all s.
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Figure 8: Markov Decision Process
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