
COS 511: Foundations of Machine Learning

Rob Schapire Lecture # 19
Scribe: Jeffrey Bigham April 15, 2003

1 Review From Last Time

During the last lecture we discussed online learning with log loss with experts advice. These
experts predicted probability distributions with the goal being to come close to the best
expert online. This can also be viewed from a coding theory point of view by viewing this
online learning method as a way to combine compression methods to eventually find the
best.

We introduced some notation:
xt1 = x1, x2, ..., xt
pt,i(xt) = pi(xt|xt−1

1)
qt(xt) = q(xt|xt−1

1)
In particular, we had the following setup:
for t = 1, ..., T
expert i→ pt,i
master → qt
(the master is the combiner of all the individual experts)
observe xt ∈ X
loss of expert i = − ln(pt,i(xt))
loss of master = − ln(qt(xt))
Our goal is for the log loss of the master to not be much worse than the loss of the best

expert.
Last time the algorithm was motivated by thinking of selecting the xt’s randomly, but

they are actually worst case.
From this we came up with two rules:

1. an expert i∗ is chosen according to Pr[i∗ = i] = 1
N

2. Pr[xt|i∗ = i] = pi[xt|xt−1
1]

2 Analyzing the Loss

Now we are still left with the question of how to analyze the loss, which turns out to be
fairly easy.

First we will define pi(xt1) = Pr[xt1|i∗ = i] and q(xt1) = Pr[xt1].
We then have

Pr[xt1] =
∑
i

Pr[i∗] Pr[xT1 |i∗ = i] (1)

=
∑
i

1
N
pi(xT1) (2)

Master Algorithm Loss:

−
T∑
t=1

ln(q(xt|xt−1)) = − ln
T∏
t=1

q(xt|xt−1
1) (3)

= − ln q(xT1) (4)

= − ln

(
1
N

∑
i

pi(xT1)

)
(5)

≤ − ln
(

1
N
pi(xT1)

)
(6)

= − ln(pi(xT1)) + lnN (7)

= −
T∑
t=1

ln(pi(xt|xt−1
1)) + lnN (8)

That is to say that the cumulative loss is less than or equal to the loss of the best expert
plus the log of the number of experts. The lnN is negligible intuitively because you can
think of it as an amount of loss per round that is rapidly going to zero:

− 1
T

T∑
t=1

ln(q(xt|xt−1
1)) ≤ − 1

T

T∑
t=1

ln(pi(xt|xt−1
1)) +

lnN
T

(9)

3 Non-Uniform Distribution

Before we used a uniform distribution, but in general you can set any prior Pr[i∗ = i] = πi,
which transforms (8) to

≤ min
i

[
−

T∑
t=1

ln(pi(xt|xt−1
1)) + ln

1
πi

]
(10)

4 An Example

X = {0, 1}
Have an expert for every number between 0 and 1.
Define expert p ∈ [0, 1]. It predicts 1 with probability p and 0 with probability 1 − p.

Working through the steps from last time we get:

q =

∫ 1
0 p

h+1(1− p)t−hdp∫ 1
0 p

h(1− p)t−hdp
(11)

=
h+ 1
t+ 2

(12)

where h = # of 1’s so far and wt,p = ph(1− p)t−h
You would expect that the intuition for this would be that if you flip a coin t times you

would see h heads, but this shows that a sort of smoothing is occurring. It also means that
this gives meaningful predictions even before you start.

2

5 Switching Experts

So far we have always talked about how to predict as well as the best expert, but this isn’t
always reasonable. Maybe the best expert changes between different blocks of rounds. For
instance during a sequence of trials, expert i could be the best on the first n trials and
expert j could be the best on the next m trials and so on. In this section we will explore
how to find the best sequence of switching experts. Doing this with the ability to switch at
every time step is impossible, but given a limit on the number of switchings, how can you
compete against the best switching algorithm.

Simple solution:
Given k switches we can create a Meta-Expert for every possible switching sequence and

run the algorithm developed in the previous section on each.
A rough estimate of the number of meta experts is Nk+1(T

k

)
.

The additional error in 8 becomes (k + 1) lnN + k lnT . That is each time you switch
experts you pay something on the order of lnN + lnT . However, if implemented naively
the running time will be very great, proportional to Nk+1

(
T
k

)
but because the experts are

well-structured we can do much better.
Members of the class suggested that using some sort of dynamic programming approach

might work, but instead we will look at all meta-experts but arrange the priors to put a lot
of weight on experts with few switches and very little on those with a lot of switches.

meta-expert: e1, e2, ..., eT where et = i, meaning that the meta expert is using expert i
during round t. The algorithm will pick which et will be used on round t.

Pr[~e∗ = ~e] = π(~e) (13)

Pr[e∗1 = i] =
1
N

(14)

Pr[e∗t+1|e∗t] =

1− α if e∗t+1 = et ,

α
N−1 otherwise.

(15)

Starting from the end, we can analyze this as follows, setting α = k
T−1 :

− lnπ(~e) = − ln[
1
N

(
α

N − 1

)k
(1− α)T−k−1] (16)

= lnN + k ln
N − 1
α

+ (T − k − 1) ln
1

1− α (17)

= lnN + k ln
(N − 1)(T − 1)

k
− (T − k − 1) ln(1− k

T − 1
) (18)

The last term of this is ≈ k(1− k
T−1) ≤ k.

This is quite similar to before but the questions of how to compute q and the update
remains.

First q:

3

q(xt|xt−1
1) = Pr[xt|xt−1

1] (19)

=
∑
i

Pr[xt, e∗t = i|xt−1
1] (20)

=
∑
i

Pr[e∗t = i|xt−1
1]︸ ︷︷ ︸Pr[xt|xt−1

1 , e∗t = i]︸ ︷︷ ︸ (21)

The first term of the above product is wt,i and the second is pi(xt|xt−1
1). We now set

out to determine how to compute wt,i efficiently.
Initially:

w1,i =
1
N

During each update:

wt+1,i = Pr[e∗t+1 = i|xt1] (22)

=
∑
j

Pr[e∗t+1 = i, e∗t = j|xt1] (23)

=
∑
j

Pr[e∗t = j|xt1]︸ ︷︷ ︸Pr[e∗t+1 = i|e∗t = j, xt1]︸ ︷︷ ︸ (24)

The first term of the product in the final summation is basically a measure of how good
the experts are. The second term

=

{
1− α if i = j
α

N−1 else
(25)

Bayes’ Rule Refresher:

Pr[B|A] =
Pr[A|B] Pr[B]

Pr[A]

Expanding the first term we get:

= Pr[e∗t = j|xt−1
1 , xt] (26)

=
Pr[xt|e∗t = j, xt−1

1] Pr[e∗t = j|xt−1
1]

Pr[xt|xt−1
1]

(27)

=
pj(xt|xt−1

1)wt,j
q(xt|xt−1

1)
(28)

The α term can be seen as a sort of switching rate and it can be set accordingly. In
practice, however, you probably won’t know the prior that favors fewer switches.

The algorithm just presented is usually called the Weight Share algorithm.

4

6 How To Make Money

In this section we switch gears a little and turn to how we can use the techniques we have
recently learned for making money. Suppose you have N stocks and you want to decide
how to invest your money in these stocks over a given time period. We will assume that we
start with $1 although everything we will discuss can be translated into greater amounts
straightforwardly.

On each day t, every stock either goes up or down at least a little.

pt(i) =
price of i at end of day t

price of i at beginning of day t

In each time period we need to decide how to allocate our money.

wt(i) = fraction of wealth in stock i at beginning of day t

∑
i

wt(i) = 1

Let St be the total amount of wealth at the beginning of day t. At the beginning of day
t we then have Stwt(i) in stock i and by the end of the day we have Stwt(i)pt(i).

St+1 =
∑
i

Stwt(i)pt(i) = St(~wt · ~pt) (29)

St+1 =
T∏
t=1

(~wt · ~pt) · (S1 == 1) (30)

Maximizing this product gives us:

max
∏
t

(~wt · ~pt) ≡ max
∑
t

ln(~wt · ~pt) (31)

min
∑
t

− ln(~wt · ~pt) ← just the loss function for learning (32)

To do almost as well as the best stock, we can simply apply Bayes’ algorithm almost
directly:

qt(xt|xt−1
1) =

∑
i

wt,ipi(xt|xt−1
1) (33)

Our earlier algorithm gave a bound of:

−
T∑
t=1

ln(q(xt|xt−1
1)) ≤ −

T∑
t=1

ln(pi(xt|xt−1
1)) + lnN (34)

5

and doing a translation between the two we arrive at

−
T∑
t=1

ln(~wt · ~pt) ≤ −
T∑
t=1

ln(pt(i)) + lnN (35)

for our loss.
The algorithm basically just tells us to invest in each stock evenly in the beginning and

then leave it there. Our wealth is as follows:

ST+1 = wealth of algorithm ≥ 1
N

wealth of best stock (36)

7 Foreshadowing

Next time we will look at something better → competing against a consistently balanced
portfolio.

6

