COS 511: Foundations of Machine Learning

Rob Schapire Lecture #14
Scribe: Eric Glover March 27, 2003

1 Winnow

review from last time
n>0 «— learning rate
Wy =1/N « Initial distribution
fort =1,2,.. T «+ T steps
getr; € R"
predicty, = sign(w, - ;)  Make prediction for the current step
observey; € {—1,1}

(update:)
if v = 9, thenwy; = W, We got it right, so we don't do any updating
else

enytxt,i
Z

(1)

Wiy1,5 = Wiy

Equation 1 has the property that if the sigrnyef, ; is positive, then it will increasey;; ;, and
if the sign is negative, it will decrease it.

1.1 Analysis
Assume||Z||oo < 1 note: L, norm is the maximum absolute value of any component
36 > 0,u € R" st «— i is the true weights

Ve ye( - &) > 6 « for all examples, margin is at least
l|Z]f =1  « Sum of the absolute value of all components.as$ 1.
Thm:

, In N
# mistakes< 1 5 (2)
776 + ln(e77+e—n)

Solving for minimum value for Equation 2, we get:

) 2In N . 1 146
mistakes< ifn=-1

) 3)



1.2 Proof

Measure of progress - how closg (predicted weights) is ta (actual weights).
® = Potential function of measure of progress
Since bothi andw; are probability distributions, we use Relative Entropy (RE):

®, = RE(d||d;) : RE(I|]) = szln— 4

try to prove every time makes a mistakedrops by some amount. Since RE alway$), this
gives a bound on the total number of mistakes.

Since nothing happens when the algorithm does not make a mistake, we assume that it makes a
mistake on every round.

iJ u;ln — uzln 5
S Z We+1,3 ZZ: Wy i ®)
In( i )=Inu; —Inwgq,; and In( i ) =Inu; —Inwy, (6)
Wi41,i Wi41,i
Given Equation 5 and 6, you get 7:
Wy
st == St Y o

Wt1,5
=> wnZ =) iy, 8
i i

=1InZ; —ny(u - 74) 9)

We know thaty, (@ - Z;) > 6 and that
= Z wienytxt,i (10)

So how do we upper bound an exponential?
We upperbound the exponential by a linear as shown in Figure 1.
The new equation using the linear bound is:

o S (1) 1 22) wy

el +e ™ el +e
< <T> > wi+ (T) szyl‘z 12)

%
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Figure 1: Upperbound an exponential on the range [-1,1] by a linear.

Since:y",; w; = 1, ¥4~ > 0 and since we made a mistakg(w; - #;) < 0, we can conclude
that right half is always negative, and hence the bound from Equation 12 is:

n -n
7, < ete” (13)
2
Thus:
el +e
(DtJrl - (I)t S In (T) - ?76 (14)
. L el4e "
We define:c = In <T> —nod
Continuing:
¢, = RE(ul||w) = Zuz In(u; N) < Zul InN=IhN (15)

Thus the first round®; has an upperbound ai NV, and each additional round this value must
drop bye, as shown by Equation 14
Hence, the maximum number of mistakes<s2¥.

If n = L In(1£0) then:c = RE(} - §||1) which> 2(8)? = &
Summary:

For percep'tron:(si2 — Nk mistakes folk experts.

For Winnow: — 2k2In N, which is better whelt << N.

1.3 What about the constraintu; > 0

Until now, we assumed thatis all positive, so how do we permit componentsidb be negative,
or to correspond with negative values, without causing math problems later?

The solution is to duplicate the componentsgpbut make the right half (the duplicates) nega-
tive, and to have: broken into two halves, one for the positive components, and one for the negative
components.

For example: lets say we wanted the following:



F=(1,.7,—4) 7= (5,.2-.3)

We would duplicate and invert the sign of the components, Gb:

= (1,7,—-4) - (1,.7,. —4, —1,-.7,.4)

For & we zero out the negative components on the left, and zero out the positive components on
the right as shown:

i=(5,2,-3)—(5.20 0,0,.3)

This results in the same dot product as if you used your original valuessiodz. The resulting
algorithm is called the “balanced winnow” algorithm, and is accomplished by doubling the number
of weights as described above.

2 Estimating Probabilities of Predictions

Previous classification learning problems the goal was to minimize the probability of making a
mistake. The question is how do we estimate the probability of a given prediction.

For example:
x is the current weather conditions, ands the prediction for tomorrow.

1 if rain tomorrow
0 otherwise

This problem is a distribution of paifs;, y) ~ D. The goal is to learn to estimate a distribution:
p(z) = Prly = 1|z]. This is equal to the expectation Biy|x|. In this casey is binary, although in
other problemsy might be a real. For examplg,could be the amount of rain on a given day.

We defineh(z) as an estimate ¢f(x) from a given expert. We waiit(z) ~ p(z), but we never
seep(x), we only see the: values. In otherwords, there might be a 80% chance of rain, although it
might not actually rain. All we know is that it didn’t rain, not that there was an 80% chance of it.

The method is to penalizeon (z, y) as follows:

(h(x) —y)? is aloss function, also called a cost function, in this case, square loss, quadratic loss
or Breir score.

y:

We have a set of predictions and, y1),. .., (zm,ym) and the actual events. We wish to
chooseh that minimizes the loss function, as in Equation 16:

Z(h(xi) —yi)? (16)

If his unrestricted, when is the expected I63¢h () —y)?] minimized? Fixz. Letp = p(x) =
Prly = 1], h = h(x). Then
El(h=y)*) =p(h— 1) + (1= p)h* (17)

We now minimize ovef by taking the derivative with respect to h, and set equal to O:

% =2p(h— 1) +2(1 — p)h = 2(h — p) (18)

Equation 18 has a minimum whén= p. Hence the loss function is minimized when h=p

4



Continuing:

Ey[(h(z) = p(2))’] = Evyl(h(x) = 9)°] = Eoyl  (p(2) —9)° ] (19)
goal observed Intrinsic randomness

Note: the expectaion is over boihy, since it is constant in terms of h. Also, thér) is the
intrinsic randomness, or the variance avg over:all

Prove for a single: then average over aif's.

Claim:

Ey[h(z) = p(a)]* = Euy[(h(z) = y)*] = By yllp(z) — y)*] (20)
(h—p)* = Bl(h - y)*] = E[(p — y)*] (21)

(h —p)* = E[h* = 2hy +y°] = E[p* — 2py + 4] (22)
(h—p)2:h2—2h\Efy/—p2+2p@/:h2—2hp—l—p2 (23)
(h—p)* = (h—p)? (24)

Hence, we prove the claim from Equation 20 for a fixedTo get the more general statement, we
only need to average over randamsince

E.y[ANY] = E,[E,JANY 2] (25)

3 Estimate E[(h(z) — y)?]

We estimateE[(h(x) — y)?] by empirical average:

El(h(x) —y)*) = = > _(h(z:) — v:)? (26)

Li(z,y) = (h(z) —y)? 27)

We wantE|[Ly] ~ E[L;] forall h € H

Chernoff bounds, union bound, VC-dim, growth function can all be generalized.
Q: How to minimize loss function for training set?

One answer: Perform a linear fit as shown in Figure 2.

Given(z1,y1)s--- 5 (Tm, Ym)



Try linear fit:
h(x)=wx
assume through

origin

(0,0)

Figure 2: Fit data from h(x) with a line.

min : Z(wxl —;)? (28)
To minimize Equation 28 we set the derivatigg = 2> ,(wx; — y;)z; to 0 and get Equation
29:
Z YiTy,
w= S (29)

4 Generalize to more than one dimension

given (flvyl)a ey (fmaym)! fz € anyz €ER
w using prediction ruléy(¥) = @ - &
loss(h) = >, (@ - T — y;)?

minimize: l
ﬁ 2
< ,’L"{ — ’U)l yl
— I — wy Y2
— j% - W Ym
M w b

This can be solved by linear regression (next time).



