1 Winnow

review from last time

\[\eta > 0 \quad \text{← learning rate} \]
\[\vec{w}_{1,i} = 1/N \quad \text{← Initial distribution} \]
for \(t = 1, 2, \ldots T \) \(\text{← T steps} \)
get \(\vec{x}_t \in \mathbb{R}^n \)
predict \(\hat{y}_t = sign(\vec{w}_t \cdot \vec{x}_t) \)
Make prediction for the current step
observe \(y_t \in \{-1, 1\} \)

(update:)
if \(y_t = \hat{y}_t \) then \(\vec{w}_{t+1} = \vec{w}_t \)
We got it right, so we don’t do any updating
else

\[w_{t+1,i} = \frac{w_{t,i} e^{\eta y_t x_{t,i}}}{Z_t} \]

Equation 1 has the property that if the sign of \(y_t x_{t,i} \) is positive, then it will increase \(w_{t+1,i} \), and if the sign is negative, it will decrease it.

1.1 Analysis

Assume \(||\vec{x}_t||_\infty \leq 1 \)
note: \(L_\infty \) norm is the maximum absolute value of any component
\[\exists \delta > 0, \vec{u} \in \mathbb{R}^n \text{ st} \]
\[\forall t \ y_t(\vec{u} \cdot \vec{x}_t) \geq \delta \quad \text{← for all examples, margin is at least } \delta \]
\[||\vec{u}||_1 = 1 \quad \text{← Sum of the absolute value of all components of } u \text{ is } 1. \]
\[u_i \geq 0 \]
Thm:

\[\# \text{ mistakes} \leq \frac{\ln N}{\eta \delta + \ln \left(\frac{2}{e^{-2 \eta} + e^{-\eta}} \right)} \]

Solving for minimum value for Equation 2, we get:

\[\# \text{ mistakes} \leq \frac{2 \ln N}{\delta^2} \quad \text{if } \eta = \frac{1}{2} \ln \left(\frac{1 + \delta}{1 - \delta} \right) \]
\subsection{Proof}

Measure of progress - how close \vec{w}_t (predicted weights) is to \vec{u} (actual weights).

Φ = Potential function of measure of progress

Since both \vec{u} and \vec{w}_t are probability distributions, we use Relative Entropy (RE):

$$\Phi_t = RE(\vec{u} \| \vec{w}_t) = \sum_p p_i \ln \frac{p_i}{q_i}$$

(4)

try to prove every time makes a mistake Φ drops by some amount. Since RE always ≥ 0, this gives a bound on the total number of mistakes.

Since nothing happens when the algorithm does not make a mistake, we assume that it makes a mistake on every round.

$$\Phi_{t+1} - \Phi_t = \sum_i u_i \ln \frac{u_i}{w_{t+1,i}} - \sum_i u_i \ln \frac{u_i}{w_{t,i}}$$

(5)

$$\ln\left(\frac{u_i}{w_{t+1,i}}\right) = \ln u_i - \ln w_{t+1,i} \quad \text{and} \quad \ln\left(\frac{u_i}{w_{t+1,i}}\right) = \ln u_i - \ln w_{t,i}$$

(6)

Given Equation 5 and 6, you get 7:

$$\Phi_{t+1} - \Phi_t = \sum_i u_i \ln \frac{w_{t,i}}{w_{t+1,i}} = \sum_i u_i \ln \frac{Z_t}{e^{\eta y_t x_{t,i}}}$$

(7)

$$= \sum_i u_i \ln Z_t - \sum_i u_i \eta y_t x_{t,i}$$

(8)

$$= \ln Z_t - \eta y_t (\vec{u} \cdot \vec{x}_t)$$

(9)

We know that $y_t(\vec{u} \cdot \vec{x}_t) \geq \delta$ and that

$$Z_t = \sum_i w_i e^{\eta y_t x_{t,i}}$$

(10)

So how do we upper bound an exponential?

We upperbound the exponential by a linear as shown in Figure 1.

The new equation using the linear bound is:

$$Z_t \leq \sum_i w_i \left[\left(1 + \frac{y x_i}{2}\right) e^{\eta} + \left(1 - \frac{y x_i}{2}\right) e^{-\eta} \right]$$

(11)

$$\leq \left(\frac{e^{\eta} + e^{-\eta}}{2}\right) \sum_i w_i + \left(\frac{e^{\eta} + e^{-\eta}}{2}\right) \sum_i w_i y x_i$$

(12)
Since: \(\sum w_i = 1 \), \(\frac{e^\eta + e^{-\eta}}{2} > 0 \) and since we made a mistake, \(y_t(\vec{w}_t \cdot \vec{x}_t) \leq 0 \), we can conclude that right half is always negative, and hence the bound from Equation 12 is:

\[Z_t \leq \frac{e^\eta + e^{-\eta}}{2} \]

Thus:

\[\Phi_{t+1} - \Phi_t \leq \ln \left(\frac{e^\eta + e^{-\eta}}{2} \right) - \eta \delta \]

We define:
\[c = \ln \left(\frac{e^\eta + e^{-\eta}}{2} \right) - \eta \delta \]

Continuing:

\[\Phi_1 = \text{RE}(\vec{u} || \vec{w}) = \sum_i u_i \ln(u_i N) \leq \sum_i u_i \ln N = \ln N \]

Thus the first round: \(\Phi_1 \) has an upperbound of \(\ln N \), and each additional round this value must drop by \(c \), as shown by Equation 14.

Hence, the maximum number of mistakes is: \(\leq \frac{\ln N}{c} \).

If \(\eta = \frac{1}{2} \ln(\frac{1+\delta}{1-\delta}) \) then: \(c = \text{RE}(\frac{1}{2} \cdot \frac{\delta}{2} || \frac{1}{2}) \) which \(\geq 2(\frac{\delta}{2})^2 = \frac{\delta^2}{2} \)

Summary:

For perceptron: \(\frac{1}{\delta^2} \to Nk \) mistakes for \(k \) experts.

For Winnow: \(\rightarrow 2k^2 \ln N \), which is better when \(k << N \).

1.3 What about the constraint \(u_i \geq 0 \)

Until now, we assumed that \(\vec{u} \) is all positive, so how do we permit components of \(\vec{u} \) to be negative, or to correspond with negative values, without causing math problems later?

The solution is to duplicate the components of \(\vec{u} \), but make the right half (the duplicates) negative, and to have \(\vec{u} \) broken into two halves, one for the positive components, and one for the negative components.

For example: let’s say we wanted the following:
\[\vec{x} = (1, .7, -.4) \quad \vec{u} = (.5, 2, -.3) \]

We would duplicate and invert the sign of the components of \(\vec{x} \), so:
\[\vec{x} = (1, .7, -.4) \rightarrow (1, .7, -4, -1, -7, .4) \]

For \(\vec{u} \) we zero out the negative components on the left, and zero out the positive components on the right as shown:
\[\vec{u} = (.5, 2, -.3) \rightarrow (.5, 2, 0, 0, .3) \]

This results in the same dot product as if you used your original values for \(\vec{u} \) and \(\vec{x} \). The resulting algorithm is called the “balanced winnow” algorithm, and is accomplished by doubling the number of weights as described above.

2 Estimating Probabilities of Predictions

Previous classification learning problems the goal was to minimize the probability of making a mistake. The question is how do we estimate the probability of a given prediction.

For example:

- \(x \) is the current weather conditions, and \(y \) is the prediction for tomorrow.

\[
y = \begin{cases}
1 & \text{if rain tomorrow} \\
0 & \text{otherwise}
\end{cases}
\]

This problem is a distribution of pairs \((x, y) \sim D\). The goal is to learn to estimate a distribution:
\[
p(x) = \Pr[y = 1|x].
\]

This is equal to the expectation or \(E[y|x] \). In this case \(y \) is binary, although in other problems, \(y \) might be a real. For example, \(y \) could be the amount of rain on a given day.

We define \(h(x) \) as an estimate of \(p(x) \) from a given expert. We want \(h(x) \approx p(x) \), but we never see \(p(x) \), we only see the \(x \) values. In otherwords, there might be a 80% chance of rain, although it might not actually rain. All we know is that it didn’t rain, not that there was an 80% chance of it.

The method is to penalize \(h \) on \((x, y)\) as follows:
\[
(h(x) - y)^2
\]

is a loss function, also called a cost function, in this case, square loss, quadratic loss or Breir score.

We have a set of predictions and \((x_1, y_1), \ldots, (x_m, y_m)\) and the actual events. We wish to choose \(h \) that minimizes the loss function, as in Equation 16:

\[
\sum_i (h(x_i) - y_i)^2 \tag{16}
\]

If \(h \) is unrestricted, when is the expected loss \(E[(h(x) - y)^2] \) minimized? Fix \(x \). Let \(p = p(x) = \Pr[y = 1|x], h = h(x) \). Then
\[
E[(h - y)^2] = p(h - 1)^2 + (1 - p)h^2 \tag{17}
\]

We now minimize over \(h \) by taking the derivative with respect to \(h \), and set equal to 0:
\[
\frac{d}{dh} = 2p(h - 1) + 2(1 - p)h = 2(h - p) \tag{18}
\]

Equation 18 has a minimum when \(h = p \). Hence, the loss function is minimized when \(h=p \).
Continuing:

\[E_x[(h(x) - p(x))^2] = E_{x,y}[(h(x) - y)^2] - E_{x,y}[(p(x) - y)^2] \]
(19)

Note: the expectation is over both \(x, y \), since it is constant in terms of \(h \). Also, the \(p(x) \) is the intrinsic randomness, or the variance avg over all \(x \)'s.

Prove for a single \(x \) then average over all \(x \)'s.

Claim:

\[E_x[h(x) - p(x)]^2 = E_{x,y}[(h(x) - y)]^2 - E_{x,y}[(p(x) - y)]^2 \]
(20)

\[(h - p)^2 = E[(h - y)^2] - E[(p - y)^2] \]
(21)

\[(h - p)^2 = E[h^2 - 2hy + y^2] - E[p^2 - 2py + y^2] \]
(22)

\[(h - p)^2 = h^2 - 2h E_y y - p^2 + 2p E_y y = h^2 - 2hp + p^2 \]
(23)

\[(h - p)^2 = (h - p)^2 \]
(24)

Hence, we prove the claim from Equation 20 for a fixed \(x \). To get the more general statement, we only need to average over random \(x \)'s since

\[E_{x,y}[\text{ANY}] = E_x[E_y[\text{ANY}|x]] \]
(25)

3 Estimate \(E[(h(x) - y)^2] \)

We estimate \(E[(h(x) - y)^2] \) by empirical average:

\[\hat{E}[(h(x) - y)^2] = \frac{1}{m} \sum (h(x_i) - y_i)^2 \]
(26)

\[L_h(x, y) = (h(x) - y)^2 \]
(27)

We want \(E[L_h] \approx \hat{E}[L_h] \) for all \(h \in \mathcal{H} \)

Chernoff bounds, union bound, VC-dim, growth function can all be generalized.

Q: How to minimize loss function for training set?

One answer: Perform a linear fit as shown in Figure 2.

Given \((x_1, y_1), \ldots, (x_m, y_m)\)
Figure 2: Fit data from $h(x)$ with a line.

$$\min : \sum_i (wx_i - y_i)^2$$

To minimize Equation 28 we set the derivative $\frac{d}{dw} = 2 \sum_i (wx_i - y_i)x_i$ to 0 and get Equation 29:

$$w = \frac{\sum y_ix_i}{\sum x_i^2}$$

4 Generalize to more than one dimension

given $(\vec{x}_1, y_1), \ldots, (\vec{x}_m, y_m), \vec{x}_i \in \mathcal{R}_n, y_i \in \mathcal{R}

\vec{w}$ using prediction rule $h(\vec{x}) = \vec{w} \cdot \vec{x}$

loss $(h) = \sum_i (\vec{w} \cdot \vec{x} - y_i)^2$

minimize:

$$\min \left\| \begin{pmatrix} \vec{x}_1^T \\ \vec{x}_2^T \\ \vdots \\ \vec{x}_m^T \end{pmatrix} - \begin{pmatrix} w_1 \\ w_2 \\ \cdots \\ w_m \end{pmatrix} \right\| \begin{pmatrix} y_1 \\ y_2 \\ \cdots \\ y_m \end{pmatrix}^2_{2}$$

This can be solved by linear regression (next time).