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1 Previous Lecture

Last time we talked about AdaBoost. The name comes from the word “adaptive”, because
εt ≤ 1/2 − γ, and we don’t need to know γ ahead of time. Today we will talk about
generalization error.

2 Overfitting

Look for strong hypotheses for AdaBoost, and figure out the VC dimension, or better yet,
the growth function. Suppose h1, ..., hT ∈ H, where |H| is finite. Define H(x) as

H(x) = sign

(
T∑
t=1

αtht(x)

)
. (1)

H(x) is a strong hypothesis. Let G be the class of functions of the form
∑T

t=1 αtht(x). Next
lets determine the growth function ΠG(m).

Fix h1, ..., hT . Given S = x1, ..., xm, how many dichotomies can we get of these m
points? Take each xi and pass it to the h’s:

xi ⇒ [h1(xi), ..., hT (xi)] = x′i. (2)

x′i has dimension T . Pretend the x′i’s are the new sample points. Now we have a linear
threshold function on inputs with dimension T (see Equation 1). From our homework, we
know that the VC dimension is T , and therefore the growth function, with h1, . . . , hT fixed
is at most (em

T

)T
Since there are |H|T choices for h1, . . . , hT , the growth function for G is upper-bounded as
follows:

ΠG(m) ≤ |H|T
(em
T

)T
. (3)

Using the fact that

err(H) ≤ êrr(H) +O

√ ln |ΠG(2m)|+ ln !
δ

m

 , (4)

and plugging in for ΠG, we obtain:

err(H) ≤ êrr(H) +O

√T ln |H|+ T ln m
T + ln 1

δ

m

 . (5)



Figure 1: Expected generalization behavior due to overfitting.

This predicts overfitting. As T increases, êrr(H) decreases, but the O() term in Equation 5
increases and eventually overtakes the empirical error êrr(H). The expected behavior looks
like Figure 1.

However, this overfitting often does not happen with AdaBoost. For example, the
performance on boosting the C4.5 decision tree learning algorithm is shown in Figure 2.
C4.5 is a weak algorithm. The learned rules are more complicated with increasing values
for T . In this example, the test error does not increase even after 1000 rounds, and in fact
continues to drop even after the training error is zero. Hence, Occam’s razor incorrectly
predicts that simpler rules are better here.

3 Margins

Why don’t we see overfitting more often? Claim: As you continue to boost, the predictions
become more “confident.” The margin is associated with confidence. The higher the margin,
the better the generalization error.

Let’s rewrite Equation 1 slightly:

H(x) = sign

(
T∑
t=1

atht(x)

)
(6)

at ≥ 0 (7)
T∑
t=1

at = 1 (8)

In other words, we have normalized the αt’s for convenience – this doesn’t change the
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Figure 2: Error curves for boosting C4.5 on the letter dataset. Taken from Schapire, “The
Boosting Approach to Machine Learning - An Overview”, 2001.

predictions. Define the margin as follows

margin = yf(x), where y ∈ {+1,−1} is the correct label (9)

= y
T∑
t=1

atht(x) =
T∑
t=1

atyht(x) (10)

=
∑

t:y=ht(x)

at −
∑

t:y 6=ht(x)

at (11)

The first term in Equation 11 corresponds to the weak hypotheses with correct predictions,
and the second term in Equation 11 corresponds to weak hypotheses with incorrect pre-
dictions. The margin is positive if and only if y = H(x). In other words, yf(x) > 0 iff
y = H(x). Also, call |yf(x)| = |f(x)| the “strength” or confidence of the vote.

Figure 3 shows the cumulative distribution of the margins of the training examples after
5, 100, and 1000 rounds of boosting on the C4.5 algorithm applied to the letter dataset.
Here we see that boosting increases the margins, and continues to increase the margins even
after the training error reaches zero (after 10 rounds).

4 Connection Between Margin and Generalization Error

We will use the following notation. Let H be the space of weak hypotheses. Assume
|H| <∞. Define co(H) to be the convex hull of H. In other words,

co(H) =

{
f of the form f(x) =

T∑
t=1

atht(x), where at ≥ 0,
∑

at = 1, ht ∈ H
}

(12)

D is the distribution on X ×{−1, 1}. S is a sample of size m. PrD[·] is the probability when
(x, y) is chosen from D: for example, PrD[y 6= H(x)] = error. PrS [·] is the probability when
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Figure 3: Cumulative distribution of margins for boosting C4.5 on the letter dataset. Taken
from Schapire, “The Boosting Approach to Machine Learning - An Overview”, 2001.

(x, y) is chosen from S: for example, PrS [y 6= H(x)] = training error. We want to prove
the following theorem:

Theorem 4.1. With probability at least 1− δ, ∀f ∈ co(H), ∀θ > 0,

PrD[yf(x) ≤ 0] ≤ PrS [yf(x) ≤ θ] +O

(
1√
m

√
lnm ln |H|

θ2 + ln
1
δ

)
. (13)

Note that the O(·) term is independent of the number of rounds of boosting.
We want to approximate co(H) with a much smaller class. Let CN be the set of un-

weighted averages over N elements from H:

CN =

g of the form g(x) =
1
N

N∑
j=1

hj(x)

 (14)

Given

f(x) =
∑

atht(x),

we will construct a g ∈ CN that approximates f . We will construct g randomly, and we will
write Prg[·] to denote probabilities over the random choice of g. Notice that |CN | ≤ |H|N ,
because we have |H| choices of hj , and there are N of them. Also, we expect N � T . We
construct each g by randomly choosing N elements from the set of ht’s, where each ht is
chosen with probability at. We can rewrite this as

g(x) =
1
N

N∑
j=1

gj(x), (15)

where gj = ht with probability at.
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Before proceeding with the proof, notice that if we fix x, then

Eg[gj(x)] =
T∑
t=1

atht(x) = f(x) (16)

Eg[g(x)] = f(x) (17)

Hence our intuition for the proof is the following: since g(x) = 1
N

∑
gj(x), then using

Chernoff bounds |g(x) − f(x)| ≤ ε; i.e. g(x) and f(x) should be close. The outline of the
proof is to show the following:

PrD[yf(x) ≤ 0] ≈ PrD[yg(x) ≤ θ/2] (18)
≈ PrS [yg(x) ≤ θ/2] (19)
≈ PrS [yf(x) ≤ θ] (20)

Proof The generalization error can be rewritten as PrD[yf(x) ≤ 0] = PrD,g[yf(x) ≤ 0],
because g doesn’t appear on the left-hand side equation, so it’s OK to randomize on it.
Separate this probability into 2 terms:

PrD,g[yf(x) ≤ 0] = PrD,g [yf(x) ≤ 0 ∧ yg(x) ≤ θ/2] + PrD,g [yf(x) ≤ 0 ∧ yg(x) > θ/2]
(21)

The second term can be rewritten as

PrD,g [yf(x) ≤ 0 ∧ yg(x) > θ/2] = ED [Prg [yf(x) ≤ 0 ∧ yg(x) > θ/2]] (22)

Prg[yf(x) ≤ 0] is 0 if yf(x) > 0, otherwise we know yf(x) ≤ 0 (hence we will obtain an upper
bound for the second term by assuming that yf(x) ≤ 0). Also Prg[yg(x) > θ/2] ≤ e−Nθ2/8

by applying Hoeffding’s Inequality to the expectation of g(x) (see Equation 17). Hence we
can bound the second term as follows

PrD,g [yf(x) ≤ 0 ∧ yg(x) > θ/2] ≤ ED
[
e−Nθ

2/8
]

= e−Nθ
2/8 (23)

To get an upper bound on the first term, we begin by using the fact that Pr[A ∧ B] ≤
Pr[B] and rewrite the first term using expectations:

PrD,g [yf(x) ≤ 0 ∧ yg(x) ≤ θ/2] ≤ PrD,g[yg(x) ≤ θ/2] (24)
= Eg [PrD [yg(x) ≤ θ/2]] (25)

We want to show that PrD[yg(x) ≤ θ/2] ≈ PrS [yg(x) ≤ θ/s]. Use the fact that

PrS [yg(x) ≤ θ/2] =
1
m

m∑
i=1

[[yig(xi) ≤ θ/2]] (26)

(recall that [[·]] is +1 if the argument is true, 0 otherwise). Observe that the expectation of
[[yig(xi) ≤ θ/2]] is PrD[yg(x) ≤ θ/2]. Hence we can use Chernoff bounds by fixing g and θ:

Prsample [PrD [yg(x) ≤ θ/2] > PrS [yg(x) ≤ θ/2] + εθ] ≤ e−2ε2θm (27)

Here Prsample[·] is the probability taken over a random choice of S, whereas PrS [·] is the
probability with an already chosen sample S. Using the Union Bound for a fixed θ,

Prsample [∃g ∈ CN : PrD [yg(x) ≤ θ/2] > PrS [yg(x) ≤ θ/2] + εθ] ≤ |H|Ne−2ε2θm. (28)
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To account for θ, we note that it’s not necessary to consider an infinite number of θ’s. yg(x)
is always a multiple of 1/N , and is between 0 and 1. Hence we only need to consider values
of θ of the form 2i/N for i = 0, ...,N . (I.e. there are (N + 1) values for θ.) Hence, by the
union bound,

Prsample [∃θ > 0,∃g ∈ CN : PrD [yg(x) ≤ θ/2] > PrS [yg(x) ≤ θ/2] + εθ] ≤ δ

if we choose εθ so that

|H|Ne−2ε2θm = δ/(N + 1). (29)

Now we have, with probability at least 1 − δ, ∀g ∈ CN , ∀θ > 0, PrD[yg(x) ≤ θ/2] ≤
Prg[yg(x) ≤ θ/2] + εθ. Solving for εθ by using Equation 29 gives:

εθ =

√
1

2m
ln
(

(N + 1)|H|N
δ

)
(30)

To be continued next lecture.
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