
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #8
Scribe: Jie Chen February 27, 2003

1 Introduction to Boosting

We will focus on the idea of boosting for the next two lectures. The algorithms in PAC
learning models can produce hypothesis with arbitrary error rate, as long as sample com-
plexity is satisfied. However, suppose a learning algorithm can do a little bit better than
random, that is, its error rate is less than 50%, can we take this error rate and drive it down
to zero?

We introduce some definitions which will be used to understand the idea of boosting.
Definition 1
C is learnable if
∃ algorithm A
∀c ∈ C
∀D
∀ε > 0
∀δ > 0
A given m = poly(1

ε ,
1
δ ) examples (x1, c(x1)), . . . (xm, c(xm))

computes h, Pr[err(h) > ε] ≤ δ

Definition 2
C is efficiently learnable if

A runs in time polynomial in 1
ε ,

1
δ , s, n, where s is the size of the target concept, and

n is the size of the instances. For example, n is the instance size when the domain Xn is
{0, 1}n or <n.

Definition 3
C is weakly learnable if
∃γ > 0
∃ algorithm A
∀c ∈ C
∀D
∀δ > 0
A given m = poly(1

δ ) examples (x1, c(x1)), . . . (xm, c(xm))
computes h, Pr[err(h) > 1

2 − γ] ≤ δ

A weak learner can be trivial. For example if given a sample set of more than 75% positive
examples, a learner can output a hypothesis that always predicts positive. However that is
not weakly learnable since the latter is defined as having an error rate slightly smaller than
50% on any distribution of examples.
On the other hand, weakly learnable does not necessarily mean strong learnable given a
fixed distribution. For example, let C be all boolean functions on {0, 1}n ∪ {Z0}, let the



distribution be 1
4 on the point Z0 and uniform on all the remaining points. Take a sample

of size m, Z0 is likely to be included. Also included are a tiny fraction of other points
because m is small compared to the 2n possibilities of 0/1 string. Assuming Z0 got its label
correct, the total error rate in this case is roughly 3

4 ·
1
2=3

8 <
1
2 because we are getting so

few samples on the other points that we are merely guessing. On the other hand, for this
fixed distribution, there is really no way of driving the error rate significantly below 3

8 with
a polynomial size sample.

Boosting is the idea of converting weak learning to strong learning. In the following
section we will see algorithms for boosting do exist.

2 Boosting Algorithms

2.1 General Algorithm for boosting

Given S =< (x1, y1), . . . , (xm, ym) >,xi ∈ X, yi ∈ {−1, 1},
and access to a weak learning algorithm A,
∀D, compute h, such that Pr[errD(h) ≤ 1

2 − γ] ≥ 1− δ,
we would like to have a learning algorithm with arbitrary low error rate.
What if we run the same algorithm several times? Then we have to change D. Otherwise
the learner A could output the same h every time.
Therefore for each running of A, we will change D to force A to learn something new every
time. Each time A will output a hypothesis ht, t ∈ [1 . . . T ]. In the end we combine all the
hypotheses ht into a final resulting H.
Let Dt constructed on given examples while Dt(i) is the weight on example (xi, yi).

The general algorithm of boosting goes like this:
for t = 1 . . . T

construct Dt on training examples
run A on Dt

get ht : X→ {−1, 1}
εt = PrDt [ht(xi) 6= yi] = εt = 1

2 − γt ≤
1
2 − γ

end
output H

Previously the algorithm A has access to all the examples and their labels. To incorpo-
rate the distribution Dt, two approaches exist in practice: (1) the algorithm picks a set of
examples according to Dt; (2) the algorithm A tries to directly minimize weighted training
error

∑
i:ht(xi)6=yi Dt(i).

2.2 AdaBoost

AdaBoost is the first practical boosting algorithm. In this algorithm we have to answer two
questions: (1) how to construct Dt; (2) how to combine ht to H.

2.2.1 Construction of Dt

D1(i) = 1
m

Dt+1(i) = Dt(i)
Zt
·
{
e−αt if ht(xi) = yi
eαt if ht(xi) 6= yi
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The intuition is we want to focus on the hard example, which is the example that a weak
classifier misclassified. So we increase weight on a previous wrong example and lower weight
on a previous correct one. Zt in the formula is a normalization factor.

2.2.2 Combining ht

We will take a weighted majority vote of the individual hypotheses

H(x) = sign(
T∑
t=1

ht(x) · αt)

where

sign(x) =


−1 if x < 0

0 if x = 0
+1 if x > 0.

2.3 Empirical Error Rate of AdaBoost

Theorem

ˆerr(H) ≤
T∏
t=1

[2
√
εt(1− εt)]

= exp

(
−
∑
t

RE(
1
2
||εt)

)
=

∏
t

√
1− 4γ2

t

≤ exp

(
−2
∑
t

γ2
t

)
.

If we assume γt ≥ γ then

ˆerr(H) ≤ e−2γ2T .

The theorem shows the training error would decrease exponentially as the number of
times to repeat increases. Specificly, if T > 1

2γ2 lnm, then ˆerr(H) < 1
m , which implies the

training error will be zero. Note the theorem does not have any assumptions on ht and
where samples are from. We are going to prove the theorem in 3 steps.

1. Show that

DT+1(xi) =
exp(−yif(xi))

m
∏
t Zt

where f(xi) =
∑T

t=1 αt · ht(xi)
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Proof :

DT+1(i) =
DT (i) · exp(−αT yihT (xi))

ZT

=
DT−1(i) · exp(−αT−1yihT−1(xi)) · exp(−αT yihT (xi)

ZT−1 · ZT
...

=
1
m
· exp(−yi ·

∑
t αtht(xi))∏

t Zt

2. Show that

ˆerr(H) ≤
∏
t

Zt

Proof :

ˆerr(H) =
1
m
·
m∑
i=1

[[yi 6= H(xi)]]

=
1
m
·
m∑
i=1

[[yif(xi) ≤ 0]]

≤ 1
m

m∑
i=1

e−yif(xi)

=
1
m
·
m∑
i=1

DT+1(i) ·m ·
∏
t

Zt

=
1
m

∏
t

Zt ·
m∑
i=1

DT+1(i) ·m

=
∏
t

Zt.

Here, [[π]] is 1 if π is true, and 0 otherwise. Note the third line follows because for
each term that yif(xi) ≤ 0, the corresponding e−yif(xi) is greater than 1 while for
each term yif(xi) > 0 the term e−yif(xi) is greater than zero. The fourth line comes
from step 1 above.

3. Show that

Zt ≤ 2
√
εt(1− εt).

Proof :
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Zt =
m∑
i=1

Dt(i) · e−αtyiht(xi)

=
∑

i:ht(xi)6=yi

Dt(i) · eαt +
∑

i:ht(xi)=yi

Dt(i) · e−αt

= εt · eαt + (1− εt) · e−αt .

We choose αt so that Zt is minimized. In this case,

αt =
1
2

ln
(

1− εt
εt

)
and

Zt = 2
√
εt(1− εt)2.

Note the third line follows the definition of weighted training error.
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