
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #2
Scribe: Amit Koren February 6, 2003

1 Probability Review

1.1 Basic Definitions

Event - A probabilistic outcome. Ex. A coin flip resulting in Heads; a die roll resulting in
3; a voter voting for bush
Probability - The likelihood that an event will occur. To get this you need to run an
experiment many times and get the frequency of the event. Ex. The probability that a coin
flip results in Heads is 1/2. Written as Pr[H]=1/2.
Random Variable - A variable that probabilistically takes on values from a given domain.
Ex. Random Variable (RV) X = 1 w/ probability p ε [0, 1] and X = 0 w/ probability 1-p.
This is known as a Bernoulli RV.
Distribution - The set of probabilities for all possible values of a RV.
0 ≤ Pr[X=x] ≤ 1. For discrete cases:∑

x

Pr[X = x] = 1

1.2 Expectation

Definition
The expectation of a Random Variable is defined as:

E[X] =
∑
x

Pr[X = x] · x

Ex. For a Bernoulli random variable:

E[X] = p · 1 + (1− p) · 0 = p

Ex. For a die:

E[x] =
1
6
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 4 +

1
6
· 5 +

1
6
· 6 = 3.5

Properties
Expectations of Functions of Random Variables

E[f(X)] =
∑
x

Pr[X = x] · f(x)

Constants and Expectations

E[c] = c E[c ·X] = c · E[X]

Linearity of Expectations
E[X + Y ] = E[X] +E[Y ]



Example - 1000 coin tosses.
Xi is the result of the ith toss. Xi = 1 w/ probability 1

2 and Xi = 0 w/ probability 1
2 .

We flip the coin 1000 times and set a new RV S equal to the sum of the coin flips.

S = X1 +X2 + . . .+X1000

E[S] = E[X1] +E[X2] + . . .+E[X1000] = 500

1.3 Conditional Probability

Given two events, A and B, the conditional probability Pr[A|B] equals the probability of A
happening given that B has already happened.

Pr[A|B] =
Pr[A ∧B]
Pr[B]

Ex. 1 - A = voter voted for bush, B = voter is Republican
Pr[A|B] = the fraction of Republican voters who voted for bush
Ex. 2

Pr[X is odd | X ≥ 3] =
Pr[X ε {3, 5}]
Pr[X ≥ 3]

=
2
6
4
6

=
1
2

1.4 Independence

Two events, A and B, are independent if Pr[A|B] = Pr[A]

⇔ Pr[A] =
Pr[A ∧B]
Pr[B]

⇔ Pr[A ∧B] = Pr[A] · Pr[B]

Two Random Variables, X and Y, are independent if:

∀ x, y Pr[(X = x) ∧ (Y = y)] = Pr[X = x] · Pr[Y = y]

If this is the case:
E[X · Y ] = E[X] ·E[Y ]

1.5 Union Bound

Given two events A and B:

Pr[A ∨ B] ≤ Pr[A] + Pr[B]

This can be visualized with a Venn diagram. The area of the union of any two regions is
always less than the sum of the areas of the two.

2



1.6 Markov’s Inequality

Given a nonnegative RV X and a nonnegative constant k:

Pr[X ≥ k · E[X]] ≤ 1
k

proof
let δ = k ·E[X]

E[X] =
∑
x

Pr[X = x] · x

=
∑

all x ≥ δ

Pr[X = x] · x+
∑

all x < δ

Pr[X = x] · x

≥
∑

all x ≥ δ

Pr[X = x] · δ

= Pr[X ≥ δ] · δ

⇒ Pr[X ≥ δ] ≤ E[X]
k · E[X]

=
1
k

2 The PAC Learning Model

How does the consistency model relate to machine learning? Finding an exact rule is diffi-
cult, so instead we aim for the high accuracy prediction rule, which we obtain by “learning”
from a training set.

Assumption 1 - Examples are random. However, we make no assumptions about how they
are distributed, so that the results will be distribution-free.

Assumption 2 - All the training and test examples are taken from the same distribution.
They are independent and identically distributed (i.i.d.).

Assumption 3 - The labels come from some unknown concept c from some known concept
class C

The goal of the learning algorithm is to find a hypothesis h, approximate to c. In other
words, the goal is to minimize the error of h, where err[h] = PrX∼D[h(x) 6= c(x)] (the true
error). If err[h] is small, h is “approximately correct.” Since the sample is random, it is
always possible that a bad sample will be chosen that prevents us from finding an h that is
approximately correct. Therefore, we allow the learning algorithm to fail with some small,
controllable probability. Thus, we want h to be “probably approximately correct” or PAC.
Formally, h is PAC if

Pr[err(h) ≤ ε] ≥ 1− δ.

A hypothesis h is ε-bad if its error err[h] is bigger than ε. Otherwise it is ε-good.
C is PAC-learnable by H if:
∃ an algorithm A such that
∀ c ε C and
∀ ε > 0 and

3



∀ δ > 0 and
∀ distributions D on the examples...
A takes m examples 〈(x1, c(x1)), (x2, c(x2)), . . . (xm, c(xm))〉 and outputs h ∈ H such

that Pr[h is ε-bad] ≤ δ (ie, Pr[h is ε-good] ≥ 1-δ) where m is a polynomial function of 1
ε

and 1
δ .

A is efficient if it runs in polynomial time in m

2.1 Example - The real line

The domain X=<
The concept class C={all positive half lines}

The concept c is a real number. Any number greater than c is defined as a positive
example; any number less than c is defined as a negative example. The hypothesis h is
also a real number, and lies somewhere between the least positive example and the greatest
negative example.

Define a region to the right of c that covers ε of the distribution as R+ (the rightmost
point in this region is labeled b+). Similary, define R− and b− to the left of c.

Define the region between c and h as e+ if h >c and e− if h < c.
The error of h is equal to the probability that some element x lies in e− or e+.

The ε-bad cases are when h < b− or h > b+. In other words, h lies outside of R+ and
R−.

Look at the positive side: h > b+ only if all the positive training examples are greater
than b+:

⇒ x1 /∈ R+ ∧ x2 /∈ R+ ∧ . . . ∧ xm /∈ R+

Pr[h > b+] ≤ Pr[x1 /∈ R+ ∧ x2 /∈ R+ ∧ . . . ∧ xm /∈ R+]

= Pr[x1 /∈ R+] · Pr[x2 /∈ R+] · . . . · Pr[xm /∈ R+]

= (1− ε) · (1− ε) · . . . · (1− ε) = (1− ε)m

The argument is symmetric for the negative side.

Pr[h is ε− bad] = Pr[h > b+ ∨ h < b−]

≤ Pr[h > b+] + Pr[h < b−]

= 2(1− ε)m

4


