Thinning by Random Sampling (1993)

Select half the edges at random.

Build a minimum spanning forest of the sample.

" Thin.

How many edges remain?

Karger: O(nlogn) on average

Klein, Tarjan: < 2n on average



Verification:

Given a spanning tree, is it minimum?

Thinning: Given a spanning tree, delete any
non-tree edge larger than every edge on tree path

Jjoining its ends (red rule).

If all non-tree edges can be thinned,

tree is verified.
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History of Verfication Algorithms

Tarjan, 1979 O(m o. (m,n)) time

Komlos, 1984 O(m) comparisons

Dixon, Rauch, Tarjan, 1992 O(m)time

King, 1993 | O(m) time (simpilified)

All these algorithms will thin.



History

Tarjan (1979) O(m o (m,n))

path compression

‘Komlds (1985) Oo(m)*

Dixon, Rauch, Tarjan (1990) - O(m)

T + K + table look-up

* comparisons only; nonlinear overhead
o (m,n) =min {i | A(i,Lm/n])>logn}

A = Ackermann’s Function



Minimum Spanning Forest Algorithm

If # edges/ # vertices < 5, then
(Boruvka step) Select the cheapest edge
incident to each vertex.
Contract all selected edges.
Recur on contracted graph.

Else

(Sampling and Thinning Step) Sample the
edges, each with probability 1/2.

Construct a minimum spanning forest of the
sample, recursively. | |

Thin using this forest.

Recur on Thinned Graph




Bound on Number of Edges Not Thinned

Let eye,,..., e, be the edges, in increasing cost.

Run the following variant of Kruskal’s algorithm.

Inititalize F=Q.

Process the edges in order.
To process e, flip a coin to see if e¢; is in the
sample.

If ¢, forms a cycle with edges in F, discard it as
thinned.

Otherwise, if e, is sampled, add e to F.

(Whether or not e, is sampled, it is not
thinned.)

F is the minimum spanning forest of the sample.




How many edges are not thinned?

The only relevant coin flips are those on unthinned
edges, each of which has a chance of 1/2 of
adding an edge to F (a success).

There can be at most n-1 successes.

For there to be more than k unthinned edges, the
first k relevant coin flips must give at most n-2
successes.

The chance of this is at most
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In particular, the average number of unthinned
edges is at most 2n.




Analysis

Boruvka step
m < 5n implies m’< 9m/10 since at least

n/2 edges are contracted

T(m) = O(m) + T(9m/10)

Thinning Step
m>5n implies 2n<2m/5
T(m) = O(m) + T(m/2) + T(2m/5)

where T(m/2) and T(2m/5) are expected time

T(m) = O(m) by induction




Preprocessing — Table Lookup

- Idea: Given enough time (exponential or super-
| exponential) one can build an optimum algo-
rithm for a given problem in a given compu-
tational model, such as a decision tree. (The
algorithm itself may be exponential in size.)

‘This means that sufficiently small (log or log-
log size) subproblems can be solved optimally
by table lookup using only linear preprocessing
time.




Verificatidn

“each nontree edge:

cost as large as
max on tree path







Overall approach:

Shrink log-log-size subtrees of original tree to
single vertices. Solve one problem on global
strunken tree via Tarjan (1979). Solve prob-
lems on small subtrees via precomputed opti-
mal algorithms.
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Note:

This method can give algorithms optimal to
within a constant factor without offering a
tight estimate of how fast they are.

11



Further Results

D(mu(h) Iojn> — D(’"“‘C"» deterministic
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Open Problems

Deterministic O(m)?

Simpler verification?

Other applications?
directed spanning trees?

shortest paths?



