
1

Why use version control?

� Saves all previous versions of all files so that
you can undo (buggy) edits.

� Logs changes to files so you can trace how
your sources have evolved over time.

�Mediates conflicting changes made by
several different users---helps keep consistency.

���������������������
���������������������
���������������������

Project 1

Repository ���������������������
���������������������
���������������������

Project 2

���������������������
���������������������
���������������������

Project 3

Working copies

Setting up CVS

% mkdir ~/cvsroot
% [set permissions for ~/cvsroot]
% setenv CVSROOT ~/cvsroot
% cvs init

� Create the repository:

� Set the CVSROOT environment variable in
your .cshrc file.

� Create a project from existing files:

% cd base64
% cvs import -m “base64” base64 carlk start

� Checkout the new project and delete the old files.

% cvs checkout base64

Creating a Project

Get any changes
cvs update

Edit files

cvs commit

Resolve
conflicts

Conflicts?
no

yes

Development Process with CVS

Most of the
time you stay

in shaded
loop.

Get working copy
cvs checkout

cvs update

Dealing with Conflicts

�If another user has committed changes to
lines you have edited, CVS will report a
conflict.

decode (infile, stdout);

<<<<<<< decode64.c

if(fclose (infile)) return 0;

=======

if(fclose (infile)) printf(" couldn't close file.");

>>>>>>> 1.5

Your version

Repository version

�Manually edit to remove the conflict.

�Edits on different lines are automatically
merged.

2

�Get the latest revisions of files with:
% cvs update

�Write changes back to repository with:
% cvs commit -m“log msg”

If you omit –m the editor given in the EDITOR
environment variable will be started.

�Add files to project with:
% cvs add -m“log msg” files…

Use -kb for binary files.

�Remove files from project with:
% rm file.c
% cvs remove -m“log msg” file.c

�Most commands default to work on the current
directory and all its subdirectories.

Frequently Used Commands Keywords

The complete history of this file.Log

The revision number of this file.$Revision$

A string containing the filename, revision,
author, date, and some status info. Useful
at tops of files.

Id

Date the this revision was checked in.$Date$

Username who checked in this revision.$Author$

Replaced withKeyword

�Useful to put dynamic information in source file.

�When you get a new revision, keywords are
replaced with information about the file.

/* $Id: decode64.c,v 1.2 2001/04/01 17:32:45 carlk Exp $
* Author: $Author: carlk $
* $Log: decode64.c,v $
* Revision 1.2 2001/04/01 17:32:45 carlk
* added keywords
*/

/* Id
* Author: $Author$
* Log
*/

�CVS keeps track of all revisions of your files.

�View changes between two revisions:

% cvs diff -r 1.2 -r 1.3 file

% cvs –D “Apr 2” –D “Apr 3” file

�View the log comments:

% cvs log file

�View when each line changed:

% cvs annotate file

1.1 1.2 1.3diffs diffs

Tracking Changes

�View history of commits:

% cvs history –c

Can view other events:

% cvs history –x event_codes

Tracking Repository History

A file was removed.R

A file was modified.M

A file was added.A

A working file was copied from the repository.U

Merging was necessary (but no conflicts).G

Conflict detected.C

Checkout command issued.O

EventCode

e.g.

% cvs history –x AR main.c

3

Getting Previous Versions

�Retrieve a given revision with:

% cvs update -r 1.1 files…

% cvs update –D “Apr 2” files…

�Date can be in just about any reasonable format.

�All subsequent updates will get given
revision.

�Start getting the most recent version:

% cvs update -A files…

�Remembering version numbers and dates can be
hard; use symbolic tags (next slide).

Tags

�Tags associate a name with a set of particular
revisions of some files.
�Useful to mark a “release.”

�Create a new tag with:
% cvs tag mytag main.c encode.c …

�Checkout a set of tagged files with:
% cvs checkout -r mytag

main.c

encode.c

decode.c

utils.c

Commit pointTime

1.1 1.2 1.3

1.3

1.2

1.1

tag

Ignoring Files

�Many types of files should not go into the
repository (*.bak, *.o, core) --- CVS ignores
most of these.

�Can make CVS ignore any file by putting
file patterns into ~/.cvsignore. Eg.

encode64

decode64

*.gif

�CVS won’t include matching files in any
commit or update operation.

�It won’t generate warning messages if these
files are not in the repository.

Running Scripts on Events

�Can force CVS to run shell scripts on events
like commit.

�cvsroot/CVSROOT contains a file called
commitinfo with lines of the following
format:

�If regexp matches the directory of a
committed file, myshellscript will be run.

�Regexp can also be ALL or DEFAULT.

�If myshellscript exits with non-zero status,
commit will not be allowed.

�Similar mechanisms for other events.

Regexp
matching
directory

name.

Shell script to
run.

base64.* myshellscript

4

CVS Over the Network

�No server process required.
�Uses ssh/rsh to communicate. On client:

% setenv CVS_RSH ssh

�Setup ssh so that it doesn’t ask for a password.
1. generate keys with no password
2. put the public key file on server, add to
authorization file.
3. add hostname username to .shosts.

�Client sets CVSROOT to:

:ext:uid@boater.princeton.edu:dir/cvsroot

ssh/rsh
Repository
Computer

(e.g. hats)

Client
Computer

CVS On Other Platforms

�SourceForge hosts open source projects for
free. They provide:
�CVS repositories
�web servers
�compile farm
�and more…

http://sourceforge.net/

�CVS home page has clients for Windows XX,
Linux, and other Unix flavors.

http://www.cvshome.org/

�On other platforms, setup and use is similar,
but exact syntax may differ.
�CVS home page also has excellent manual.

CVS Quick Reference

Setup

Create a new repository (probably only need to do this once).
% cvs init -d ~/cvsroot

init

Create a new project from existing sources (in current directory).
% cvs import -m “prj” prjname vendtag
reltag

import

File Manipulation

Show information about files. Use -v to see what tags are
attached to the files.

status

Create a tag or a branch.tag

Show the history of given files.log

Show the changes made between any two versions of a file.
Defaults to showing the changes between working copy and
most recent version.

diff

File Information

Merge any changes made back into the repository.
% cvs commit -m “fixed bug” mult.c

commit

Copy the most recent versions of the given files into the
working directory. File defaults to “.”.

update

Mark a file deleted in the repository; all previous versions will
still be available. You should remove the working copy before
issuing the this command.

% rm mult.c

% cvs remove -m “deleted feature” mult.c

remove

Add a file or directory to be managed by CVS.
% cvs add -m “new feature” mult.c

add

Most commands take -m to specify a log message and -r to operate on a given
revision/tag.

