Why use version control?

» Saves all previous versions of all files so that
you can undo (buggy) edits.

» Logs changes to files so you can trace how
your sources have evolved over time.

» Mediates conflicting changes made by
several different users---helps keep consistency.

Repository

Project 1 Project 2 Project 3

s
= = =
Working copies

1]

Setting up CVS

» Create the repository:

% mkdir ~/cvsroot

% [set permissions for ~/cvsroot]
% setenv CVSROOT ~/cvsroot

% cvs init

» Set the CVSROOT environment variable in
your . cshrc file.

Creating a Project

» Create a project from existing files:

% cd base64
$ cvs import -m “base64” base64 carlk start

» Checkout the new project and delete the old files.

% cvs checkout base64

Development Process with CVS

l

Get working copy| Get any changes
cvs checkout cvs update

|
b

Edit files <«

S

—> cvs commit

no

Conflicts?

yes

Most of the
Resolve | time you stay
conflicts | in shaded

loop.

Dealing with Conflicts

» If another user has committed changes to
lines you have edited, CVS will report a
conflict.

Your version

decode (infile, stdout);
<<<<<<< decode6d.c

if(fclose (infile)) return 0;

if(fclose (infile)) printf(" couldn't close file.");

s5>5555 15 \

Repository version

» Manually edit to remove the conflict.

» Edits on different lines are automatically
merged.

Frequently Used Commands

» Get the latest revisions of files with:
% cvs update

» Write changes back to repository with:
% cvs commit -m“log msg”

If you omit —m the editor given in the EDITOR
environment variable will be started.

» Add files to project with:
% cvs add -m“log msg” files..

Use -kb for binary files.

» Remove files from project with:
% rm file.c
% cvs remove -m“log msg” file.c

» Most commands default to work on the current
directory and all its subdirectories.

Keywords

» Useful to put dynamic information in source file.

» When you get a new revision, keywords are
replaced with information about the file.

Keyword Replaced with
$Authors Username who checked in this revision.
$Dates$ Date the this revision was checked in.
$Ids A string containing the filename, revision,

author, date, and some status info. Useful
at tops of files.

S$Revision$ | The revision number of this file.

Log The complete history of this file.

/* $Ids

* Author: S$Authors$
* Log

*/

/* $Id: decodeb4.c,v 1.2 2001/04/01 17:32:45 carlk Exp $
Author: $Author: carlk $

$Log: decodebd.c,v $

Revision 1.2 2001/04/01 17:32:45 carlk

added keywords

*

*

*

*

Tracking Changes

14 | dis | 4o | diffs | 1.3
I LV

» CVS keeps track of all revisions of your files.

» View changes between two revisions:
% cvs diff -r 1.2 -r 1.3 file

% cvs -D “Apr 2” -D “Apr 3” file

» View the log comments:

% cvs log file

» View when each line changed:

% cvs annotate file

Tracking Repository History

» View history of commits:
% cvs history -c
Can view other events:

% cvs history -x event_codes

Code Event

0 Checkout command issued.

Conlflict detected.

Merging was necessary (but no conflicts).

A working file was copied from the repository.

A file was added.

A file was modified.

el < o B ol B

A file was removed.

e.g.

% cvs history -x AR main.c

Getting Previous Versions

» Retrieve a given revision with:
% cvs update -r 1.1 files..

% cvs update -D “Apr 2" files..

» Date can be in just about any reasonable format.

» All subsequent updates will get given
revision.

» Start getting the most recent version:

% cvs update -A files..

» Remembering version numbers and dates can be
hard; use symbolic tags (next slide).

Tags

» Tags associate a name with a set of particular
revisions of some files.
» Useful to mark a “release.”

» Create a new tag with:
% cvs tag mytag main.c encode.c ..

» Checkout a set of tagged files with:
% cvs checkout -r mytag

main.

encode.

decode.

utils.c ' >
V

Time e Commit point

Ignoring Files

» Many types of files should not go into the
repository (*.bak, *.0, core) --- CVS ignores
most of these.

» Can make CVS ignore any file by putting
file patterns into ~/ . cvsignore. Eg.

encode64

decodeb4

*.gif

» CVS won’t include matching files in any
commit or update operation.

» It won’t generate warning messages if these
files are not in the repository.

Running Scripts on Events

» Can force CVS to run shell scripts on events
like commit.

» cvsroot/CVSROOT contains a file called
commitinfo with lines of the following
format:

baseb64d . * myshellscript

Regexp Shell script to
matching run.
directory

name.

» If regexp matches the directory of a
committed file, myshellscript will be run.

» Regexp can also be ALL or DEFAULT.

» If myshellscript exits with non-zero status,
commit will not be allowed.

» Similar mechanisms for other events.

CVS Over the Network

Repository " Client
Computer | ssh/rsh Computer
(e.g. hats)

» No server process required.
» Uses ssh/rsh to communicate. On client:

% setenv CVS_RSH ssh

» Setup ssh so that it doesn’t ask for a password.
1. generate keys with no password
2. put the public key file on server, add to
authorization file.
3. add hostname username to .shosts.

» Client sets CVSROOT to:

:ext:uid@boater.princeton.edu:dir/cvsroot

CVS On Other Platforms

» CVS home page has clients for Windows XX,
Linux, and other Unix flavors.

http://www.cvshome.org/

» On other platforms, setup and use is similar,
but exact syntax may differ.
» CVS home page also has excellent manual.

» SourceForge hosts open source projects for
free. They provide:
» CVS repositories
» web servers
» compile farm
» and more...

http://sourceforge.net/

CVS Quick Reference

File Manipulation

add ‘Add afile or directory to be managed by CVS.
% cvs add -m “new feature” mult.c

remove Mark a file deleted in the repository; all previous versions will
still be available. You should remove the working copy before
issuing the this command.

% rm mult.c

% cvs remove -m “deleted feature” mult.c

update | Copy the most recent versions of the given files into the
working directory. File defaults to “.”.

commit Merge any changes made back into the repository.
% cvs commit -m “fixed bug” mult.c

tag Create a tag or a branch.

File Information

status Show information about files. Use -v to see what tags are
attached to the files.

diff Show the changes made between any two versions of a file.
Defaults to showing the changes between working copy and
most recent version.

log Show the history of given files.
Setup
init Create a new repository (probably only need to do this once).

% cvs init -d ~/cvsroot

import Create a new project from existing sources (in current directory).
% cvs import -m “prj” prjname vendtag
reltag

Most commands take -m to specify a log message and -r to operate on a given
revision/tag.

