
Activation Records
� Modern imperative programming languages typically have local variables.

– Created upon entry to function.

– Destroyed when function returns.

� Each invocation of a function has its own instantiation of local variables.

– Recursive calls to a function require several instantiations to exist simultaneously.

– Functions return only after all functions it calls have returned � last-in-first-out
(LIFO) behavior.

– A LIFO structure called a stack is used to hold each instantiation.

� The portion of the stack used for an invocation of a function is called the function’s
stack frame or activation record.

Computer Science 320
Prof. David Walker

- 1 -



The Stack

The Stack

� Used to hold local variables.

� Large array which typically grows downwards in memory toward lower addresses,
shrinks upwards.

� Push(r1):

stack_pointer--;
M[stack_pointer] = r1;

� r1 = Pop():

r1 = M[stack_pointer];
stack_pointer++;

� Previous activation records need to be accessed, so push/pop not sufficient.

– Treat stack as array with index off of stack pointer.

– Push and pop entire activation records.

Computer Science 320
Prof. David Walker

- 2 -



Example

Consider:

let
function g(x:int) =
let

var y := 10
in

x + y
end

function h(y:int):int =
y + g(y)

in
h(4)

end

Computer Science 320
Prof. David Walker

- 3 -



Example

Step 1: h(4) called
Chunk of memory allocated on the stack in order to hold local variables of h. The
activation record (or stack frame) of h is pushed onto the stack.

Stack
Frame

for h
y=4

Step 2: g(4) called
Activation record for g allocated (pushed) on stack.

Stack
Frame

for h
y=4

Stack
Frame

for g

x=4
y=10

Computer Science 320
Prof. David Walker

- 4 -



Example

Step 3: g(4) returns with value 14
Activation record for g deallocated (popped) from stack.

Stack
Frame

for h rv = 14
y=4

Step 4: h(4) returns with value 18
Activation record for h deallocated (popped) from stack. Stack now empty.

Computer Science 320
Prof. David Walker

- 5 -



Recursive Example

Can have multiple stack frames for same function (different invocations) on stack at any
given time due to recursion.
Consider:

let
function fact(n:int):int =
if n = 0 then 1
else n * fact(n - 1)

in
fact(3)

end

Step 1: Record for fact(3) pushed on stack.
Stack

Frame
for fact

n=3

Computer Science 320
Prof. David Walker

- 6 -



Recursive Example

Step 2: Record for fact(2) pushed on stack.
Stack

Frame
for fact

n=3

Stack
Frame

for fact
n=2

Step 3: Record for fact(1) pushed on stack.
Stack

Frame
for fact

n=3

Stack
Frame

for fact
n=2

Stack
Frame

for fact
n=1

Computer Science 320
Prof. David Walker

- 7 -



Recursive Example

Step 4: Record for fact(0) pushed on stack.
Stack

Frame
for fact

n=3

Stack
Frame

for fact
n=2

Stack
Frame

for fact
n=1

Stack
Frame

for fact
n=0

Step 5: Record for fact(0) popped off stack, 1 returned.
Step 6: Record for fact(1) popped off stack, 1 returned.
Step 7: Record for fact(2) popped off stack, 2 returned.
Step 8: Record for fact(3) popped off stack, 3 returned. Stack now empty.

Computer Science 320
Prof. David Walker

- 8 -



Functional Languages

In some functional languages (such as ML, Scheme), local variables cannot be stored
on stack.

fun f(x) =
let
fun g(y) = x + y

in
g

end

Consider:

- val z = f(4)
- val w = z(5)

Assume variables are stack-allocated.

Computer Science 320
Prof. David Walker

- 9 -



Functional Language Example

Step 1: f(4) called.
Frame for f(4) pushed, g returned, frame for f(4) popped.

Stack
Frame

for f
x=4

Stack empty.
Step 3: z(5) called

Stack
Frame

for z
y=5

Memory location containing x has been deallocated!

Computer Science 320
Prof. David Walker

- 10 -



Functional Languages

Combination of nested functions and functions returned as results (higher-order func-
tions):

� Requires local variables to remain in existence even after enclosing function has
been returned.

� Activation records must be allocated on heap, not stack.

Concentrate on languages which use stack.

Computer Science 320
Prof. David Walker

- 11 -



Stack Frame Organization

How is data organized in stack frame?

� Compiler can use any layout scheme that is convenient.

� Microprocessor manufactures specify “standard” layout schemes used by all com-
pilers.

– Sometimes referred to as Calling Conventions.

– If all compilers use the same calling conventions, then functions compiled with
one compiler can call functions compiled with another.

– Essential for interaction with OS/libraries.

Computer Science 320
Prof. David Walker

- 12 -



Typical Stack Frame

arg n

...

arg 2

arg 1

local var 1

local var 2

...

Return Address

Temporaries

Saved Registers

Stack Pointer(SP) ->

Frame Pointer(FP) ->

Higher Addresses

Lower Addresses

Garbage

local var m

Current Frame

Previous Frame Callee can access arguments by
offset from FP:

argument 1: M[FP]
argument 2: M[FP + 1]

Local variables accessed by offset
from FP:

local variable 1: M[FP - 1]
local variable 2: M[FP - 2]

Computer Science 320
Prof. David Walker

- 13 -



Stack Frame Example

Suppose f(a1, a2) calls g(b1, b2, b3)
Step 1:

Frame Pointer(FP) ->

Previous Frame
a2

a1

Frame for f
Stack Pointer(SP) ->

Garbage

Step 2:

Frame Pointer(FP) ->

Previous Frame
a2

a1

Frame for f

Stack Pointer(SP) ->
Garbage

b1

b2

b3

Computer Science 320
Prof. David Walker

- 14 -



Stack Frame Example

Suppose f(a1, a2) calls g(b1, b2, b3)
Step 3:

Previous Frame
a2

a1

b1

b2

b3

Garbage

Frame for f

Stack Pointer(SP) ->

Frame Pointer(FP) ->

Frame for g

OLD FP/Dynamic Link

Dynamic link (AKA Control link) points to the activation record of the caller.

� Optional if size of caller activation record is known at compile time.

� Used to restore stack pointer during return sequence.

Computer Science 320
Prof. David Walker

- 15 -



Stack Frame Example

Suppose f(a1, a2) calls g(b1, b2, b3), and returns.
Step 4

Frame Pointer(FP) ->

Previous Frame
a2

a1

Frame for f

Stack Pointer(SP) ->
Garbage

b1

b2

b3

Step 5

Frame Pointer(FP) ->

Previous Frame
a2

a1

Frame for f

Garbage

b1Stack Pointer(SP) ->
b2/Garbage

b3/Garbage

Computer Science 320
Prof. David Walker

- 16 -



Parameter Passing

f(a�, a�, ..., a�)

� Registers are faster than memory.

� Compiler should keep values in register whenever possible.

� Modern calling convention: rather than placing a�, a�, ..., a� on stack frame, put a�,
..., a� (� � �) in registers r�, r���, r���, r��� and a���, a���, a���, ..., a�.

� If r�, r���, r���, r��� are needed for other purposes, callee function must save incom-
ing argument(s) in stack frame.

� C language allows programmer to take address of formal parameter and guarantees
that formals are located at consecutive memory addresses.

– If address argument has address taken, then it must be written into stack frame.

– Saving it in “saved registers” area of stack won’t make it consecutive with mem-
ory resident arguments.

– Space must be allocated even if parameters are passed through register.

Computer Science 320
Prof. David Walker

- 17 -



Parameter Passing

If register argument has address taken, callee writes register into corresponding space.

Frame Pointer(FP) ->

Stack Pointer(SP) ->
Garbage

...

a(k+1)

a(n)

space for a(k)

space for a(2)

space for a(1)

Computer Science 320
Prof. David Walker

- 18 -



Registers

Registers hold:

� Some Parameters

� Return Value

� Local Variables

� Intermediate results of expressions (temporaries)

Stack Frame holds:

� Variables passed by reference or have their address taken (&)

� Variables that are accessed by procedures nested within current one.

� Variables that are too large to fit into register file.

� Array variables (address arithmetic needed to access array elements).

� Variables whose registers are needed for a specific purpose (parameter passing)

� Spilled registers. Too many local variables to fit into register file, so some must be
stored in stack frame.

Computer Science 320
Prof. David Walker

- 19 -



Register

Compilers typically place variables on stack until it can determine whether or not it can
be promoted to a register (e.g. no references).

The assignment of variables to registers is done by the Register Allocator.

Computer Science 320
Prof. David Walker

- 20 -



Registers

Register state for a function must be saved before a callee function can use them.

Calling convention describes two types of registers.

� Caller-save register are the responsibility of the calling function.

– Caller-save register values are saved to the stack by the calling function if they
will be used after the call.

– The callee function can use caller-save registers without saving their original
values.

� Callee-save registers are the responsibility of the called function.

– Callee-save register values must be saved to the stack by called function before
they can be used.

– The caller (calling function) can assume that these registers will contain the same
value before and after the call.

Placement of values into callee-save vs. caller-save registers is determined by the regis-
ter allocator.
Computer Science 320
Prof. David Walker

- 21 -



Return Address and Return Value

A called function must be able to return to calling function when finished.

� Return address is address of instruction following the function call.

� Return address can be placed on stack or in a register.

� The call instruction in modern machines places the return address in a designated
register.

� This return address is written to stack by callee function in non-leaf functions.

Return value is placed in designated register by callee function.

Computer Science 320
Prof. David Walker

- 22 -



Frame Resident Variables
� A variable escapes if:

– it is passed by reference,

– its address is taken, or

– it is accessed from a nested function.

� Variables cannot be assigned a location at declaration time.

– Escape conditions not known.

– Assign provisional locations, decide later if variables can be promoted to regis-
ters.

� escape set to true by default.

Computer Science 320
Prof. David Walker

- 23 -



Static Links
In languages that allow nested functions (e.g. Tiger), functions must access outer func-
tion’s stack frame.

let
function f():int = let

var a:=5
function g(y:int):int = let

var b:=10
function h(z:int):int =

if z > 10 then h(z / 2)
else z + b * a <- b, a of outer fn

in
y + a + h(16) <- a of outer fn

end
in

g(10)
end

in f() end
Computer Science 320
Prof. David Walker

- 24 -



Static Links

Solution:

Whenever f is called, it is passed pointer to most recent activation record of g that
immediately encloses f in program text � Static Link (AKA Access Link).

Stack Pointer(SP) ->

Frame Pointer(FP) ->
a = 5

Frame for f

a = 5

Frame for f

y = 10

b = 10

STATIC LINK

Dynamic Link

SP ->

FP ->

&y = FP + 1
&a = M[FP] - 1

f() g(10)

Frame for g

Computer Science 320
Prof. David Walker

- 25 -



Static Links

a = 5

Frame for f

y = 10

h(16)

STATIC LINK

Dynamic Link

SP ->

FP ->

STATIC LINK

Dynamic Link

b = 10

z = 16

Frame for g

Frame for h

&z = FP + 1

a = 5

Frame for f

y = 10

STATIC LINK

Dynamic Link

b = 10

Frame for g

STATIC LINK

Dynamic Link

z = 16

Frame for h

STATIC LINK

Dynamic Link

SP ->

FP ->

Frame for h

&z = FP + 1

z = 8

&b = M[FP] - 2
&a = M[M[FP]] - 1

h(8)

Computer Science 320
Prof. David Walker

- 26 -



Static Links
� Need a chain of indirect memory references for each variable access.

� Number of indirect references = difference in nesting depth between variable decla-
ration function and use function.

Computer Science 320
Prof. David Walker

- 27 -


