Activation Records

e Modern imperative programming languages typically have local variables.

— Created upon entry to function.
— Destroyed when function returns.

e Each invocation of afunction has its own instantiation of local variables.

— Recursive callsto afunction require several instantiationsto exist simultaneously.

— Functions return only after all functions it calls have returned = last-in-first-out
(LIFO) behavior.

— A LIFO structure called a stack is used to hold each instantiation.

e The portion of the stack used for an invocation of afunction is called the function’s
stack frame or activation record.

¢ \,?

Prof. David Walker University

The Stack
The Stack
e Used to hold local variables.

e Large array which typically grows downwards in memory toward |lower addresses,
shrinks upwards.

e Push(rl):

stack pointer--;
M stack _pointer] = r1,

e 'l = Pop():

rl = Mstack pointer];
st ack_poi nt er ++;

e Previous activation records need to be accessed, so push/pop not sufficient.

— Treat stack as array with index off of st ack_poi nt er.
— Push and pop entire activation records.

¢ \,?

Prof. David Walker University

Example
Consider:

| et
function g(x:int) =
| et
var y := 10
I N
X +Yy
end
function h(y:int):int =
-y +aly)
I N
h(4)
end

Computer Science 320 I - -
Prof. David Walker Princeton University

Example

Step 1: h(4) called

Chunk of memory allocated on the stack in order to hold local variables of h. The
activation record (or stack frame) of h is pushed onto the stack.

Stack

Frame| y=4

for h

Step 2: g(4) called
Activation record for g allocated (pushed) on stack.
Stack

Frame| y=4

for h

Stack

Frame

forg

P

Brof. David Walker Princeton University

Example
Step 3: g(4) returnswith value 14

Activation record for g deallocated (popped) from stack.

Stack
Frame| y=4
forh|rv=14

Step 4: h(4) returnswith value 18

Activation record for h deallocated (popped) from stack. Stack now empty.

Prof. David Walker

Princeton University

Recursive Example

Can have multiple stack frames for same function (different invocations) on stack at any
given time due to recursion.
Consider:

| et
function fact(n:int):int =
If n =0 then 1
else n * fact(n - 1)

I N
fact (3)
end
Step 1: Record for f act (3) pushed on stack.
Stack
Frame| n=3
for fact

>

Brof. David Walker Princeton University ~

Recursive Example

Step 2: Record for f act (2) pushed on stack.

Stack
Frame
for fact

n=3

Stack
Frame
for fact

n=2

Step 3: Record for f act (1) pushed on stack.

Stack
Frame
for fact

n=3

Stack
Frame
for fact

n=2

Stack
Frame
for fact

n=1

Prof. David Walker

Princeton University

Recursive Example

Step 4: Record for f act (0) pushed on stack.
Stack
Frame| n=3
for fact
Stack
Frame| n=2
for fact
Stack
Frame| n=1
for fact
Stack
Frame| n=0
for fact

Step 5: Record for f act (0) popped off stack, 1 returned.
Step 6: Record for f act (1) popped off stack, 1 returned.
Step 7: Record for f act (2) popped off stack, 2 returned.
Step 8: Record for f act (3) popped off stack, 3returned. Stack now empty.

Prof. David Walker University

QO

Functional L anguages

In some functional languages (such as ML, Scheme), local variables cannot be stored
on stack.

fun f(x) =
| et
fun g(y) = x +y
I N
g
end
Consider:
- val z = 1(4)
- val w = z(5)

Assume variables are stack-all ocated.

Brof. David Walker Princeton University ~

Functional Language Example

Step 1: f (4) called.
Framefor f (4) pushed, g returned, framefor f (4) popped.
Stack

Frame| Xx=4

for f

Stack empty.
Step 3: z(5) called

Stack
Frame| y=5
for z

Memory location containing X has been deall ocated!

Brof. David Walker . Princeton University

Functional L anguages

Combination of nested functions and functions returned as results (higher-order func-
tions):

e Requires local variables to remain in existence even after enclosing function has
been returned.

e Activation records must be allocated on heap, not stack.

Concentrate on languages which use stack.

¢ \,?

Prof. David Walker University

-11-

Stack Frame Organization

How is data organized in stack frame?
e Compiler can use any layout scheme that is convenient.

e Microprocessor manufactures specify “standard” layout schemes used by all com-
pilers.
— Sometimes referred to as Calling Conventions.

— If al compilers use the same calling conventions, then functions compiled with
one compiler can call functions compiled with another.

— Essentia for interaction with OY/libraries.

.%{?

Prof. David Walker University

-12-

Typical Stack Frame

Higher Addresses

o PreviousFrame Callee can access arguments by
arg 2 .
Frame Pointer(FP) -> argl offset from FP:
e argument 1: M FP]
= argument 2: M FP + 1]

Local variables accessed by offset

Return Address Current Frame

from FP:
Temporaries
| | ocal variable 1. MFP - 1]
Saved Registers .
| ocal variable 2. MFP - 2]
Stack Pointer(SP) ->
Garbage

Lower Addresses

QO

Prof. David Walker . University

Supposef (al,
Step 1.

Stack Frame Example

a2) calsg(bl, b2,

b3)

Frame Pointer(FP) ->

RIR

Previous Frame

Stack Pointer(SP) ->

Framefor f

Garbage

Frame Pointer(FP) ->

RIR

Previous Frame

bl

b2

Stack Pointer(SP) ->

b3

Framefor f

Garbage

Computer Science 320
Prof. David Walker

-14-

Princeton University

Stack Frame Example
Supposef (al, a2) calsg(bl, b2, b3)

Step 3:

B IR

Previous Frame

Frame Pointer(FP) ->

bl

b2

b3

Frame for f

Stack Pointer(SP) ->

OLD FP/Dynamic Link

Garbage

Framefor g

Dynamic link (AKA Control link) points to the activation record of the caller.

e Optional if size of caller activation record is known at compile time.

e Used to restore stack pointer during return sequence.

Prof. David Walker

-15-

University

QO

Supposef (al,
Step 4

Stack Frame Example
a2) calsg(bl, b2, b3),andreturns.

Previous Frame

Framefor f

Previous Frame

Framefor f

a2
Frame Pointer(FP) -> al
bl
b2
Stack Pointer(SP) -> b3
Garbage
a2
Frame Pointer(FP) -> al
Stack Pointer(SP) -> bl
b2/Garbage
b3/Garbage
Garbage

Computer Science 320
Prof. David Walker

-16 -

Princeton University

Parameter Passing
f(a;, as, ..., a,
e Registers are faster than memory.

e Compiler should keep values in register whenever possible.

e Modern calling convention: rather than placing &, &, ..., a, on stack frame, put ay,
o & (K =4) Inregistersry, 1,1, Myso, M3 ad 811, &r2, ra, -ny Sy
o If r,, 1,11, 1o, Iy3 @re needed for other purposes, callee function must save incom-
Ing argument(s) in stack frame.
e C language allows programmer to take address of formal parameter and guarantees
that formals are located at consecutive memory addresses.
— |f address argument has address taken, then it must be written into stack frame.

— Saving it in “saved registers’ area of stack won't make it consecutive with mem-
ory resident arguments.

— Space must be allocated even if parameters are passed through register.

¢ \,?

Prof. David Walker University

-17 -

Parameter Passing

If register argument has address taken, callee writes register into corresponding space.

Frame Pointer(FP) ->

a(n)

ak+])
space for a(k)

space for a(2)
Stack Pointer(SP) -> space for a(1)
Garbage

Computer Science 320 . - . ,~,
Prof. David Walker Princeton University »

-18-

Registers
Registers hold:
e Some Parameters
e Return Value
e Local Variables
e Intermediate results of expressions (temporaries)
Stack Frame holds:
e Variables passed by reference or have their address taken (&)
e Variables that are accessed by procedures nested within current one.
e Variables that are too large to fit into register file.
e Array variables (address arithmetic needed to access array elements).
e Variables whose registers are needed for a specific purpose (parameter passing)

e Joilled registers. Too many local variables to fit into register file, so some must be
stored in stack frame.

Prof. David Walker y University &

Register

Compilerstypically place variables on stack until it can determine whether or not it can
be promoted to aregister (e.g. no references).

The assignment of variables to registers is done by the Register Allocator.

Brof. David Walker Princeton University ~

-20-

Registers

Register state for afunction must be saved before a callee function can use them.

Calling convention describes two types of registers.
e Caller-save register are the responsibility of the calling function.

— Caller-save register values are saved to the stack by the calling function if they
will be used after the call.

— The callee function can use caller-save registers without saving their origina
values.

e Callee-save registers are the responsibility of the called function.

— Callee-save register values must be saved to the stack by called function before
they can be used.

— The caller (calling function) can assume that these registers will contain the same
value before and after the call.

Placement of values into callee-save vs. caller-save registers is determined by the regis-
ter allocator.

Prof. David Walker . University &

Return Address and Return Value
A called function must be able to return to calling function when finished.

e Return address is address of instruction following the function call.
e Return address can be placed on stack or in aregister.

e The call instruction in modern machines places the return address in a designated
register.

e Thisreturn address is written to stack by callee function in non-leaf functions.

Return value is placed in designated register by callee function.

¢ \,?

Prof. David Walker University

-22-

Frame Resident Variables

e A variable escapesiif:
— it is passed by reference,
— its address is taken, or
— It 1Isaccessed from a nested function.

e Variables cannot be assigned alocation at declaration time.

— Escape conditions not known.

— Assign provisional locations, decide later if variables can be promoted to regis-
ters.

e escape set to true by default.

¢ \,?

Prof. David Walker University

-23-

Static Links

In languages that allow nested functions (e.g. Tiger), functions must access outer func-
tion’s stack frame.

| et
function f():int = 1|et
var a:=5
function g(y:int):int = 1let
var b: =10
function h(z:int):int =
1f z > 10 then h(z / 2)
else z + b * a <- b, a of outer fn
I N
y + a + h(16) <- a of outer fn
end
I N
g(10)
end
In f() end

QO

Prof. David Walker University

-24-

Static Links
Solution:

Whenever f is called, it Is passed pointer to most recent activation record of g that
Immediately encloses f in program text = Static Link (AKA Access Link).

fO) 9(10)
Frame Pointer(FP) ->
a= 5 a= 5
Framefor f Framefor f
Stack Pointer(SP) -> y =10
FP-> STATICLINK —|
Dynamic Link —
b=10
Framefor g
SP-> &y=FP+1
&a=M[FP] -1
Prof. David Walker Princeton University »

-25.-

Static Links

h(16) h(8)
a=5 a=5
Framefor f Framefor f
y=10 y=10
STATICLINK —_ STATICLINK —
| — Dynamic Link | — Dynamic Link
b=10 b=10
Framefor g Framefor g
z=16 z=16
FP-> STATIC LINK — STATIC LINK —
| — Dynamic Link | — Dynamic Link
Frame for h — Framefor h
SP -> &z=FP+1 FP-> STATICLINK —_|
| — Dynamic Link
Frame for h
SP -> &z=FP+1
&b=MJ[FP] - 2

&a=M[M[FP]] - 1

Computer Science 320

Brof. David Walker Princeton University

Static Links

e Need achain of indirect memory references for each variable access.

e Number of indirect references = difference in nesting depth between variable decla-
ration function and use function.

Brof. David Walker Princeton University ~

-27 -

