Tries

- Algorithms in C, 3 Edition, Robert Sedgewick.

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226

Some of these lecture slides have been adapted from:

Symbol Table Review

Symbol table review.
Records with keys.
INSERT.
SEARCH.
Balanced trees use log N key comparisons.
Hashing uses O(1) probes but probe proportional to key length.

Are key comparisons necessary? No.
Is time proportional to key length required? No.
Best possible. Examine Ig N BITS.

Tries

Tries.
Store characters in internal nodes, not keys.
Store records in external nodes.
Use the characters of the key to guide the search ala radix sort.
NB: from reTRIEval, but pronounced "try."
You can get at anything if its organized properly in 40 or 100 bits!

Example: sells sea shells by the sea shore

shore

shells

Applications

Modern application: inverted index of Web.
. Insert each word of every web page into trie, storing URL list in leaves.
. Find query keywords in trie, and take intersection of URL lists.
. Use Pagerank algorithm to rank resulting web pages.

More applications.
. Princeton U-CALL.
. Routing tables for IP addresses.
. Storing and querying XML documents.
. Computational biology.
. Data compression. stay tuned
=) - Associative arrays, associative indexing.

Existence Symbol Table: Operations

Set of Keys (no auxiliary data).

Full set of operations.

/Key k; \

. Create.
reate eneric ops for ADT STinit();
- Destroy. whi | e(KEYscan(&k) == 1) {
if (!STsearch(k)) {
. Insert. ops that characterize STi nsert (k? ;
. Exists, existence symbol table) KEYshow(k) ;

}
. Count. \ /

Existence ST client that removes
duplicates from input stream

. Delete. other ops that many
. Join. clients need

. Sort.
. Find kth largest.

Key: Operations

Key consists of an array of digits.

. String: '\ 0’ -terminated sequence of characters.
. Bitstring: sequence of Os and 1s.

. Credit card number: sequence of 16 decimal digits.

key.h (C strings)

#define R 256 /'l extended ASCI I

#define NULLdigit '\0" // string term nation char
typedef char Digit; /] each digit is a character
typedef Digit *Key; /1l Key is a sequence of digits
int eq(Key, Key); /| are keys equal ?

int |ess(Key, Key); Il is first key |less than second?
voi d KEYshow Key) ; /1 display key

int KEYscan(Key *); /'l read in a key

voi d KEYfree(Key); I/ free menory

Key KEYcopy(Key); /'l copy

Existence Symbol Table: Implementations Cost Summary

Typical Case Dedup
Implementation Search hit Insert Space Moby Actors
Input * L L L 0.26 151
Red-Black L+logN log N c 1.40 97.4
Hashing L L © 0.76 40.6
Actor: 82MB, 11.4M words, 900K distinct. N = number of strings.
Moby: 1.2MB, 210K words, 32K distinct. L = size of string.
C = number of characters in input.
R = radix.

* only reads in data.

Challenge: As fast as hashing, as flexible as BST.

R-Way Existence Trie: Example

Example. sells sea shells by the sea shore

R-Way Existence Trie: Implementation

R-way existence trie: a link.
Link: pointer to a node.
Node: struct of R links.

rway-existence.c

typedef struct STnode* Iink;
struct STnode {

l'ink next[R];
H

static link root;

R-Way Existence Trie: Implementation

Code is short and sweet.

rway-existence.c (Sedgewick Program 15.7)

int searchR(link x, Key k, int i) {
Digit d =K[i]; /1 ith character
if (x == NULL) return O; /1 not found
if (d == NULLdigit &% x->next[NULLdigit]) return 1;
return searchR(x->next[d], k, i+1);

}

link insertR(link x, Key k, int i) {
Digit d=K[i]; /1 ith character
if (x == NULL) x = NEWhode(); /1 add node

if (d == NULLdigit && !x->next[NULLdigit])
x->next [NULLdi git] = NEWhode();

if (d == NULLdigit) return x;

x->next[d] = insertR(x->next[d], k, i+1);

return x;

Existence Symbol Table: Implementations Cost Summary

Typical Case Dedup
Implementation Search hit Insert Space Moby Actors
Input L L L 0.26 15.1
Red-Black L+logN log N c 1.40 97.4
Hashing L L c 0.76 40.6
R-Way Trie L L RN+C | 112

R =256

R-way trie: Faster than hashing for small R, but slow and wastes
memory if R is large.

Goal: Use less space.

Correspondence With Sorting Algorithms

BSTs correspond to quicksort recursive partitioning structure.

R-way tries correspond to MSD radix sort.

e N NG

Q. What corresponds to 3-way radix quicksort?

Existence TST: Example

Ternary search tree example: sells sea shells by the sea shore

Observation: Few wasted links!

Existence TST: Implementation

root
Existence TST: a link.
Link: pointer to a node.
Node: struct of four fields h
- digit d
- left link (TST with smaller keys) v
- middle link (TST with equal keys) i a

- right link (TST with larger keys)

tst-existence.c % %

typedef struct STnode *li nk;
struct STnode {

Digit d;

link I, m r;

}

static |link root;

Existence TST: Implementation

tst-existence.c (Sedgewick Program 15.8)

int searchR(link x, Key k, int i) {

}
int STsearch(Key k) { return searchR(root, k, 0); }

link insertR(link x, Key k, int i) {
Digit d = k[i]; /1 ith character
if (x == NULL) x = NEWhode(d); /1 add node

i f (d < x->d) x-> = insertR(x->l, k, i);
else if (d > x->d) x-> = insertR(x->r, k, i);
else if X->m = insertR(x->m k, i+l);
return x;

}
void STinsert(Key k) { root = insertR(root, k, 0); }

Digit d = k[i]; /1 ith character
if (x == NULL) return O; /1 not found

if (d == NULLdigit & & x->d == NULLdigit) return 1;
i f (d < x->d) return searchR(x->l, k, i);
else if (d > x->d) return searchR(x->r, k, i);

el se return searchR(x->m k, i+1);

if (d == NULLdigit && x->d == NULLdigit) return x;

Existence Symbol Table: Implementations Cost Summary

Typical Case Dedup
Implementation Search hit Insert Space Moby Actors
Input * L L L 0.26 15.1
Red-Black L+logN log N C 1.40 97.4
Hashing L L c 0.76 40.6
R-Way Trie L L RN+C 112 Memory
TST L+logN | L+logN c 0.72 38.7
T

no arithmetic

TST: As fast as hashing, as flexible as BST.

Existence TST With R? Branching At Root

Hybrid of R-way and TST.
. Do R-way or RZ-way branching at root.
. Each of R?root nodes points to a TST.

array of R? roots

Q. What about one letter words?

Existence Symbol Table: Implementations Cost Summary

Typical Case Dedup
Implementation Search hit Insert Space Moby Actors
nput L L L 0.26 15.1
Red-Black L+logN log N C 1.40 97.4
Hashing L L c 0.76 40.6
R-Way Trie L L RN+C 112 Memory
TST L+logN | L+logN c 0.72 387
TSTwithR2 | L+logN | L+logN C 0.51 327
T

no arithmetic

Result: Faster than hashing, as flexible as BST.

Existence TST Summary

Advantages.
. Very fast search hits.
. Search misses even faster. examine only a few digits of the key!
. Linear space.
. Adapts gracefully to irregularities in keys.
. Supports even more general symbol table ops.

Bottom line: Faster than hashing and even more flexible.

21

TST: Partial Matches

TST search with wildcards.
co....er
.C..nce

Code writes itself!
. If querydigitis’ .’ ORif it's less than current digit go LEFT.
. If querydigitis’ .’ ORif it's equal to current digit go MIDDLE.
. If querydigitis’ .’ ORif it's greater than current digit go RIGHT.
. Maintain path in an array or queue.

TST: Partial Matches

tst-existence.c (Sedgewick Program 15.9)

void matchR(link x, char *k, int i) {
static char word[MAXK + 1];

char d = k[i]; /1 ith character
if (x == NULL) return;
if (d =="\0 && x->d =="\0") {

word[i] = d;

printf("%\n", word); /1 print all matches
}
if (d==x->d || d==".") {

word[i] = d;

mat chR(x->m k, i+1);
}
if (d < x->d d ==".") matchR(x->I, k, i);
if (d > d->d d ==".") matchR(x->r, k, i);

}
voi d STmatch(char *k) { return matchR(root, k, 0); }

TST Symbol Table

TST implementation of symbol table ADT.
. Store Items in leaves of trie.
. Search hit ends at leaf with Key:;
search miss ends at NULL or leaf with different Key.
. Internal nodes store characters; external nodes store Items.
- use separate internal and external nodes?
- collapse (and split) 1-way branches at bottom?

— i [¥]
= — g %~
R A A & @D
o Ll
g “R 0

TST Symbol Table

TST implementation of symbol table ADT.
. Store Items in leaves of trie.
. Search hit ends at leaf with Key:;
search miss ends at NULL or leaf with different Key.
. Internal nodes store characters; external nodes store Items.
- use separate internal and external nodes?
- collapse (and split) 1-way branches at bottom?

- e F
R R
R R (1) \Chel s> Chore)

Existence Symbol Table: Implementations Cost Summary

Typical Case
Implementation Search hit Insert Space
Input L L L
Red-Black L +log N log N @
Hashing L L ©
R-Way Trie L L RN+C
TST L+logN | L+logN @
TST with R? L+logN | L+logN @
R-way collapse 1-way logy N logy N RN+C
TST collapse 1-way log N log N ©

Search, insert time is independent of key length!
. Can use with very long keys.

Associative Arrays

Associative array.
. InC, arrays indexed by integers.
. InPerl, JavaScript, csh, PHP, Python, . ..
- president["Princeton"] = "Tilghman"

Idealized excerpt from COS 226 timing script

Associative Indexing

Associative index.

. Given list of N strings, want to associate an index between
0 and N-1 with each string.

. Recall union find where we assumed objects were labeled O to N-1.

Why useful?
. Running algorithm with indices (instead of ST lookup) is faster.

. No need to modify Item type - add index field to struct Stnode.

Associative Indexing: Application

Connectivity problem.
. Nobjects: 0toN-1
. Find: is there a connection between A and B?
. Union: add a connection between A and B.

Fun version. (see Assignment 8)
. Nobjects: "Kevin Bacon", "Kate Hudson", . . .
. Find: is there a chain of movies connecting Kevin to Kate?

. Union: Kevin and Kate appeared in "How To Lose a Guy in 10 Days"
together, add connection

Real version.
. Nobjects: "www.cs.princeton.edu", "www.harvard.edu"

Associative Indexing: Application

30

Symbol Table Summary

Binary search trees.
. Randomized.
. Red-black.

Hash tables.
. Separate chaining.
. Linear probing.

Tries.
. R-way.
. TST.

Determine the ST ops for your application, and choose the best one.

31

