Shortest Paths

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226

Fastest Route from CS Dept to Einstein's House

Shortest Path Problem

Shortest path network.
. Directed graph.
. Source s, destination t.
. Arc costs c(v, w).

Shortest path problem: find shortest directed path from s to t.
. Cost of path = sum of arc costs in path.

! F N =
I'E'l_'. - wim E "l Hl H\'
- ‘IH'"‘ st "1 : i !
a - = oori -,,."-"‘" 1".- b
5 _.,.-"" 5 % il 12 y £ g™ b
i e B o 1k
- k T * i:t 1%« ; a
L .-‘_ ™ i ;i :ll‘ e o ‘:_" n
Ly -4 % T T #_I: ..'- L T
k) e g IR, C
. P e Rl 0y =
“'-‘l ,'J.P"" r\.q“a - - - W
% % . i 'F"'e
T . . e A
e i, E] % .
d:ﬁ;" 3 \ %, : g
a
j’-r
£y ani
i A, N -
W e
g 2
Graphs
Graph Vertices Edges

communication

telephones, computers

fiber optic cables

circuits gates, registers, processors | wires
mechanical joints rods, beams, springs
hydraulic reservoirs, pumping stations | pipelines

financial stocks, currency transactions

transportation

street intersections, airports

highways, airway routes

Cost of paths-2-3-5-1
= 9+23+2+16
= 48.

scheduling tasks precedence constraints
software systems | functions function calls
internet web pages hyperlinks
games board positions legal moves

social relationship

people, actors

friendships, movie casts

Applications

More applications.
. Urban traffic planning.
. Routing of telecommunications messages.
. Approximating piecewise linear functions.
. Exploiting arbitrage opportunities in currency exchange.
. Typesetting in TeX.
. Tramp steamer problem.
. Telemarketer operator scheduling.
. Optimal pipelining of VLSI chip.
. Subroutine in higher level algorithms.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K.
Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest Path

Versions of the problem that we consider.
. Single source.
+ All-pairs. next programming assignment
. Arccostsare = O. ¢
. Points and distances are Euclidean.
. Arc costs can be < 0, but no negative cycles.
. Arc costs can be arbitrary.

(4,3)

6

o 1
o b !

0,0) (4,0)

Euclidean Negative cycl

A AR

e

Shortest Path: Relaxation

Valid weights m(v).
. Forall v, m(v) is length of some path from s fo v.
. Provides lower bound on length of shortest path from s to v.

Relaxation.
. Consider edge v-w with weight c(v, w).
. If n(w) > m(v) + c(v, w) then update Ti(w) = T(v) + c(v, w).
. Found better route: path from s tov, then arc v-w.

47

33
1

Dijkstra's Algorithm: Implementation

Dijkstra's algorithm.
. Initialize S= ¢, ms]=0, pred[s]=s, mv] =, pred[v]=-1.
. Insert all nodes onto PQ.
. Repeatedly delete node v with min {v] from PQ.
-addvto S
- for each v-w, if m{w]> mv] +c(v, w)
then update mw] = 1fv] +c(v, w)

=1

/while ('PQ sempty()) {
v = PQdel mn();
for (t = G>adj[v]; t !'= NULL; t = t->next) {
w = t->w
relax if (pi[v] + t->wt < pi[w) {
pi[w = pi[v] + t->W; 4= decrease key
pred[w = v;

\ } Main Loop

\

Dijkstra's Algorithm: Proof of Correctness

Tnvariant. For each vertexv O S, mv] = d*(s, v). p*

Proof: by induction on |S|.

Base case: |S| = 0 is trivial.

Induction step:
. Suppose Dijkstra's algorithm adds vertex v to S.
. 1v] is the length of some path froms to v.

. If nv] is not the length of the shortest s-v path, then let P* be a
shortest s-v path.

. P* must use an edge that leaves S, say (x, y)

Dijkstra's Algorithm: Implementation Cost Summary

Priority Queue

Operation Dijkstra Array Binary heap d-way Heap Fib heap *
insert v v log V dlog4V 1
delete-min v log V dlog,V log V

decrease-key 1 log V log4 V 1
1 1 1 1
v2 E log V Elogg,yV | E+VlogV

t Individual ops are amortized bounds

then mv] > d*(s,v) assumption
= d*(s, x) +d(x,y)+ d*(y,v) optimal substructure
= d*(s, x) +d(x,y) nonnegative weights
= 1x] +d(x,y) inductive hypothesis
= 1y] algorithm

. So Dijkstra's algorithm would have selected y instead of v. 3%

Exactly the same as Prim's MST algorithm!
. PFS: variations on a theme.

Shortest Path in Euclidean Graphs

Euclidean graph (map).
. Vertices are points in the plane.
. Edges weights are Euclidean distances.

Sublinear algorithm.
. Assume graph is already in memory.
. Start Dijkstra at s.
. Stop as soon as you reach t.

Exploit geometry.
. Use mv] = length of some s-v path + Euclidean distance from v to t.
. 1v] is a lower bound on length of shortest s-t path.
. Dijkstra proof of correctness still works.
. Typically only O(sqrt(V)) nodes examined for sparse graphs.
. A* algorithm.

Shortest Path With Negative Weights

What if we allow negative cost arcs?

_16 6
30 — 19
15 4
6
20 e \
7 44 W\

Shortest Path With No Negative Cycles

Obstacle: negative cost cycle.

If some path from s o v contains a negative cost cycle, shortest s-v
path does not exist. Otherwise, there exists one that is simple.

c(€)<0

Algorithmic goal: find shortest path or output a negative costs cycle.

Currency Conversion Application

Currency conversion.

. Given V currencies (financial instruments) and exchange rates
between pairs of currencies, is there an arbitrage opportunity?

. Fastest algorithm very valuablel

N>

3/10 3/50

1/10000
D e —

Currency Conversion Application

Reduction.
. Let y(v,w) be exchange rate from currency v to w.
. Let c(vw) = - log y(v,w).
. Arbitrage opportunities in G correspond to negative cycles in G'.

A A

3/10 3 /50 -1.204 -2.813

6 445 om) 4.0254!@

y = exchange rate c=-logy

Bellman-Ford-Moore Algorithm

Bellman-Ford-Moore.
. Initialize T{v] = », pred[v] = -1, n{s] = O, pred[s] = s.
. Repeat V times: relax each edge v-w

/for (i =1; i <=V, i++) <= phasei \
for (v =0; v <V; v++)
for (t = G>adj[v]; t !'= NULL; t = t->next) {

w = t->w

if (pif[v] +t->wt < pi[w) {
pi[w = pi[v] + t->wt; @ relax
pred(w = v;

}

! J

Invariant. At end of phase i, m{v] < length of shortest path from s to v
using at most i edges.

Running time. ©(E V).

Bellman-Ford-Moore Algorithm

Practical improvement.

. If niv] doesn't change during phase i, don't relax any edges of the
form v-w in phase i + 1.

. Programming solution: maintain queue of nodes that have changed.

w([s] = 0;
QUEUEput (s);
whi | e(! QUEUE senpty()) {
v = QUEUEget ();
for (t = G>adj[v]; t !'= NULL; t = t->next) {
w = t->w

if (pi[v] +t->wt < pi[w]) {

pi[wW = pi[v] + t->wt;
pred[w = v: @& relax

QUEUEpUL (W) ;
} N o duplicates

Running time. Still O(E V) worst-case, but how O(E) in practice.

Bellman-Ford-Moore Algorithm

Finding the shortest path itself.
. Trace back pred[v] as in Dijkstra's algorithm.

Detecting a negative cycle.
. If any node v is enqueued V times, there must be a negative cycle.
. Fact: can trace back pred[v] to find cycle.

All Pairs Shortest Path

All pairs shortest path: Find the shortest path from v to w for all v, w.

Nonnegative weights.
. Run Dijkstra's algorithm V times.
. O(EV log V) time.

Negative weights, no negative cycles.
. Run Bellman-Ford once to preprocess graph.
. Run Dijkstra V times.
. O(EV log V) time.

Floyd-Warshall.
. Solve all-pairs problem directly in ©(V3) time.

. Only worthwhile on dense graphs.

Best in theory for sparse graphs: O(EV + V2 log log V).

Floyd's Algorithm

Floyd's algorithm.
. Initialize d[v][w] = c(v, w) if v-w exists, d[v][w] = « otherwise.
. Want shorter path from v to w?
. Take path from v to i and then from i to w if shorter.

47

@

for (i =0; i <G>V, i++)
for (v =0; v < G>V, v++)
for (w=0; w< G>V;, wt)
if (divl[wl >d[v][i] + d[i][w])
divi[w =d[v][i] + d[i][wW;

1
33

Invariant. After ith iteration d[v][w] is shortest path from v to w
whose intermediate nodes are O, 1, ..., i.

21

Shortest Path Variants

Variants of directed shortest path:
. Unit weights: O(E + V) using BFS.
. DAGs: O(E + V) using topological sort.
. Arc costs between -C and C: O(EVY/2 log C) by reducing to
assignment problem.

Undirected shortest path.
. Nonnegative weights: O(E + V) by Thorup.
. No negative cycles: O(EV + V? log V) by reducing to weighted non-
bipartite matching.

