Shortest Paths Shortest Paths Shortest Paths Princeton University · COS 226 · Algorithms and Data Structures · Spring 2003 · http://www.Princeton.EDU/~cs226

Shortest Path Problem

Shortest path network.

- Directed graph.
- Source s, destination t.
- Arc costs c(v, w).

Shortest path problem: find shortest directed path from s to t.

• Cost of path = sum of arc costs in path.

Graphs

Graph	Vertices	Edges	
communication	telephones, computers	fiber optic cables	
circuits	gates, registers, processors	wires	
mechanical	joints	rods, beams, springs	
hydraulic	reservoirs, pumping stations	pipelines	
financial	stocks, currency	transactions	
transportation	street intersections, airports	highways, airway routes	
scheduling	tasks	precedence constraints	
software systems	functions	function calls	
internet	web pages	hyperlinks	
games	board positions legal moves		
social relationship	people, actors	friendships, movie casts	

Applications

More applications.

- Urban traffic planning.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Exploiting arbitrage opportunities in currency exchange.
 - Typesetting in TeX.
 - Tramp steamer problem.
 - Telemarketer operator scheduling.
 - Optimal pipelining of VLSI chip.
 - Subroutine in higher level algorithms.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest Path: Relaxation

Valid weights $\pi(v)$.

- For all v, $\pi(v)$ is length of some path from s to v.
- \blacksquare Provides lower bound on length of shortest path from s to v.

Relaxation.

- Consider edge v-w with weight c(v, w).
- If $\pi(w) > \pi(v) + c(v, w)$ then update $\pi(w) = \pi(v) + c(v, w)$.
- Found better route: path from s to v, then arc v-w.

Shortest Path

Versions of the problem that we consider.

- Single source.
- All-pairs.

next programming assignment

• Arc costs are ≥ 0 .

- Points and distances are Euclidean.
- Arc costs can be < 0, but no negative cycles.
- Arc costs can be arbitrary.

Euclidean

Negative cycle

Dijkstra's Algorithm: Implementation

Dijkstra's algorithm.

■ Initialize $S = \phi$, $\pi[s] = 0$, pred[s] = s, $\pi[v] = \infty$, pred[v] = -1.

- Insert all nodes onto PQ.
- Repeatedly delete node v with min $\pi[v]$ from PQ.
 - add v to S
 - for each v-w, if $\pi[w] > \pi[v] + c(v, w)$ then update $\pi[w] = \pi[v] + c(v, w)$

```
while (!PQisempty()) {
    v = PQdelmin();
    for (t = G->adj[v]; t != NULL; t = t->next) {
        w = t->w;
    relax if (pi[v] + t->wt < pi[w]) {
            pi[w] = pi[v] + t->wt; ← decrease key
            pred[w] = v;
        }
        Main Loop
```

,

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each vertex $v \in S$, $\pi[v] = d^*(s, v)$.

Proof: by induction on |S|. Base case: |S| = 0 is trivial.

Induction step:

- Suppose Dijkstra's algorithm adds vertex v to S.
- $\pi[v]$ is the length of some path from s to v.
- If $\pi[v]$ is not the length of the shortest s-v path, then let P* be a shortest s-v path.
- \blacksquare P* must use an edge that leaves S, say (x, y)

then π[v]	> $d^*(s, v)$ = $d^*(s, x) + d(x, y) + d^*(y, v)$ $\geq d^*(s, x) + d(x, y)$ = $\pi[x] + d(x, y)$ $\geq \pi[y]$	assumption optimal substructure nonnegative weights inductive hypothesis algorithm
	[/]	3.90

■ So Dijkstra's algorithm would have selected y instead of v. 💥

		Priority Queue			
Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap †
insert	V	٧	log V	d log _d V	1
delete-min	V	٧	log V	d log _d V	log V
decrease-key	Е	1	log V	log _d V	1
is-empty	V	1	1	1	1
total		V ²	E log V	E log _{E / V} V	E + V log V

Dijkstra's Algorithm: Implementation Cost Summary

† Individual ops are amortized bounds

Exactly the same as Prim's MST algorithm!

■ PFS: variations on a theme.

10

Shortest Path in Euclidean Graphs

Euclidean graph (map).

- Vertices are points in the plane.
- Edges weights are Euclidean distances.

Sublinear algorithm.

- Assume graph is already in memory.
- Start Dijkstra at s.
- ${\tt \ \ \ }$ Stop as soon as you reach t.

Exploit geometry.

- Use $\pi[v]$ = length of some s-v path + Euclidean distance from v to t.
- . $\pi[v]$ is a lower bound on length of shortest s-t path.
- Dijkstra proof of correctness still works.
- Typically only O(sqrt(V)) nodes examined for sparse graphs.
- A* algorithm.

Shortest Path With Negative Weights What if we allow negative cost arcs?

Shortest Path With No Negative Cycles

Obstacle: negative cost cycle.

If some path from s to v contains a negative cost cycle, shortest s-v path does not exist. Otherwise, there exists one that is simple.

Algorithmic goal: find shortest path or output a negative costs cycle.

Currency Conversion Application

Currency conversion.

- Given V currencies (financial instruments) and exchange rates between pairs of currencies, is there an arbitrage opportunity?
- Fastest algorithm very valuable!

Currency Conversion Application

Reduction.

- Let $\gamma(v,w)$ be exchange rate from currency v to w.
- Let $c(v,w) = -\log \gamma(v,w)$.
- Arbitrage opportunities in G correspond to negative cycles in G'.

Bellman-Ford-Moore Algorithm

Bellman-Ford-Moore.

- Initialize $\pi[v] = \infty$, pred[v] = -1, $\pi[s] = 0$, pred[s] = s.
- Repeat V times: relax each edge v-w

Invariant. At end of phase i, $\pi[v] \le \text{length of shortest path from s to } v$ using at most i edges.

Running time. $\Theta(E V)$.

17

Bellman-Ford-Moore Algorithm

Practical improvement.

- If $\pi[v]$ doesn't change during phase i, don't relax any edges of the form v-w in phase i + 1.
- Programming solution: maintain queue of nodes that have changed.

```
wt[s] = 0;
QUEUEput(s);
while(!QUEUEisempty()) {
    v = QUEUEget();
    for (t = G->adj[v]; t != NULL; t = t->next) {
        w = t->w;
        if (pi[v] + t->wt < pi[w]) {
            pi[w] = pi[v] + t->wt;
            pred[w] = v;
            QUEUEput(w);
        }
    }
    no duplicates
```

Running time. Still O(E V) worst-case, but now O(E) in practice.

All Pairs Shortest Path

All pairs shortest path: Find the shortest path from v to w for all v, w.

Nonnegative weights.

- Run Dijkstra's algorithm V times.
- O(EV log V) time.

Negative weights, no negative cycles.

- Run Bellman-Ford once to preprocess graph.
- Run Dijkstra V times.
- O(EV log V) time.

Floyd-Warshall.

- Solve all-pairs problem directly in $\Theta(V^3)$ time.
- Only worthwhile on dense graphs.

Best in theory for sparse graphs: $O(EV + V^2 \log \log V)$.

Bellman-Ford-Moore Algorithm

Finding the shortest path itself.

• Trace back pred[v] as in Dijkstra's algorithm.

Detecting a negative cycle.

- If any node v is enqueued V times, there must be a negative cycle.
- Fact: can trace back pred[v] to find cycle.

Floyd's Algorithm

Floyd's algorithm.

- Initialize d[v][w] = c(v, w) if v-w exists, $d[v][w] = \infty$ otherwise.
- Want shorter path from v to w?
- Take path from v to i and then from i to w if shorter.


```
for (i = 0; i < G->V; i++)
  for (v = 0; v < G->V; v++)
    for (w = 0; w < G->V; w++)
    if (d[v][w] > d[v][i] + d[i][w])
        d[v][w] = d[v][i] + d[i][w];
```

Invariant. After ith iteration d[v][w] is shortest path from v to w whose intermediate nodes are 0, 1, ..., i.

Shortest Path Variants

Variants of directed shortest path:

- Unit weights: O(E + V) using BFS.
- DAGs: O(E + V) using topological sort.
- Arc costs between -C and C: $O(EV^{1/2} \log C)$ by reducing to assignment problem.

Undirected shortest path.

- Nonnegative weights: O(E + V) by Thorup.
- No negative cycles: $O(EV + V^2 \log V)$ by reducing to weighted non-bipartite matching.

٠