Min Cost Flow

Princeton University -

COS 226

Contents.
. Min cost flow.
. Transportation problem.
. Assignment problem.
. Mail carrier problem.
Klein's cycle-canceling algorithm.
. Network simplex.

Algorithms and Data Structures - Spring 2003 - http://www.Princeton.EDU/~cs226

Minimum Cost Flow

Minimum cost flow problem.
. Directed network.
. Each edge has a cost and a capacity.
. Each vertex has a supply or demand.
. Find best way to send flow from supply vertices to demand vertices.

Min cost flow generalizes:
. Transportation problem.
. Assignment problem.
. Mail carrier problem.
. Max flow.
. Shortest path.

One step closer to single ADT for graph problems.

Minimum Cost Flow Problem

Min cost flow problem.
. Send finished good from plants to customers.

. S, = net supply / demand at vertexv. (sum of supply = sum of demand)
. C,, = unit shipping cost from v to w. (positive or negative)
. u,, = capacity of edge v-w. (infinity ok)

. Goal: satisfy demand at minimize cost.

cost mmp 15/'@ -25 ¢m demand
87
% capacity
supply == 25 @O @ -25

35 D @O -40

40 @ ® ® -1

Transportation Problem

Transportation problem.
. Send finished good from plants to customers.
. s, = amount produced at plant v.
» = amount demanded by customer w.
. C,, = unit shipping cost from plant v to customer w.
. Goal: minimize total cost.

cost =) 15 @

supply = 25 (1) oo‘

capacity

-25 4m demand

-25

40 @ @ -10

Transportation Problem: Application

Assign 600 Princeton undergrads to 40 writing seminars.
. Each students ranks top 8 choices.
. Registrar assigns students to seminars.
. Goal: maximize happiness of students.

Model as a transportation problem.
. Student vertices: supply = 1.
. Seminar vertices: supply = 15.
. Cost of assignhing student i to seminar j:
- o if not among top 8 choices
- r8 where r = student i's rank of seminar |

N

choice of function determines tradeoff, e.g., between
assignhing one student their 2" choice and another their 5t

Assignment Problem

Assignment problem.
. Assigh workers to jobs.
. ¢, = cost of assigning worker v to job w.
. Goal: minimize total cost.

cost = 15
supply = 1 @ 00 >@ -1 <4m demand

N\

capacity

1 @ ® -1

1 (4 >@ -1

Worker Job

Assignment Problem: Applications

Many important real-world applications.

Left Right Optimize
jobs machines cost
people projects cost
students dorm rooms happiness
swimmers events chance of winning
service personnel military postings relocation cost
bachelors bachelorettes compatibility
translators diplomatic meetings cost
radar blip at time t | radar blip at time t+1 accuracy

Mail Carrier Problem

Mail carrier problem.
. Post office located at node s.

Find minimum length route that starts and ends at s and visits each
road at least once.

. Need to traverse roads more than once unless graph is Eulerian.

length wmp 15 /'@

(lower bound, upper bound) (1,)

®

® @

Original graph.
. Flow f(e).

. Arce = v-w.

Residual arcs.
. v-w and w-v.
. "Undo" flow sent.

Residual graph.

. All residual arcs with
positive capacity.

Residual Graph

cost

74

25 capacity

—rl @

6 @m flow

cost

25 o residual capacity
O u——®
‘L______ 6

-25
&y cost

Finding a Feasible Flow

Feasible flow problem: Given a capacitated network with supplies and
demands, find a feasible flow if one exists.

supply wmp 12 (@ 5 @ -3 4= demand
11 2 18
6 -7
@ 4 ®
N
9 > capacity 9

14® 31 ® -22

10

Finding a Feasible Flow

Feasible flow problem: Given a capacitated network with supplies and
demands, find a feasible flow if one exists.

One solution: Solve a maximum flow problem in a related network!

supply = 32 (@ 5 @ 8 4m demand
capacity msp 12 11 2 18 3
X -X
® 6 @ 4 ® 7 ®
14 9 2 9 22

@ 31 ® -22

11

Finding a Feasible Flow

Feasible flow problem: Given a capacitated network with supplies and
demands, find a feasible flow if one exists.

One solution: Solve a maximum flow problem in a related network!

5
® 5 ®
flow wp 12 2 3
capacity mmp 12 5 11 2 2 18 3
6 4 7
® 6 @ 4 ® 7 ®
14 22
4 79 2 L9 22

21

12

Finding a Feasible Flow

Feasible flow problem: Given a capacitated network with supplies and
demands, find a feasible flow if one exists.

One solution: Solve a maximum flow problem in a related network!

5
supply = 12 (@ 5 @ -3 4= demand
2
flow = 5 11 2 2 18 4= capacity
4
6 @ 4 ® -7
79 2 1 9
21

14® 31 © -22

13

Min Cost Flow Assumptions

Useful assumption for min cost flow problems.
. Underlying graph is connected.

. No supply or demand vertices.
- find a feasible solution

- solve problem in residual graph and then translate back

® 5 O,
5 6 2 16 2 4= residual
capacity
® 4 ®
7 2 5 8 1
® 10 ©

21

14

Cycle Canceling Algorithm

How to improve the current feasible flow while maintaining feasibility?
. AUGMENTING CYCLE: negative cost cycle in residual graph.

. Can send flow around cycle.
- strictly decreases cost
- preserves feasibility

D— 5 —@\

12 4 -4

4
% 4 cycle C = 1-2-3-6-5-4-1
6

4

cost(C)=4+6+3-5-4-5=-1
o 5
cost /

_3 Residual Graph

15

Cycle Canceling Algorithm

How to improve the current feasible flow while maintaining feasibility?
. AUGMENTING CYCLE: negative cost cycle in residual graph.

. Can send flow around cycle.
- strictly decreases cost
- preserves feasibility

5

TN

-4 4 6 -12 4 -4 2 4 residual capacity
é 4 cycle € = 1-2-3-6-5-4-1
| cost(C)=4+6+3-5-4-5=-1

cap(C) = min{6,2,10,1,2,5} =1

-5
cost é_ 130 T /

_3 Residual Graph

16

Cycle Canceling Algorithm

How to improve the current feasible flow while maintaining feasibility?
. AUGMENTING CYCLE: negative cost cycle in residual graph.

5
® -5 @
4 4 -12 4 -4 4m residual capacity
>
cost
4 ® cycle C = 2-6-3
cost(C)=6-3-6=-3
8 -6 6 : 5 cap(€)=min{2,22,8}=2

— 23— Residual Graph

17

Cycle Canceling Algorithm

How to improve the current feasible flow while maintaining feasibility?
. AUGMENTING CYCLE: negative cost cycle in residual graph.

5
-5
2
-4 4 -12 17 4 -4
> o
cost
@ 4 cycle € = 1-4-5
cost(C)=6+4-12 =-3
6 6 . E cap(C)=min{1,17,2}=1
® 3 ®

_3 Residual Graph

18

Cycle Canceling Algorithm

How to improve the current feasible flow while maintaining feasibility?

. AUGMENTING CYCLE: negative cost cycle in residual graph.

Is flow optimal when no more augmenting cycles?

® -5 O,
12
-4 4 -12 4 -4
>
cost @ 4 @
® 3 O,

Residual Graph

19

Cycle Canceling Algorithm

Klein's cycle canceling algorithm.
. Generic method for solving min cost flow problem.

. Analog of Ford-Fulkerson augmenting path algorithm for max flow.

Klein's Cycle Canceling Algorithm

Start with a feasible flow f.

REPEAT (until no augnenting cycl es)
Fi nd an augnenting cycle C
Augnent fl ow al ong C

Questions.
Does this lead to a min cost flow?
. How do we find an augmenting cycle?
. How many augmenting cycles does it take?

20

Min Cost Flow: Optimality Conditions

Observation. If all residual arcs have =0 cost, then flow is optimal.
. Current flow is always feasible.

. Any change in flow can only increase cost.

® 5 O,
0O 6 2 0O 2
@ 4 ®
cost
® 10 O,
2

Residual Graph

21

Min Cost Flow: Reduced Cost

Reduced cost: given vertex potentials ¢(v), the reduced cost of edge

v-w is c(v, w) + @(v) - @(w).

Intuition. @(v) = market price for one unit of flow av.

reduced cost mmp -2

vertex 8] 15
potential = @ P @

cost
Observation. Cost of cycle = reduced cost of cycle.

4
0 @ X ® o
cost = -b
-3 8 X 4 reduced cost = -5
-10
3 ® 3 ®

4

22

Min Cost Flow: Optimality Conditions

Theorem. A feasible flow f is optimal if and only if there are no
augmenting cycles.

Corollary. If Klein's algorithm terminates, it terminates with an
optimal flow.

Proof.
. If augmenting cycle, decrease cost by sending flow around cycle.

. If no augmenting cycle, compute shortest path ¢(v) from s to every
node v in residual graph.

- @w) < @lv) +c(v,w)
- using @ as vertex potentials, all arcs have reduced cost = O
- thus, current flow is optimal

23

Running Time

Assumption: all capacities are integers between 1 and U; all costs are
integers between -C and C.

Invariant: every flow value and every residual capacity remain integral
throughout Klein's algorithm.

Theorem: Klein's algorithm terminates after at most E U C iterations.
. Each augmenting cycle decrease cost by at least 1. g
not polynomial in
input sizel

Integrality theorem: if all arc capacities, supplies, and demands are
integers, then there exists an integral min cost flow.

. Assignment problem formulation relies on this fact.
. Can't route 1/2 airplane from Princeton to Palo Alto.

24

Finding A Negative Cost Cycle

How to find an augmenting cycle?
. Run Bellman-Ford in residual graph.
. O(E V) time per cycle.

How many cycles will we need to cancel?
. Some rules lead to exponential algorithms.

. Clever rules lead to polynomial algorithms.
- generalize shortest augmenting path
- generalize fattest augmenting path

Can we reduce the time needed to find a negative cycle?
. No, unless we solve a major open research problem.

. Yes, since we can reuse information from iteration to iteration.

. Result: network simplex method.

25

Network Simplex

Maintain a spanning tree and vertex potentials Tt such that:
. All non-tree arcs e either have flow(e) = O or flow(e) = cap(e).
. All tree arcs have O reduced cost.

. Always possible since it's a tree.
ANY residual arc with neg reduced cost completes a neg cost cycle.

-5
tree
edge ™=

0 -4

Ci)\ Ci>
o i iv
® 10 \

edge 5-1 has reduced cost -4
cycle C = 1-2-6-5-1
redcost(C) = cost(C) = -4

26

Network Simplex

How to update spanning tree?
m) . Find bottleneck capacity 6.

0 -4
| ‘\

reduced i\
cost | |
® 10 \

©

(‘2 -5 ﬁ,) (‘2 5 @
tree
edge = \\ 0 \\

tiD

0

residual capacity

27

Network Simplex

How to update spanning tree?
Find bottleneck capacity 6.

m) . Decrease flow on some edges by 6, increase it by 6 on others.
m) . Delete a bottleneck edge from spanning tree; insert new edge.

-5 (:)
tree
edge ‘

3

w
@\ ®
reduced (I.)

2

RSN

cost

10
residual capacity

16 2

28

Network Simplex

How to update spanning tree?
Find bottleneck capacity 6.
Decrease flow on some edges by 6, increase it by 6 on others.
Delete a bottleneck edge from spanning tree; insert new edge.
m) . Recompute vertex potentials.

?\ '5 IN
tree
edge = 0 0
w | w 20
®\ ®\8 '
reduced (I.) (I.) 4
<!> \

: \

29

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS.
. Goal: find in time proportional to length of cycle.

. Inpractice, length of cycle very short.
Use parent-link representation of tree.
. Climb tree from two endpoints until

you hit least common ancestor.

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS. (&)
Goal: find in time proportional to length of cycle.

. Inpractice, length of cycle very short. i)
Use parent-link representation of tree.
m) . Climb tree from two endpoints until
you hit least common ancestor. ;

/
/
&
entering edge

31

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS. (&)
. Goal: find in time proportional to length of cycle.
. Inpractice, length of cycle very short. 12

Use parent-link representation of tree.
m) . Climb tree from two endpoints until

you hit least common ancestor. 9.
%@ o4

/
/

™

entering edge

/

=

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS.
. Goal: find in time proportional to length of cycle.
. Inpractice, length of cycle very short.

Use parent-link representation of tree.

. Climb tree from two endpoints until
you hit least common ancestor.

entering edge

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS. (&)
. Goal: find in time proportional to length of cycle.

. Inpractice, length of cycle very short. i)
Use parent-link representation of tree. (Ica
. Climb tree from two endpoints until %)

you hit least common ancestor.
bottleneck 4

. Delete bottleneck edge.

Network Simplex: Implementation

(4)
How to find cycle?
. Can find in O(V) time using DFS. (&)
. Goal: find in time proportional to length of cycle.
. Inpractice, length of cycle very short. i)
Use parent-link representation of tree. (Ica
. Climb tree from two endpoints until %)

you hit least common ancestor.
. Delete bottleneck edge.
. Update tree by reversing subpath.

%} © @
-~

\@' entering edge

Network Simplex: Implementation

How to find cycle?
. Can find in O(V) time using DFS. (&)
Goal: find in time proportional to length of cycle.

. Inpractice, length of cycle very short. i)
Use parent-link representation of tree. (Ica
. Climb tree from two endpoints until
you hit least common ancestor.

. Delete bottleneck edge.
. Update tree by reversing subpath.

en’rer'mg edge

Network Simplex Issues

Which edge should T add to tree?
. Any one with negative reduced cost works.
. Use first one O less time searching for cycle.
. Use most negative one [0 maximize rate at which cost decreases.
. Candidate list 0 practical tradeoff.

Degeneracy: when bottleneck capacity = 0.
. Can happen if tree arc is at upper or lower bound.
. Can still make progress since spanning tree changes.

. Common in practice, slows down algorithm.
- up o 90% degenerate pivots

Can degeneracy lead to infinite loop? Yes, but cycling rare in practice.
Can this be avoided? Yes, choose leaving edge using Cunningham's rule.

37

Assumptions.

Development of Min Cost Flow Algorithms

Arc capacities between 1 and U, costs between -C and C.

. Ignore log V factors.

Year Discoverer Method Big-Oh ~
1951 Dantzig Network simplex E2V2U
1960 Minty, Fulkerson Out of kilter EVU
1958 Jewell Successive shortest path EVU
1962 Ford-Fulkerson Primal dual EVZU
1967 Klein Cycle canceling E2CU
1972 | Edmonds-Karp, Dinitz Capacity scaling E2log U
1973 Dinitz-Gabow Improved capacity scaling E Viog U
1980 | Rock, Bland-Jensen Cost scaling EV2log C
1985 Tardos g-optimality poly(E, V)
1988 Orlin Enhanced capacity scaling E?

Hard to beat optimized network simplex in practice . . .
But fastest algorithms use sophisticated "scaling" techniques.

38

Conclusions

Min cost flow is important because:
. It's a very general problem solving model.
. There are many fast and practical algorithms.

Min cost flows relies on algorithmic machinery we've been building up:
. Graph.
. Shortest path problem.
. Max flow problem.
. Parent-link representation.

39

