Balanced Search Trees

These lecture slides have been adapted from:
« Algorithms in C, 3v4 Edition, Robert Sedgewick.

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226

Symbol Table Review

Symbol table, dictionary.
. Set of items with keys.
. INSERT a new item.
. SEARCH for an existing item with a given key.

Randomized BST.
. log N time per op (unless you get ridiculously unlucky).
. Store subtree count in each node.
. Generate random numbers for each insert/delete op.

This lecture.

. Splay trees.

. Red-black trees.
. B-trees.
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Splay Trees

Splay trees.
. Self-adjusting BST.
- tree automatically reorganizes itself after each op

- when insert or search for x, rotate x up to root using
"double rotations"

- tree remains "balanced" without explicitly storing any balance
information
. Amortized guarantee: any sequence of N ops takes O(N log N) time.
- height of tree can be N
- individual op can take linear time
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Splay Trees

Splay.

. Check two links above current node.
ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.
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Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
m) . ZIG-ZIG: if orientations match, do top rotation first.
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Splay Trees

Splay.
. Check two links above current node.
. ZIG-ZAG: if orientations differ, same as root insertion.
. ZIG-ZIG: if orientations match, do top rotation first.
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Splay Trees

Intuition.
. Splay rotations halve search path.
. Reduces length of path for many other nodes in tree.
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Symbol Table: Implementations Cost Summary

Worst Case Average Case

Implementation Search Insert Delete Search Insert Delete™
Unsorted array N 1 1 N/2 1 1
Sorted array log N N N log N N/2 N/2
BST N N N logN | logN [sqrt(N)f
Randomized logN * | logN¥ | logN¥ | logN | logN | logN
Splay logN$ logNS logN$ JlogNS$ JlogNS$ JlogN$

* assumes we know location of node to be deleted

T if delete allowed, insert/search become sqrt(N)
¥ probabilistic guarantee
§ amortized guarantee

Splay: sequence of any N ops in O(N log N) time.
Ahead: Can we do all ops in log N time?
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2-3-4 Trees

Allow 1, 2, or 3 keys per node.

. 2-node: one key, two children.

. 3-node: two keys, three children.
. 4-node: three keys, four children.

SEARCH.
. Compare search key against keys in node.
. Find interval containing search key.
. Follow associated link (recursively).

INSERT.
. Search to bottom for key.
. 2-node at bottom: convert to 3-node.
. 3-node at bottom: convert to 4-node.
. 4-node at bottom: ??
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2-3-4 Trees

Transform tree on the way DOWN.
. Ensure that last node is not a 4-node.

Local transformation to split 4-nodes:
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Invariant: current node is hot a 4-node.

. One of two above transformations must apply at next node.

. Insertion at bottom is easy since it's not a 4-node.
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2-3-4 Trees

Tree grows up from the bottom.
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Balance in 2-3-4 Trees

All paths from top to bottom have exactly the same length.

Tree height.
. Worst case: Ig N all 2-nodes
. Bestcase: log,N=%IgN all 4-nodes
. Between 10 and 20 for a million nodes.
. Between 15 and 30 for a billion nodes.

Comparison within nodes not accounted for.
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2-3-4 Trees: Implementation?

Direct implementation complicated because of:
. therightlink().

. Maintaining multiple node types.

. Large number of cases for split().

Fantasy Code

link insertR(link h, Itemitem {
Key v = | TEMkey(item;
link x = h;
while (x !'= NULL) {
X = therightlink(x, v);
i f fournode(x) then split(x);

if twonode(x) then nakethree(x, v);
el se if threenode(x) then nmakefour(x, v);
}

return head;
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Red-Black Trees

Represent 2-3-4 trees as binary trees.
. Use "internal" edges for 3- and 4- nodes.
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. Correspondence between 2-3-4 trees and red-black trees.

rf’%’g\{-\ G ..rf _.
WIRR A%,

. Not 1-1 because 3-nodes swing either way.
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Splitting Nodes in Red-Black Trees

Two cases are easy: switch colors.
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Red-Black Tree Node Split Example

I H-T-\,
f I e
RRA Th

60




Red-Black Tree Construction
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Balance in Red-Black Trees

Length of longest path is at most twice the length of shortest path.

Tree height.
. Worst case: 2 Ig N.

Comparison within nodes ARE counted.
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Symbol Table: Implementations Cost Summary

Worst Case

Average Case

Search Insert Delete Search Insert Delete*

Implementation

Unsorted array N 1 1 N/2 1 1
Sorted array log N N N log N N/2 N/2
BST N N N logN | logN [sqrt(N)f
Randomized logN * | logN# | logN¥ | logN | logN | logN
Splay logNS$ | logNS | logNS$ | logN$ | logNS$ | logN$
Red-Black log N log N log N logN  logN  log N

* assumes we know location of node to be deleted

T if delete allowed, insert/search become sqrt(N)
¥ probabilistic guarantee
§ amortized guarantee
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Red-Black Trees in Practice

Efficient.
. Fewer rotations than splay trees.
. Can even eliminate the 1 bit of storage needed for color.

Flexible.
. Interval trees.
. Order statistic trees.

Widely used as system symbol table.
. Java: TreeMap, TreeSet.
. C++ STL: map, multimap, multiset.
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B-Trees

B-Tree generalize 2-3-4 trees by allowing up to M links per node.

. Split full nodes on the way down.

Main application: file systems.
. Reading a page from disk is expensive.
. Accessing info on a page is free.
. Goal: minimize # page accesses.
. Node size M = page size.

Space-time tradeoff.
. Mlarge O only afew levels in tree.
. Msmall O less wasted space.
. Typical M = 1000, N <1 trillion.

Bottom line: number of PAGE accesses is logyN per op.
. 3or4inpractice!
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B-Tree Example
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B-Tree Example (cont)
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Symbol Table: Implementations Cost Summary

Worst Case

Average Case

Search Insert Delete Search 1Insert Delete*

Implementation

Unsorted array N 1 1 N/2 1 1
Sorted array log N N N log N N/2 N/2
BST N N N logN | logN [sqrt(N)f
Randomized logN * | logN¥ | logN¥ | logN | logN | logN
Splay logNS$ | logNS | logNS$ | logN$ | logNS$ | logN$
Red-Black log N log N log N logN | logN | logN
B-Tree 1 1 1 1 1 1
— —— _

page accesses

B-Tree: Number of PAGE accesses is log,N per op.
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Summary

Goal: ST implementation with log N guarantee for all ops.
. Probabilistic: randomized BST.
. Amortized: splay tree.
. Worst-case: red-black tree.
. Algorithms are variations on a theme.
- rotations when inserting

Abstraction extends to give search algorithms for huge files.

B-tree.
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