
Lecture P8: Pointers and Linked Lists

Lewis Caroll
Through the Looking Glass

"The name of the song is called 'Haddocks' Eyes.' "

"Oh, that's the name of the song, is it?" Alice said, trying to feel
interested.

"No, you don't understand," the Knight said, looking a little vexed.
"That's what the name is called. The name really is 'The Aged Aged
Man.' "

"Then I ought to have said 'That's what the song is called' ?" Alice
corrected herself.

"No, you oughtn't: that's quite another thing! The song is called
'Ways and Means,' but that is only what it's called, you know!"

"Well, what is the song, then?" said Alice, who was by this time
completely bewildered.

"I was coming to that," the Knight said. "The song really is 'A-sitting
On A Gate,' and the tune's my own invention."

2

Pointer Overview

Basic computer memory abstraction.

■ Indexed sequence of bits.

■ Address = index.

■ Ex 1: TOY.
– basic unit = word = 16 bits
– 8-bit address refers to one of 256 words

■ Ex 2: Arizona.
– basic unit = byte = 8 bits
– 32-bit address refers to one of 4 billion+ bytes

Pointer = VARIABLE that holds memory address.

■ Allow function to change inputs.

■ Create self-referential data structures.

■ Better understanding of arrays.

00

addr

0000

value

01 3412

02 11AC

03 F00D

04 FADE

05 60B3

06 982A

.

FB D1CE

FC CAFE

FD FECE

FE CEDE

FF FACE

3

Pointers in TOY

Variable that stores the value of a single MEMORY ADDRESS.

■ In TOY, memory addresses are 00 – FF.
– indirect addressing: store a memory address in a register

ÿ load indirect: R[d] ←←←← mem[R[t]]

ÿ store indirect: mem[R[t]] ←←←← R[d]

■ Very powerful and useful programming mechanism.
– more confusing in C than in TOY
– easy to abuse!

Memory location D2 stores a
"pointer" to another memory
location (E5) of interest.

Value

Address

1

D0

9

D1

E5

D2

..

..

7

D9

0

DA

00

DB

..

..

3

E5

5

E6

D9

E7

4

Pointer abstraction captures distinction between a thing and its name.

Pointer Intuition

Web page

Thing

Email inbox

Bank account

Princeton student

Word of TOY memory

Byte of PC memory

int x;

www.princeton.edu

Name

august@cs.princeton.edu

45-234-23310076

610080478

1A

FFBEFB24

&x

*px px declared as int *px;

This room Frist 302

5

Pointers in C

C pointers.
■ If x is an integer:

&x is a pointer to x (memory address of x)

■ If px is a pointer to an integer:
*px is the integer

#include <stdio.h>

int main(void) {
int x;
int *px;

x = 7;
px = &x;
printf(" x = %d\n", x);
printf(" px = %p\n", px);
printf("*px = %d\n", *px);
return 0;

}

pointer.c

allocate storage for
pointer to int

6

Pointers as Arguments to Functions

Goal: function that swaps values of two integers.

A first attempt:

#include <stdio.h>

void swap(int a, int b) {
int t;
t = a; a = b; b = t;

}

int main(void) {
int x = 7, y = 10;
swap(x, y);
printf("%d %d\n", x, y);
return 0;

}

badswap.c

7

Pointers as Arguments to Functions

Goal: function that swaps values of two integers.

Now, one that works.

#include <stdio.h>

void swap(int *pa, int *pb) {
int t;
t = *pa; *pa = *pb; *pb = t;

}

int main(void) {
int x = 7, y = 10;
swap(&x, &y);
printf("%d %d\n", x, y);
return 0;

}

swap.c

changes value
stored in memory
address for x and y

8

Linked List Overview

Goal: deal with large amounts of data.

■ Organize data so that it is easy to manipulate.

■ Time and space efficient.

Basic computer memory abstraction.

■ Indexed sequence of bits (words, bytes).

■ Address = index.

Need higher level abstractions to bridge gap.

■ Array.

■ Struct.

■ LINKED LIST

■ Binary tree.

■ Database.

■ . . .

00

addr

0000

value

01 3412

02 11AC

03 F00D

04 FADE

05 60B3

06 982A

.

FB D1CE

FC CAFE

FD DEAF

FE CEDE

FF FACE

9

Value

Address

1

D0

9

D1

E5

D2

..

..

7

D9

0

DA

00

DB

..

..

3

E5

5

E6

D9

E7

Linked List

Fundamental data structure.

■ HOMOGENEOUS collection of values (all same type).

■ Store values ANYWHERE in memory.

■ Associate LINK with each value.

■ Use link for immediate access to the NEXT value.

Possible TOY memory representation of x 9 + 3x5 + 7.

■ Assume linked list starts in location D0.

special "NULL"
memory address
denotes end of list

coefficient exponent memory address
of next element

10

Linked List

Fundamental data structure.

■ HOMOGENEOUS collection of values (all same type).

■ Store values ANYWHERE in memory.

■ Associate LINK with each value.

■ Use link for immediate access to the NEXT value.

Possible TOY memory representation of x 9 + 3x5 + 7.

■ Assume linked list starts in location D0.

NULLE591 D9530007head

Value

Address

1

D0

9

D1

E5

D2

..

..

7

D9

0

DA

00

DB

..

..

3

E5

5

E6

D9

E7

11

Linked List

Fundamental data structure.

■ HOMOGENEOUS collection of values (all same type).

■ Store values ANYWHERE in memory.

■ Associate LINK with each value.

■ Use link for immediate access to the NEXT value.

Possible TOY memory representation of x 9 + 3x5 + 7.

■ Assume linked list starts in location D0.

ÿ Advantage: space proportional to amount of info.
ÿ Disadvantage: can only get to very next item quickly.

Value

Address

1

D0

9

D1

E5

D2

..

..

7

D9

0

DA

00

DB

..

..

3

E5

5

E6

D9

E7

12

Linked List vs. Array

Polynomial example illustrates basic tradeoffs.

■ Sparse polynomial = few terms, large exponent.
Ex. 3x 1000000 + 5x50000 + 7

■ Dense polynomial = mostly nonzero coefficients.
Ex. 6x 6 + 5x5 + 4x4 + 3x3 + 2x2 + 1

7 0 0 0 .. 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 3

.. 7 0 . 3 5 . .

1 0 2 3 4 5 6

6 6 . 1 0 . 3 3 . 4 4 . 2 2 . 5 5 .

array

linked
list

array

linked
list

13

Linked List vs. Array

Polynomial example illustrates basic tradeoffs.

Lesson: know space and time costs.

■ Axiom 1: there is never enough space.

■ Axiom 2: there is never enough time.

space huge

time instant

tiny

tiny

array linked

Huge Sparse Polynomial

space huge

time instant

3 * huge

huge

array linked

Huge Dense Polynomial

Time to determine
coefficient of x k.

14

Overview of Linked Lists in C

Not directly built into C language. Need to know:

How to associate pieces of information.
■ User-define type using struct.

■ Include struct field for coefficient and exponent.

How to specify links.
■ Include struct field for POINTER to next linked list element.

How to reserve memory to be used.

■ Allocate memory DYNAMICALLY (as you need it).
■ malloc()

How to use links to access information.
■ -> and . operators

15

struct node {
int coef;

int exp;

struct node *next;

};

int main(void) {

struct node p, q, r;

p.coef = 1; p.exp = 9;

q.coef = 3; q.exp = 5;

r.coef = 7; r.exp = 0;

p.next = &q;

q.next = &r;

r.next = NULL;

return 0;

}

poly1.c

Linked List for Polynomial

C code to represent x 9 + 3x5 + 7.
■ Statically , using nodes.

■ Need to know how many
ahead of time.

link up nodes

define node to
store 2 integers

memory address
of next node

initialize data

16

Linked List for Polynomial

C code to represent x 9 + 3x5 + 7.
■ Statically, using nodes.
■ Dynamically , using links.

x->exp ⇔⇔⇔⇔ (*x).exp

Study this code: tip of iceberg!

#include <stdlib.h>

typedef struct node *link;
struct node { . . .};

int main(void) {
link x, y, z;

x = malloc(sizeof *x);
x->coef = 1; x->exp = 9;
y = malloc(sizeof *y);
y->coef = 3; y->exp = 5;
z = malloc(sizeof *z);
z->coef = 7; z->exp = 0;

x->next = y;
y->next = z;
z->next = NULL;

return 0;
}

poly2.c

link up nodes of list

allocate enough
memory to store node

initialize data

17

Review of Stack ADT

Create ADT for stack.

■ Lecture P5: implement using an array.

■ Now: re-implement using linked list.

client uses data type, without
regard to how it is represented
or implemented.

void STACKinit(void);

int STACKisempty(void);

void STACKpush(int item);

int STACKpop(void);

void STACKshow(void);

STACK.h
#include "STACK.h"

int main(void) {

int a, b;

. . .

STACKinit();

STACKpush(a);

. . .

b = STACKpop();
return 0;

}

client.c

18

Stack Implementation With Linked Lists

#include <stdlib.h>

#include "STACK.h"

typedef struct STACKnode* link;

struct STACKnode {

int item;

link next;

};

static link head;

void STACKinit(void) {

head = NULL;

}

int STACKisempty(void) {

return head == NULL;

}

stacklist.c

standard linked
list data structure

static to make
it a true ADT

head points to
top node on stack

19

Stack Implementation With Linked Lists

link NEWnode(int item, link next) {
link x = malloc(sizeof *x);

if (x == NULL) {

printf("Out of memory.\n");

exit(EXIT_FAILURE);

}

x->item = item; x->next = next;

return x;

}

void STACKpush(int item) {
head = NEWnode(item, head);

}

stacklist.c (cont)

allocate memory and
initialize new node

insert at beginning
of list

check if
malloc fails

NULLhead001head

item next

E52headD93head

20

Stack Implementation With Linked Lists

int STACKpop(void) {

int value; link second;

if (head == NULL) {

printf("Stack underflow.\n");

exit(EXIT_FAILURE);

}

value = head->item;

second = head->next;

free(head);

head = second;

return value;

}

void STACKshow(void) {

link x;

for (x = head; x != NULL; x = x->next)
printf("%d\n", x->item);

}

stacklist.c (cont)

free is opposite of malloc :
gives memory back to system

traverse linked list

21

Implementing Stacks: Arrays vs. Linked Lists

We can implement a stack with either array or linked list, and switch
implementation without changing interface or client.

%gcc client.c stacklist.c

%gcc client.c stackarray.c

Which is better for stacks?

■ Array
ÿ Requires upper bound MAX on stack size.
ÿ Uses space proportional to MAX.

■ Linked List
ÿ No need to know stack size ahead of time.
ÿ Space proportional to number of elements.
ÿ Requires extra space to store pointers.
ÿ Dynamic memory allocation is slower.

22

Conclusions
Whew, lots of material in this lecture!

■ Pointers are useful, but can be confusing. Bewildering, even.

■ Study these slides and carefully read relevant material.

■ Do not debug by speculatively sprinkling &'s and *'s in your
program!

■ Instead, do draw pictures with boxes and arrows.

'Haddocks' Eyes'

'The Aged
Aged Man'

'Ways and Means'

'A-sitting On A Gate'

- Alice should have done this!

Lecture P8: Extra Slides

24

Pointers and Arrays

#include <stdio.h>
#define N 64

int main(void) {
int a[N] = {84, 67, 24, ..., 89, 90};
int i, sum;

for (i = 0; i < N; i++)
sum += a[i];

printf("%d\n", sum / N);
return 0;

}

avg.c

"Pointer arithmetic"

&a[0] = a+0 = D000
&a[1] = a+1 = D004
&a[2] = a+2 = D008

a[0] = *a = 84
a[1] = *(a+1) = 67
a[2] = *(a+2) = 24

Value

Memory address

84

D000

67

D004

24

D008

..

..

89

D0F8

90

D0FC

..

..

on arizona,
int is 32 bits (4 bytes) ÿÿÿÿ
4 byte offset

25

Pointers and Arrays

"Pointer arithmetic"

&a[0] = a+0 = D000
&a[1] = a+1 = D004
&a[2] = a+2 = D008

a[0] = *a = 84
a[1] = *(a+1) = 67
a[2] = *(a+2) = 24

Just to stress that a[i] really
means *(a+i) :

2[a] = *(2+a) = 24

This is legal C, but don't ever
do this at home!!!

Value

Memory address

84

D000

67

D004

24

D008

..

..

89

D0F8

90

D0FC

..

..

26

Passing Arrays to Functions

Pass array to function.

■ Pointer to array element 0 is passed instead.

#include <stdio.h>
#define N 64

int average(int b[], int n) {
int i, sum;
for (i = 0; i < n; i++)

sum += b[i];
return sum / n;

}

int main(void) {
int a[N] = {84, 67, 24, ..., 89, 90};
printf("%d\n", average(a, N));
return 0;

}

avg.c

passes &a[0] = D000
to function

receive the value
D000 from main

27

Why Pass Array as Pointer?

Advantages.

■ Efficiency for large arrays – don't want to copy entire array.

■ Easy to pass "array slice" of "sub-array" to functions.

int average(int b[], int n) {
int i, sum;
for (i = 0; i < n; i++)

sum += b[i];
return sum / n;

}

int main(void) {
. . .

res = average(a+5, 10);
. . .
}

avg.c

compute average of
a[5] through a[14]

28

Passing Arrays to Functions

Many C programmers use int *b instead of int b[] in function
prototype.

■ Emphasizes that array decays to pointer when passed to function.

int average(int *b , int n) {
int i, sum;
for (i = 0; i < n; i++)

sum += b[i];
return sum / n;

}

an equivalent function

int average(int b[] , int n) {
int i, sum;
for (i = 0; i < n; i++)

sum += b[i];
return sum / n;

}

average function

