
Lecture P1: Introduction to C

#include <stdio.h>

int main(void) {

printf("This is a C program.\n");

return 0;

}

2

Learning to Program

Programming is learned with practice and patience.

■ Don’t expect to learn solely from these lectures.

■ Do exercises.

■ Experiment and write lots of code.

Do reading.

■ Read King Chapters 1-6 today!

■ Read again over the weekend.

Aspects of learning to program.

■ Language syntax.

■ Algorithms.

■ Libraries.

■ These are different skills and learning processes.

3

C Background

Born along with Unix in the early 1970s.

■ One of most popular languages today.

■ Basis of C++ and Java.

C Features.

■ Concise.

■ Widespread usage.

■ Exposes low-level details of machine.

Consequences.

■ Positive: you can do whatever you want.
! Flexible and powerful.

■ Negative: you can do whatever you want.
! Shoot yourself in the foot.

4

Language Syntax: Loops

Print a table of values of function f(x) = 2 - x3 .

x f(x)
0.0 2.000
0.1 1.999
0.2 1.992
0.3 1.973
0.4 1.936
0.5 1.875
0.6 1.784
0.7 1.657
0.8 1.488
0.9 1.271
1.0 1.000
1.1 0.669
1.2 0.272
1.3 -0.197
1.4 -0.744
1.5 -1.375
1.6 -2.096
1.7 -2.913
1.8 -3.832
1.9 -4.859

x < 2.0

x ← 0

y ← 2 - x3

print x, y
x ← x + 0.1

true

false

5

Anatomy of a While Loop

Print a table of values of function f(x) = 2 - x3 .

■ Use while loop to perform repetitive tasks.

x = 0.0;
while (x < 2.0) {

y = 2 - x*x*x;
printf("%f %f\n", x, y);
x = x + 0.1;

}

C code

x < 2.0

x ← 0

y ← 2 - x3

print x, y
x ← x + 0.1

true

false

6

Language Syntax: Loops

Print a table of values of function f(x) = 2 - x3 .

■ Use while loop to perform repetitive tasks.

#include <stdio.h>

int main(void) {
double x, y;

printf(" x f(x)\n");
x = 0.0;
while (x < 2.0) {

y = 2.0 - x*x*x;
printf("%4.1f %6.3f\n", x, y);
x = x + 0.1;

}

return 0;
}

table2.c

repeat while loop
until x < 2.0

compute 2 - x3 and
assign that value to y

assign variable x the
value 0.0

printf used to print
characters to screen

input/output library
functions
computer starts
executing code at main

end of code

print new values of x
and y to the screen

repeat as long as x is
less than 2.0

reassign variable x with
the value x + 0.1

declare real-valued
variables x and y

10

Debugging a Program

When you type commands, you are controlling an
abstract machine called the "Unix shell."

■ Compile: convert the program from human’s
language (C) to machine’s language.

■ Syntax error: illegal C program.

■ Semantic error: legal but wrong C program.

■ Debugging: cyclic process of editing, compiling,
and fixing errors.

– always a logical explanation
– enjoy the satisfaction of a working program!

% gcc table.c
% a.out

x f(x)
0.0 2.000
0.1 1.999
0.2 1.992
0.3 1.973
0.4 1.936
0.5 1.875
0.6 1.784
0.7 1.657
0.8 1.488
0.9 1.271
1.0 1.000
1.1 0.669
1.2 0.272
1.3 -0.197
1.4 -0.744
1.5 -1.375
1.6 -2.096
1.7 -2.913
1.8 -3.832
1.9 -4.859

Unix

11

Language Syntax: Functions

Convenient to break up programs into smaller modules or functions.

■ Layers of abstraction.

■ Makes code easier to understand.

■ Makes code easier to debug.

■ Makes code easier to change later on.

f(x) = 2 - x3

Input

1.2 0.272

Output

double f(double x) {
return 2 - x*x*x;

}

C function

12

Anatomy of a Function

C function similar to mathematical function.

Prototype or interface is first line of C function.
■ specifies input argument(s) and their types

– can be integers, real numbers, strings, vectors, user-defined
■ specifies type of return value

Body or implementation.
■ The rest, enclosed by { }

double sum(double x, double y) {
double z;
z = x + y;
return z;

}

sum function

output type

input 2
type

output value

scratch space

input 2
name

function name

statements
stop execution

of function

13

Anatomy of a C Program

#include <stdio.h>

double f(double x) {
return 2.0 - x*x*x;

}

int main(void) {
double x, y;

printf(" x f(x)\n");
x = 0.0;
while (x < 2.0) {

y = f(x);
printf("%4.1f %6.3f\n", x, y);
x = x + 0.1;

}

return 0;
}

table3.c

function

variable
declarations

assignment
statement

function call
statementflow control

statement

14

Library Functions: printf()

Library functions.

■ Functions provided as part of C implementation.

Example: printf().

■ Contact between your C program and outside world.

■ Puts characters on "standard output."

■ By default, stdout is the screen that you’re looking at.

Internally, all numbers represented in BINARY (0’s and 1’s).
■ printf() displays more useful representation (int, double).

Formatted output.

■ How do you want the numbers to look?
– integers, how many digits?
– real numbers, how many digits after decimal place?

■ Very flexible.

15

Library Functions: printf()

double x, y;
x = 0.927;
y = 2.2;
printf("%4.1f %6.3f\n", x, y);

.2 ...2 0 090 .

1 3

4 6

%f to print double

’\n’ is newline
character

space in printf
statement

18

Library Functions: rand()

Print 10 "random" integers.
■ Library function rand() in stdlib.h returns integer between 0

and RAND_MAX (32,767 = 216 - 1 on arizona).

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int i = 0;
while (i < 10) {

printf("%d\n", rand());
i = i + 1;

}
return 0;

}

int.c % gcc int.c
% a.out
16838
5758
10113
17515
31051
5627
23010
7419
16212
4086

Unix

i++;

19

Library Functions: rand()

Print 10 "random" integers between 0 and 599.

■ No precise match in library.

■ Try to leverage what’s there to accomplish what you want.

#include <stdio.h>
#include <stdlib.h>

int randomInteger(int n) {
return rand() % n;

}

int main(void) {
int i = 0;
while (I < 10) {

printf("%d\n", randomInteger(600));
i++;

}
return 0;

}

int600.c

% gcc int600.c
% a.out
168
575
101
175
310
562
230
341
16
386

Unix

p % q gives remainder
of p divided by q

20

Library Functions: rand()

How is library function rand() implemented?

■ Linear feedback shift register? Cosmic rays?

■ Depends on compiler and operating system.

■ Caveat 1: "random" numbers are not really random.
! Can never have all properties of random bits.

Computers do exactly what we tell them to do!

■ Caveat 2: on many systems, randomInteger()is very poor.

! Don’t use for crypto or Internet gambling!

Moral: check assumptions about library function.

21

Gambler’s Ruin

Simulate gambler placing $1 even bets.

■ Will gambler always go broke?

■ If so, how long will it take if gambler starts with $c?

$6

$0

Time Å

C
as

h
 Å

22

Gambler’s Ruin

#include <stdio.h>
#include <stdlib.h>

int randomInteger(int n) { ... }

int main(void) {
int cash, seed;
scanf("%d %d", &cash, &seed);
srand(seed);

while (cash > 0) {
if (randomInteger(2) == 1)

cash++;
else

cash--;
printf("%d\n", cash);

}
return 0;

}

gambler.c

while I still have
money left, repeat

print money left

scanf() takes
input from terminal

make a bet

srand() sets random seed

23

Gambler’s Ruin

Simulate gambler placing $1 even bets.
Q. How long does the game last if we start with $c ?

% gcc gambler.c

% a.out % a.out
4 543 4 1234
3 3
4 2
5 3
4 4
3 3
4 4
3 5
2 6
1 7
0 6

7
8
9

Unix

Hmmm.

24

Gambler’s Ruin

Simulate gambler placing $1 even bets.
Q. How long does the game last if we start with $c ?

% gcc gambler.c

% a.out % a.out
4 543 4 1234
*** ***
**** **
***** ***
**** ****
*** ***
**** ****
*** *****
** ******
* *******

Unix

printf("%d\n", cash);

i = cash;

while (i > 0) {

printf("*");

i--;

}

printf("\n");

To print plot, replace:

with

25

Gambler’s Ruin Numerical Experiment

Goal: run experiment to see how long it takes to go broke.

■ Do for different values of starting cash values c.

% gcc gexperiment.c
% a.out

2 2 6 304 2 2
3 33 17 15 53 29
4 22 1024 7820 22 54
5 243 25 41 7 249
6 494 14 124 152 14
7 299 33 531 49 93
8 218 10650 36 42048 248
9 174090315 83579 299 759 69

Unix

initial cash

bets

26

for all initial cash values between 2 and 9
run numerical experiments

Top-Down Design of Numerical Experiment

Goal: run experiment to see how long it takes to go broke.

■ Do for different values of starting cash values c.

repeat 5 times

how long before ruin?

do gambler’s ruin and return value

27

Gambler’s Ruin Numerical Experiment

#include <stdlib.h>
#include <stdlib.h>

int randomInteger(int n) { ... }

int doit(int cash) {
int count = 0;
while (cash > 0) {

if (randomInteger(2) == 1) cash++;
else cash--;
count++;

}
return count;

}

gexperiment.c

single experiment
(code as before)

return # of times
instead of printing
each trial

28

Gambler’s Ruin Numerical Experiment

int main(void) {
int cash, t;

cash = 2;
while (cash < 10) {

printf("%2d ", cash);
t = 0;
while (t < 5) {

printf("%7d", doit(cash));
t++;

}
printf("\n");
cash++;

}

return 0;
}

gexperiment.c (cont)

repeat for all initial
cash values 2 to 9

repeat 5 times

Do one experiment

29

Gambler’s Ruin Numerical Experiment

How long will it take to go broke?
! Guaranteed to go broke, but expected wait is infinite!

Layers of abstraction.

■ Random bit Å gambler’s ruin sequence Å experiment.

% gcc gexperiment.c
% a.out

2 2 6 304 2 2
3 33 17 15 53 29
4 22 1024 7820 22 54
5 243 25 41 7 249
6 494 14 124 152 14
7 299 33 531 49 93
8 218 10650 36 42048 248
9 174090315 83579 299 759 69

Unix

initial cash

bets

30

Programming Style

Concise programs are the norm in C.

Your goal: write READABLE and EFFICIENT programs.

■ Use consistent indenting.

■ Choose descriptive variable names.

■ Use comments as needed.

"Pick a style that suits you, then
use it consistently."

-Kernighan and Ritchie

32

Programming Advice

Understand your program.

■ What would the machine do?

■ Explain it to the teddy bear.

Read, understand, and borrow from similar code.

Develop programs incrementally.

■ Test each piece separately before continuing.

■ Plan multiple lab sessions.

“ Good artists borrow.
Great artists steal. ”

33

Summary

Lots of material.

C is a structured programming language.

■ Functions, loops.

■ Simple, but powerful tools.

Programming maturity comes with practice.

■ Everything seems simpler in lecture and textbooks.

■ Always more difficult when you do it yourself!

■ Learn main ideas from lecture, learn to program by writing code.

You will create many bugs without any practice whatever.
"As soon as we started programming, we found out to our surprise that

it wasn’t as easy to get programs right as we had thought. I can remember the
exact instant when I realized that a large part of my life from then on was going
to be spent in finding mistakes in my own programs."

--Maurice Wilkes, 1949

Lecture P1: Extra Notes

37

Anatomy of a While Loop

The while loop is a common repetition structure.

condition statements
true

false

while (condition) {
statements;

}

while loop

38

Anatomy of a For Loop

The for loop is another common repetition structure.

for (expr1; expr2; expr3) {
statements;

}

expression 1

expression 3

statementsexpression 2
true

false

increment

initialize

body

loop-continuation
condition

39

Anatomy of a Do-While Loop

The do-while loop is not-so-common repetition structure.

condition

statements

true

false

do {
statements;

} while (condition);

do-while loop

40

What is a C Program?

C PROGRAM: a sequence of FUNCTIONS that manipulate data.
■ main() function executed first.

A FUNCTION consists of a sequence of DECLARATIONS followed by a
sequence of STATEMENTS.

■ Can be built-in like printf(...).

■ Or user-defined like f(x) or sum(x, y).

A DECLARATION names variables and defines type.
■ double double x;

■ integer int i;

A STATEMENT manipulate data or controls execution.
■ assignment: x = 0.0;

■ control: while (x < 2.0) {...}

■ function call: printf(...);

