Point-to-Point Links

Outline
Encoding
Framing
Error Detection
Sliding Window Algorithm

Spring 2002 cs 461

Encoding

« Signals propagate over aphysical medium
— modulate electromagnetic waves
— eg., vary voltage
¢ Encode binary data onto signals
— eg., 0aslow signal and 1 as high signal
— known as Non-Return to zero (NRZ)

Btis 0 01 0111101000010

NRZ

Spring 2002 cs461

Problem: Consecutive 1sor Os
* Low signal (0) may beinterpreted as no signal

« High signal (1) leads to baseline wander
« Unableto recover clock

Spring 2002 Ccs 461

Alternative Encodings

¢ Non-return to Zero Inverted (NRZI)

— make atransition from current signa to encode a one;
stay at current signal to encode azero

— solves the problem of consecutive ones
¢ Manchester

— transmit XOR of the NRZ encoded data and the clock
— only 50% efficient (bit rate = 1/2 baud rate)

Spring 2002 cs 461

Encodings (cont)

« 4B/5B
— every 4 bits of data encoded in a 5-bit code

— 5-bit codes selected to have no more than one leading 0
and no more than two trailing Os

— thus, never get more than three consecutive Os
— resulting 5-bit codes are transmitted using NRZI
— achieves 80% efficiency

Spring 2002 cs461

Encodings (cont)

Bits 0 01 01 11101000010

NRZ

sennphnnhnhhnhihhi
NRZI __J U u

Spring 2002 Ccs 461

Framing

« Break sequence of bitsinto aframe
¢ Typically implemented by network adaptor

Node A Adaptor _an— Adaptor Node B
) Frames ‘
It |
Spring 2002 CS461
Approaches

* Sentinel-based
— delineate frame with special pattern: 01111110
—eg., HDLC, SDLC, PPP

8 16

Beginning
sequence

16 8
Header Body % |CRC EE”‘““Q l
— problem: special pattern appears in the payload
— solution: bit stuffing
« sender: insert O after five consecutive 1s
« receiver: delete O that follows five consecutive 1s

Spring 2002 CS461
Approaches (cont)
» Couter-based
— include payload length in header
- e.g., DDCMP
8 8 8 14 42 16
‘ i \ 2 . L_% ‘ Count | Header Body 6

— problem: count field corrupted
— solution: catch when CRC fails

Spring 2002 Ccs 461

Approaches (cont)

» Clock-based
— each frame is 125us long
— eg., SONET: Synchronous Optical Network
— STS-n (STS-1=51.84 Mbps)

Overhead | Payload

T "}E‘ STS-1 ‘ ‘E‘ STS1 ‘ "}E‘ STS1 '
s] |
Spring 2002 cs461 10

Cyclic Redundancy Check

e Add k bits of redundant data to an n-bit message
— wantk<<n
— eg., k=32 and n = 12,000 (1500 bytes)

» Represent n-bit message as n-1 degree polynomial
— eg., MSG=10011010 as M(x) = X" + x*+ x3 + xt

¢ Let k bethe degree of some divisor polynomial
—eg,C¥)=x3+x2+1

Spring 2002 cs461 1

CRC (cont)

« Transmit polynomial P(X) that is evenly divisible
by C(¥)
— shift left k bits, i.e., M(x)x«
— subtract remainder of M(x)x / C(x) from M(x)xk

» Receiver polynomial P(x) + E(X)
— E(x) =0 impliesno errors

¢ Divide (P(x) + E(x)) by C(x); remainder zero if:
— E(x) was zero (no error), or
— E(x) is exactly divisible by C(x)

Spring 2002 Ccs 461 12

Selecting C(x)

« All single-bit errors, aslong as the X< and X° terms have
non-zero coefficients.

« All double-bit errors, aslong as C(x) contains a factor with
at least three terms

« Any odd number of errors, aslong as C(x) contains the
factor (x + 1)

« Any ‘burst’ error (i.e., sequence of consecutive error bits)
for which the length of the burst is less than k bits.

* Most burst errors of larger than k bits can aso be detected
« See Table 2.6 on page 102 for common C(X)

Spring 2002 cs 461 13

Internet Checksum Algorithm

« View message as a sequence of 16-bit integers; sum using
16-bit ones-complement arithmetic; take ones-complement
of the result.

u_short
cksun{u_short *buf, int count)
{

register u_long sum= 0;
while (count--)
sum += *buf ++;
if (sum & OxFFFF0000)
I* carry occurred, so wap around */
sum &= OxFFFF;
sumt+;

}
return ~(sum & OxFFFF);

Spring 2002 cs461 14

Acknowledgements & Timeouts

Sender Recever Sender Receive
Bang —

s K

Time
Timeout

122
rag

K

Sender Receiver Sender Receive.

Timeout

o
4

Timeout

® @

Spring 2002 Ccs 461 15

Stop-and-Wait

Sender Receiver

¢ Problem: keeping the pipe full

* Example
— 1.5Mbpslink x 45ms RTT = 67.5Kb (8KB)
— 1KB framesimplies 1/8th link utilization

Spring 2002 cs 461 16

Sliding Window

« Allow multiple outstanding (un-ACKed) frames
« Upper bound on un-ACKed frames, called window

Sender Receiver

Time

Spring 2002 cs461 17

SW: Sender

¢ Assign sequence number to each frame (SeqNum)
¢ Maintain three state variables:
— send window size (SWB)
— last acknowledgment received (LAR)
— last frame sent (LFS)
e Maintain invariant: LFS - LAR<= SW\8
<Sws
[TTTTTTITTIT]
t [
LAR LFs
¢ Advance LAR when ACK arrives
» Buffer up to SWs frames

Spring 2002 Ccs 461 18

SW: Receiver

¢ Maintain three state variables
— receive window size (R\B)
— largest frame acceptable (LFA)
— last frame received (NFE)
¢ Maintain invariant: LFA- LFR<= R\8

<RWS

* Frame SeqNumarrives:

— if LFR< SeqNum< = LFA — accept

— if SeqNum< = LFRor SeqNum> LFA — discarded
Send cumulative ACKs

Spring 2002 cs 461 19

Sequence Number Space

« SegNumfield isfinite; sequence numberswrap around
* Sequence number space must be larger then number of
outstanding frames
¢ SWB <= MaxSegNum 1 is not sufficient
— suppose 3-bit SeqNumfield (0..7)
— SWs=RWB=7
— sender transmit frames 0..6
— arrive successfully, but ACKslost
— sender retransmits 0..6
— receiver expecting 7, 0..5, but receives second incarnation of 0..5
¢ SWB < (MaxSeqNumt1)/ 2 iscorrect rule
« Intuitively, SeqNum*“dlides” between two halves of
sequence number space

Spring 2002 cs461 20

Concurrent Logical Channels

« Multiplex 8 logical channels over asingle link
* Run stop-and-wait on each logical channel

« Maintain three state bits per channel

— channel busy

— current sequence number out

— next sequence number in

Header: 3-bit channel num, 1-bit sequence num
— 4-bitstotal

— same as sliding window protocol

Separates reliability from order

.

Spring 2002 Ccs 461 21

