
1

Spring 2002 CS 461 1

Outline
Encoding
Framing
Error Detection
Sliding Window Algorithm

Point-to-Point Links

Spring 2002 CS 461 2

Encoding

• Signals propagate over a physical medium
– modulate electromagnetic waves

– e.g., vary voltage

• Encode binary data onto signals
– e.g., 0 as low signal and 1 as high signal

– known as Non-Return to zero (NRZ)

Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Spring 2002 CS 461 3

Problem: Consecutive 1s or 0s

• Low signal (0) may be interpreted as no signal

• High signal (1) leads to baseline wander

• Unable to recover clock

2

Spring 2002 CS 461 4

Alternative Encodings

• Non-return to Zero Inverted (NRZI)
– make a transition from current signal to encode a one;

stay at current signal to encode a zero
– solves the problem of consecutive ones

• Manchester
– transmit XOR of the NRZ encoded data and the clock
– only 50% efficient (bit rate = 1/2 baud rate)

Spring 2002 CS 461 5

Encodings (cont)

• 4B/5B
– every 4 bits of data encoded in a 5-bit code
– 5-bit codes selected to have no more than one leading 0

and no more than two trailing 0s
– thus, never get more than three consecutive 0s
– resulting 5-bit codes are transmitted using NRZI
– achieves 80% efficiency

Spring 2002 CS 461 6

Encodings (cont)

Bits

NRZ

Clock

Manchester

NRZI

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

3

Spring 2002 CS 461 7

Framing

• Break sequence of bits into a frame

• Typically implemented by network adaptor

Frames

Bits
Adaptor Adaptor Node BNode A

Spring 2002 CS 461 8

Approaches
• Sentinel-based

– delineate frame with special pattern: 01111110

– e.g., HDLC, SDLC, PPP

– problem: special pattern appears in the payload

– solution: bit stuffing

• sender: insert 0 after five consecutive 1s

• receiver: delete 0 that follows five consecutive 1s

Header Body

8 16 16 8

CRCBeginning
sequence

Ending
sequence

Spring 2002 CS 461 9

Approaches (cont)

• Couter-based
– include payload length in header
– e.g., DDCMP

– problem: count field corrupted
– solution: catch when CRC fails

S
Y

N

Header Body

8 8 4214 168

S
Y

N

C
la

ss CRCCount

4

Spring 2002 CS 461 10

Approaches (cont)

• Clock-based
– each frame is 125us long
– e.g., SONET: Synchronous Optical Network
– STS-n (STS-1 = 51.84 Mbps)

Overhead Payload

90 columns

9 rows

STS-1H
dr STS-1H
dr STS-1H
dr

STS-3cHdr

Spring 2002 CS 461 11

Cyclic Redundancy Check

• Add k bits of redundant data to an n-bit message
– want k << n

– e.g., k = 32 and n = 12,000 (1500 bytes)

• Represent n-bit message as n-1 degree polynomial
– e.g., MSG=10011010 as M(x) = x7 + x4 + x3 + x1

• Let k be the degree of some divisor polynomial
– e.g., C(x) = x3 + x2 + 1

Spring 2002 CS 461 12

CRC (cont)

• Transmit polynomial P(x) that is evenly divisible
by C(x)
– shift left k bits, i.e., M(x)xk

– subtract remainder of M(x)xk / C(x) from M(x)xk

• Receiver polynomial P(x) + E(x)
– E(x) = 0 implies no errors

• Divide (P(x) + E(x)) by C(x); remainder zero if:
– E(x) was zero (no error), or

– E(x) is exactly divisible by C(x)

5

Spring 2002 CS 461 13

Selecting C(x)

• All single-bit errors, as long as the xk and x0 terms have
non-zero coefficients.

• All double-bit errors, as long as C(x) contains a factor with
at least three terms

• Any odd number of errors, as long as C(x) contains the
factor (x + 1)

• Any ‘burst’ error (i.e., sequence of consecutive error bits)
for which the length of the burst is less than k bits.

• Most burst errors of larger than k bits can also be detected

• See Table 2.6 on page 102 for common C(x)

Spring 2002 CS 461 14

Internet Checksum Algorithm

• View message as a sequence of 16-bit integers; sum using
16-bit ones-complement arithmetic; take ones-complement
of the result.

u_shor t
cksum(u_shor t * buf , i nt count)
{

r egi s t er u_l ong sum = 0;
whi l e (count - -)
{

sum += * buf ++;
i f (sum & 0xFFFF0000)
{

/ * car r y occur r ed, so wr ap ar ound * /
sum &= 0xFFFF;
sum++;

}
}
r et ur n ~(sum & 0xFFFF) ;

}

Spring 2002 CS 461 15

Acknowledgements & Timeouts
Sender Receiver

Frame

ACK

Ti
m

eo
ut

Ti
m

e

Sender Receiver

Frame

ACK

Ti
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

T
im

eo
ut

Frame

ACKT
im

eo
ut

(a) (c)

(b) (d)

6

Spring 2002 CS 461 16

Stop-and-Wait

• Problem: keeping the pipe full

• Example
– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

– 1KB frames implies 1/8th link utilization

Sender Receiver

Spring 2002 CS 461 17

Sliding Window
• Allow multiple outstanding (un-ACKed) frames
• Upper bound on un-ACKed frames, called window

Sender Receiver

Ti
m

e

…
…

Spring 2002 CS 461 18

SW: Sender
• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives
• Buffer up to SWS frames

≤SWS

LAR LFS

… …

7

Spring 2002 CS 461 19

SW: Receiver
• Maintain three state variables

– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (NFE)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNumarrives:
– if LFR < SeqNum< = LFA accept
– if SeqNum< = LFR or SeqNum> LFA discarded

• Send cumulative ACKs

≤ RWS

NFE LFA

… …

Spring 2002 CS 461 20

Sequence Number Space
• SeqNumfield is finite; sequence numbers wrap around
• Sequence number space must be larger then number of

outstanding frames
• SWS <= MaxSeqNum- 1 is not sufficient

– suppose 3-bit SeqNumfield (0..7)
– SWS=RWS=7

– sender transmit frames 0..6
– arrive successfully, but ACKs lost
– sender retransmits 0..6
– receiver expecting 7, 0..5, but receives second incarnation of 0..5

• SWS < (MaxSeqNum+1) / 2 is correct rule
• Intuitively, SeqNum“slides” between two halves of

sequence number space

Spring 2002 CS 461 21

Concurrent Logical Channels

• Multiplex 8 logical channels over a single link
• Run stop-and-wait on each logical channel
• Maintain three state bits per channel

– channel busy
– current sequence number out
– next sequence number in

• Header: 3-bit channel num, 1-bit sequence num
– 4-bits total
– same as sliding window protocol

• Separates reliability from order

