Caching: File Systems

Outline

File Usage Patterns
Concurrent Write Sharing
Availability

Spring 2002 cs 461

Distributed File Systems

* Most Commonly used Distributed Program
* |ssues

— naming

— caching

— availability

— security
* Examples

— NSF: Sun’s Network File System

— AFS: Andrew File System

— Sprite: Berkeley research project; stressed caching

— Coda: CMU research project; stressed availability

Spring 2002 CS461

Questions

¢ Semantics

— How much does it behave like Unix on a single system?
¢ Performance

— How closeisits perform to Unix on asingle system?

* Scale
— How big can it grow?

Spring 2002 Cs 461




Unix File Usage

¢ Most files are small (<10k)

» Reads outnumber writes 6:1

e Sequential accessis common; randomisrare

« Files open short periods (75% < .5s, 90% < 10s)
* Most files accessed by only one user

¢ Most shared fileswritten by only one user

» Temporal locality: recently accessed files are most
likely to be accessed again

Spring 2002 cs 461 4

NSF Structure

¢ Can mount an NFS file system into the name
space of aUnix machine
— hard mount: RPC failures block client
— soft mount: RPC failures return error to client
¢ One NFS client module on each machine
— in kernel for efficiency
¢ One NFS server module on each server
— in kernel for efficiency

Spring 2002 CS461 5

Statel ess Server

ldea: server doesn't store any state except

— contents of files

— hintsto help performance (but not correctness)

« Consequence: server can crash and recover easily
All client RPC ops must be idempotent

« Server doesn't maintain lists of who hasfiles open
— always name file and check permission

Spring 2002 Cs 461 6




Stateless Server (cont)

« fhandle, attr = Iookup(fPandle, name)
uid, gid, size... opaque token from pathname
 attr, data = read(fhandle, offset, count)

current file pointer client defines block size
« attr = write(fhandle, offset, data)

when returns, guaranteed to have written data to disk

Spring 2002 cs 461

Server Caching

« Server caches recent reads, writes, directory-ops
— server typically has lots of memory
* Server cacheiswrite-through
— all modifications immediately written to disk
¢ Pro:
— stateless, no data lost on server crash
* Con:
— slow, client must wait for disk write

Spring 2002 CS461

Client Caching

« Clients cache results of reads, writes, and
directory-opsin memory

« Raises cache consistency problem

¢ Half-Solution
— server keeps last-modification time per file
— client rememberstime it got file data

— on file open or new block access, client checks its
timestamp against server’s (checks every 3 seconds)
— good enough?

Spring 2002 Cs 461




Performance Problems

* Write-through on server
— put crash-proof cachein front of disk (e.g., battery-
backed RAM, flash RAM)
« Frequent timestamp checking
¢ Pathname lookup done one component at atime

— required by Unix semantics

Spring 2002 cs 461 10

Andrew File System

¢ Originally aresearch project at CMU
* Now acommercial product from Transarc

* Goal: asingle, world-widefile system

Spring 2002 CS461 1

AFS Features

Filesidentified by 96-bit Ids

— 32-bit Volumeld, 32-bit Vnodeld, 32-bit Userld
« Directory info stored in flat file system

— software provides hierarchical view to users
Files cached on client’s disk

« Whole-filetransfers/cached

» Designed so fileswill migrate to desktop of people
that use them; assumes sharing is rare

Spring 2002 Cs 461 12




Callback Promise

« Server commits to warn client about obsolete files
— granted to client when client gets a copy of file
— client accessesfile only if it has a callback promise
— once exercised by server, calback promise vanishes

¢ Fault-Tolerance
— on client reboot, client discards all callback promises
— server must remember promises made, even if it reboots

Spring 2002 cs 461 13

Cache Consistency

¢ Client checksfor callback promise only when file
is opened

* When writing, new version of file made visibleto
theworld only on file close
¢ Result: concurrent read sharing semantics
— opening file gets current snapshot
— closing file creates new snapshot
— concurrent write sharing leads to unexpected results

Spring 2002 CS461 14

AFS Performance

* Only known file system that scales to thousands
of machines

* Whole-file caching works well

« Callbacks more efficient than the repeated
consistency checks of NFS

Spring 2002 Cs 461 15




Sprite File System

¢ Research project at UC Berkeley
« Supports concurrent write sharing
* Block-based
— fixed sized (4KB)
— unique block number (not physical address)
— client can create new blocks w/out contacting server

o Stateful servers

— server notified when file opened/closed
— all interactions are client-to-server; no client-to-client

Spring 2002 cs 461 16

Algorithm

« Write palicy: write back all dirty blocks every 30s
— client-to-server
— server-to-disk

¢ When server detects concurrent write sharing
— notifies clients to write back all dirty blocks
— caching disabled

¢ Server serializes accessto its cache

Spring 2002 CS461 17

Algorithm (cont)

* When client opens, may have out-of-date cache
— server keeps version number for al files
— increment each time file opened for writing
— client keeps version number of al cached files
— compare version humbers on open; flush if old

* Server keepstrack of last writer (at most one)

— when someone opens, server asks last writer to flush
any dirty blocks

— block open until done

Spring 2002 Cs 461 18




CodaFile System

¢ Observation: AFS client often goes along time
without communicating with servers

¢ Coda use AFS-like implementation when
disconnected from the network
— onanairplane
— a home
— during network failure

Spring 2002 cs 461 19

Disconnected Operation

« Problem: how to get theright files onto the client
bef ore disconnecting

« Solution
— AFS does a decent job already
— let user make alist of files to keep around
— have system learn which files user tends to use

Spring 2002 CS461 20

Consistency

« Problem: how to keep disconnected versions
consistent

— what if two disconnected users write the same file at the
sametime?

— what if awriter makes a disconnected version obsolete?
« Can't use callback promise since communication
isimpossible

Spring 2002 Cs 461 21




Consistency (cont)

* Strategy
— hope it doesn’t happen
— if it happens, hope it doesn’t matter

« |f it does happen, try to patch things up automatically
— example: creating two files in the same directory

« If dl elsefails, ask the user what to do

Spring 2002 cs 461 22

Implementation

get all you need, but be

smart about cache usage
Hoarding

disconnected logical reconnection

@ physical reconnection
log changes
. get permids
usetempids replay log
conflict handling
Spring 2002 cs 461 23
Experience

« Unfixable conflicts aimost never happen
— typical user can go months without seeing one
— but are workloads changing?

« Can Coda experience be applied to AFS?
— exercise callback promises lazily
— keep working despite network failures

Spring 2002 Cs 461 24




Web Caching

* Who
— client
— classical proxy
— transparent proxy
e HTTP Support
— server sets Expires header line

— after page expires, client uses...
« HEAD operation, or
« GET operation with If-Modified-Since header line

Spring 2002 cs 461 2




