
1

Spring 2002 CS 461 1

Caching: File Systems

Outline
File Usage Patterns
Concurrent Write Sharing
Availability

Spring 2002 CS 461 2

Distributed File Systems

• Most Commonly used Distributed Program
• Issues

– naming
– caching
– availability
– security

• Examples
– NSF: Sun’s Network File System
– AFS: Andrew File System
– Sprite: Berkeley research project; stressed caching
– Coda: CMU research project; stressed availability

Spring 2002 CS 461 3

Questions 

• Semantics
– How much does it behave like Unix on a single system?

• Performance
– How close is its perform to Unix on a single system? 

• Scale
– How big can it grow?



2

Spring 2002 CS 461 4

Unix File Usage

• Most files are small (<10k)

• Reads outnumber writes 6:1

• Sequential access is common; random is rare

• Files open short periods (75% < .5s, 90% < 10s)

• Most files accessed by only one user

• Most shared files written by only one user

• Temporal locality: recently accessed files are most 
likely to be accessed again

Spring 2002 CS 461 5

NSF Structure

• Can mount an NFS file system into the name 
space of a Unix machine
– hard mount: RPC failures block client

– soft mount: RPC failures return error to client

• One NFS client module on each machine
– in kernel for efficiency

• One NFS server module on each server
– in kernel for efficiency

Spring 2002 CS 461 6

Stateless Server

• Idea: server doesn’ t store any state except
– contents of files

– hints to help performance (but not correctness)

• Consequence: server can crash and recover easily

• All client RPC ops must be idempotent

• Server doesn’ t maintain lists of who has files open
– always name file and check permission



3

Spring 2002 CS 461 7

Stateless Server (cont)

• fhandle, attr = lookup(fhandle, name)

• attr, data = read(fhandle, offset, count)

• attr = write(fhandle, offset, data)

uid, gid, size... opaque token from pathname

current file pointer client defines block size

when returns, guaranteed to have written data to disk

Spring 2002 CS 461 8

Server Caching

• Server caches recent reads, writes, directory-ops
– server typically has lots of memory

• Server cache is write-through
– all modifications immediately written to disk

• Pro:
– stateless, no data lost on server crash

• Con:
– slow, client must wait for disk write

Spring 2002 CS 461 9

Client Caching

• Clients cache results of reads, writes, and 
directory-ops in memory

• Raises cache consistency problem

• Half-Solution
– server keeps last-modification time per file

– client remembers time it got file data
– on file open or new block access, client checks its 

timestamp against server’s (checks every 3 seconds)
– good enough?



4

Spring 2002 CS 461 10

Performance Problems

• Write-through on server
– put crash-proof cache in front of disk (e.g., battery-

backed RAM, flash RAM)

• Frequent timestamp checking

• Pathname lookup done one component at a time
– required by Unix semantics

Spring 2002 CS 461 11

Andrew File System

• Originally a research project at CMU

• Now a commercial product from Transarc

• Goal: a single, world-wide file system

Spring 2002 CS 461 12

AFS Features

• Files identified by 96-bit Ids
– 32-bit VolumeId, 32-bit VnodeId, 32-bit UserId

• Directory info stored in flat file system
– software provides hierarchical view to users

• Files cached on client’s disk

• Whole-file transfers/cached

• Designed so files will migrate to desktop of people 
that use them; assumes sharing is rare



5

Spring 2002 CS 461 13

Callback Promise

• Server commits to warn client about obsolete files
– granted to client when client gets a copy of file

– client accesses file only if it has a callback promise

– once exercised by server, callback promise vanishes

• Fault-Tolerance
– on client reboot, client discards all callback promises

– server must remember promises made, even if it reboots

Spring 2002 CS 461 14

Cache Consistency

• Client checks for callback promise only when file 
is opened

• When writing, new version of file made visible to 
the world only on file close

• Result: concurrent read sharing semantics
– opening file gets current snapshot

– closing file creates new snapshot

– concurrent write sharing leads to unexpected results

Spring 2002 CS 461 15

AFS Performance

• Only known file system that scales to thousands 
of machines

• Whole-file caching works well

• Callbacks more efficient than the repeated 
consistency checks of NFS



6

Spring 2002 CS 461 16

Sprite File System

• Research project at UC Berkeley
• Supports concurrent write sharing

• Block-based
– fixed sized (4KB)
– unique block number (not physical address)
– client can create new blocks w/out contacting server

• Stateful servers
– server notified when file opened/closed
– all interactions are client-to-server; no client-to-client

Spring 2002 CS 461 17

Algorithm

• Write policy: write back all dirty blocks every 30s
– client-to-server 
– server-to-disk

• When server detects concurrent write sharing
– notifies clients to write back all dirty blocks
– caching disabled

• Server serializes access to its cache

Spring 2002 CS 461 18

Algorithm (cont)

• When client opens, may have out-of-date cache
– server keeps version number for all files
– increment each time file opened for writing
– client keeps version number of all cached files
– compare version numbers on open; flush if old

• Server keeps track of last writer (at most one)
– when someone opens, server asks last writer to flush 

any dirty blocks
– block open until done



7

Spring 2002 CS 461 19

Coda File System

• Observation: AFS client often goes a long time 
without communicating with servers

• Coda use AFS-like implementation when 
disconnected from the network
– on an airplane

– at home

– during network failure

Spring 2002 CS 461 20

Disconnected Operation

• Problem: how to get the right files onto the client 
before disconnecting

• Solution
– AFS does a decent job already

– let user make a list of files to keep around

– have system learn which files user tends to use

Spring 2002 CS 461 21

Consistency

• Problem: how to keep disconnected versions 
consistent
– what if two disconnected users write the same file at the 

same time?

– what if a writer makes a disconnected version obsolete?

• Can’ t use callback promise since communication 
is impossible



8

Spring 2002 CS 461 22

Consistency (cont)

• Strategy
– hope it doesn’ t happen

– if it happens, hope it doesn’ t matter

• If it does happen, try to patch things up automatically
– example: creating two files in the same directory

• If all else fails, ask the user what to do

Spring 2002 CS 461 23

Implementation

Emulation

Hoarding

Integration
physical reconnection

logical reconnectiondisconnected

get perm ids
replay log
conflict handling

log changes
use temp ids

get all you need, but be
smart about cache usage

Spring 2002 CS 461 24

Experience

• Unfixable conflicts almost never happen
– typical user can go months without seeing one

– but are workloads changing?

• Can Coda experience be applied to AFS?
– exercise callback promises lazily

– keep working despite network failures



9

Spring 2002 CS 461 25

Web Caching

• Who
– client

– classical proxy

– transparent proxy

• HTTP Support
– server sets Expires header line

– after page expires, client uses…
• HEAD operation, or

• GET operation with If-Modified-Since header line


