Undirected Graphs

Some of these lecture slides are adapted from material in:
« Algorithms in C, Part 5, R. Sedgwick.

Undirected Graphs

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.
Interesting and broadly useful abstraction.

Why study graph algorithms?
. Challenging branch of computer science and discrete math.
Hundreds of graph algorithms known.
. Thousands of practical applications.

Graph

communication

Graphs

Vertices

telephone exchanges,
computers, satellites

Edges

cables, fiber optics,
microwave relays

circuits gates, registers, processors | wires

mechanical joints rods, beams, springs
hydraulic reservoirs, pumping stations | pipelines
financial stocks, currency transactions

transportation

street intersections, airports

highways, airway routes

scheduling tasks precedence constraints
software systems | functions function calls
internet web pages hyperlinks
games board positions legal moves

social relationship

people, actors

friendships, movie casts

Graph Jargon

Terminology.

. Vertex: v.

. Edge: e = v-w.

. Graph: G

. Vvertices, Eedges. e G
Parallel edge, self loop.
Directed, undirected.

. Sparse, dense.

. Path. 0
. Cycle, tour.
. Tree, forest. @_@ o

. Connected, connected component.




A Few Graph Problems

PATH. Is there a path from s to t?
SHORTEST PATH. What is the shortest path between two vertices?
LONGEST PATH. What is the longest path between two vertices?

CYCLE. Is there acyclein the graph?
EULER TOUR. Is there a cycle that uses each edge exactly once?
HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?

CONNECTIVITY. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
BI-CONNECTIVITY. Is there a vertex whose removal disconnects graph?

PLANARITY. Can graph be drawn in plane with no crossing edges?
ISOMORPHISM. Do two adjacency matrices represent the same graph?

Graph ADT in C

Standard method to separate clients from implementation.

. Opaque pointer to Gr aph ADT.
. Plus simple t ypedef for Edge.

GRAPH.h

typedef struct graph *G aph;
typedef struct { int v, w } Edge;
Edge EDGEi nit(int v, int w;

Graph GRAPHI nit(int V);

Graph GRAPHrand(int V, int E);

void GCRAPHdestroy(Gaph G ;

void GRAPHshow( Graph G ;

voi d GRAPHI nsert E(Graph G Edge e);
voi d GRAPHrenoveE(Graph G Edge e);
i nt CRAPHcc(Graph G ;

i nt GRAPHi spl anar (G aph G ;

Graph ADT in C

Typical client program.
. Call GRAPH ni t () or GRAPHr and() to create instance.
. Uses Graph handle as argument to ADT functions.
. Calls ADT function to do graph processing.

client.c

#i ncl ude <stdio. h>
#i ncl ude " GRAPH. h"

int main(int argc, char *argv[]) {
int V= atoi(argv[1]);
int E= atoi(argv[2]);
G aph G = GRAPHrand(V, E);
GRAPHshow( G ;
printf ("%l conponent(s)\n", GRAPHcc(Q);
return O;

Graph Representation
Vertex names. (ABCDEFGHIJKL M)
. Cprogram uses integers between 0 and V- 1.

. Convert via implicit or explicit symbol table.

Two drawing represent same graph.

Set of edges representation.

. {A-B,AG,A-C,L-M,I-M, J-L, J-K, E-D, F-D, H-l, F-E, A-F, G-E }.




Adjacency Matrix Representation

Adjacency matrix representation.
. Two-dimensional V x V array.
. Edgev-wingraph: adj[v][wW] = adj[w[Vv] = 1.

ABCDEFGHI JKLM

2 0A[0110011000000
1B[1000011000000
2C/l1000000000000

(&) o (o 3D[0000110000000
4E[0001011000000
5F/1101100000000

(o) (E) 6G1100100000000
7HO000000010000

. 81/0000000100000
Q) ® 9J/0000000000111
10K[0000D000001000

; 11 L[000000000100 1
O—C>0 (O—0) 12M0000000001010

Adjacency Matrix

Graph ADT Implementation: Adjacency Matrix

#i ncl ude <stdlib. h>
#i ncl ude " GRAPH. h"
struct graph {

int V; /] # vertices
int E /| # edges
int **adj; /1 V x V adjacency matrix

s

G aph GRAPHi nit(int V) {
Gaph G = mal | oc(sizeof *Q;
G>Y =V, G>E = 0;
G >adj = MATRIXinit(V, V, 0);
return G

}

voi d GRAPHI nsert E(Graph G Edge e) {

int v=.ev, w=ew
if (G>adj[v][w] == 0) G >Et++

no parallel edges

G>adj[v][W = G>adj[w[v] = 1;

Adjacency List Representation

Vertex indexed array of lists.
. Space proportional to number of edges.
. Two representations of each undirected edge.

Eld—E<—{E—l
[E[d—{c[f—[F[+—{o[+—H
[F[d—{aTd—[E[+—ET+—H
[c]d—{ETf—{aT+—H
[E—[T<—M
[T—{HT<—

LT — k[Tt —n[—H
[d—DTed M-+
[M[eG—[Ted [T+

®&—0

[ATd—[F[ef—[cTed—[eT—{c[+—H

Graph ADT Implementation: Adjacency List

#i ncl ude " GRAPH. h"

typedef struct node *li nk;

struct node {
int v; /1 current vertex in adjacency |ist
link next; // next node in adjacency list

b
struct graph {
int V; /] # vertices
int E /'l # edges
link *adj; // array of V adjacency lists

}

I'i nk NEWhode(int v, link next) ({
link x = mal | oc(sizeof *x);
X->V = V;

X->next = next;
return x;




Adjacency List Graph ADT Implementation

GRAPH.h

/1 initialize a new graph with V vertices
G aph GRAPHi nit(int V) {
int v;
G aph G = mal |l oc(sizeof *Q;
G>V =V, G>E = 0;
G >adj = malloc(V * sizeof (link));
for (v =0; v <V, v++) G>adj[v] = NULL;
return G

/1 insert an edge e = v-winto Gaph G
voi d GRAPHi nsert E(Graph G Edge e) {
int v=ev, w=ew
G >adj[v] = NEWode(w, G >adj[Vv]);
G>adj[wW NEWhode(v, G >adj[w]);
G >E++;

Graph Representations

Graphs are abstract mathematical objects.
. ADT implementation requires specific representation.
. Efficiency depends on matching algorithms to representations.

Representation Space Edge between Edge from v Enumerate
P P v and w? to anywhere? all edges
Adjacency matrix Oo(V?2) 0(1) o(Vv) 0o(V?2)
Adjacency list OE+V) O(E) o(1) O(E +V)

Most real-world graphs are sparse [0 adjacency list.

- .

Graph Search

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.
. Tovisitanodev:
- mark it as visited
- recursively visit all unmarked nodes wadjacent to v
. To traverse a Graph G
—initialize all nodes as unmarked
- visit each unmarked node

Enables direct solution of simple graph problems.
Connected components.
. Cycles.

Basis for solving difficult graph problems.
. Biconnectivity.
. Planarity.

Depth First Search: Connected Components

Depth First Search

#def i ne UNMARKED - 1
static int mark[ MAXV];

/'l traverse conponent of graph
int GRAPHcc(Graph G {
int v, id = 0;
/1 initialize all nodes as unmarked
for (v =0; v < G>V; v++) mark[v] = UNMARKED;
/1 visit each unmarked node
for (v =0; v <G>V, v++)
if (mark[v] == UNMARKED) dfsR(G v, id++);
return id;

}

/1l return 1 if s and t in sane connected conponent
i nt GRAPHconnect(int s, int t) {
return mark[s] == mark[t];

}




Depth First Search: Connected Components

Depth First Search: Adjacency Matrix

void dfsR(Graph G int v, int id) {
int w
mark[v] = id;
for (w=0; w< G>V, wt)
if (G>adj[v][w] !'= 0 && mark[w] == UNVARKED)
df sR(G w, id);

}
Depth First Search: Adjacency List

void dfsR(Graph G int v, int id) {

link t;

int w

mark[v] = id;

/] iterate over all nodes w adjacent to v

for (t = G>adj[v]; t !'= NULL; t = t->next) {
W = t->v;

if (mark[w] == UMARKED) dfsR(G w, id);

Connected Components

PATHS. Is there a path from s to t?

Method Preprocess Query Space
Union Find O(E log* V) O(log* V) o)
DFS O(E +V) 0O(1) o(V)

UF advantage.
. Dynamic: can intermix query and edge insertion.

DFS advantage.
. Can get path itself in same running time.
- maintain parent-link representation of tree
- change DFS argument to pass EDGE taken to visit vertex
. Extends to other problems.

Graphs and Mazes

Maze graphs.
. Vertices = intersections
. Edges = hallways.

DFS.
. Mark ENTRY and EXIT halls at each vertex.
. Leave by ENTRY when no unmarked halls.

Breadth First Search

Depth-first search.
. Visit all nodes and edges recursively.
. Put unvisited nodes on a STACK.

Breadth-first search. E
. Put unvisited nodes on a QUEUE.

SHORTEST PATH. What is fewest number of edges to get from s to t?

Solution. BFS.
. Initialize mark[s] = 0.
. When considering edge v- w.
- if wis marked then ignore
- if wnot marked, set mark[w] = mark[v] + 1




Breadth First Search

Breadth First Search

bf s(Graph G int s) {
link t;
int v, w
QUEUEpUt (s) ;
mark[s] = O;
while (! QUEUEenpty()) {
v = QUEUEget ();
for (t = G>adj[v]; t !'= NULL; t = t->next) {
w = t->v;
if (mark[w] == UNMARKED) {
mark[w] = mark[v] + 1;
QUEUEpuUt (W) ;

Related Graph Search Problems

m) PATHS. Is there a path from s to t?
. Solution: DFS, BFS, any graph search.

# SHORTEST PATH. Find shortest path (fewest edges) from s to t.
. Solution: BFS.

CYCLE. Is there acycle in the graph?
. Solution: DFS. See textbook.

EULER TOUR. Is there a cycle that uses each edge exactly once?
. Yes if connected and degrees of all vertices are even.
. See textbook to find tour.

HAMILTON TOUR. Is there a cycle that uses each vertex exactly once?
. Solution: ??? (NP-complete)




