
COS 226 Lecture 20: Shortest Paths   

Classic algorithms for natural network problems

SHORTEST PATH      

  shortest way to get from u to v

SINGLE-SOURCE SHORTEST PATHS (SPT)    

  PFS implementation

  Dijkstra’s algorithm

ALL SHORTEST PATHS     

  Floyd’s algorithm

Negative weights?

REDUCTION

Problem-solving models

19.1

Single-source shortest paths      

Defines SHORTEST PATHS TREE (SPT) rooted at source

0-1 .41
1-2 .51
2-3 .50
4-3 .36
3-5 .38
3-0 .45
0-5 .29
5-4 .21
1-4 .32
4-2 .32
5-1 .29
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19.2

SPT algorithm       

Another generalized graph-search implementation

RELAXATION

  if wt[w] < wt[v] + wt(v-w) then set wt[w] to that value

    (v-w gives a shorter path to w than the best known)

SPT ALGORITHM      

    put s on fringe

    while fringe nonempty

      choose node from fringe that is closest to s

      relax along all its edges

v on  TREE wt[v] is shortest distance from s to v

v on  FRINGE: wt[v] is shortest KNOWN distance from s to v

  won’t find a shorter path to node with smallest value

19.3

larger SPT example      

19.4



Dijkstra’s algorithm       

Classical implementation of generic SPT algorithm

SAME CODE as Prim’s MST algorithm with

  #define P wt[v] + t->wt

DENSE graphs

  classical Dijkstra’s algorithm

  time cost: O(V^3)

SPARSE graphs

  use PQ (heap) implementation

  time cost: O(E lg V)

Better PQs give faster algorithms for sparse graphs

  d-way heap: O(E log_d V)

  F-heap: O(E + V log V)
19.5

Shortest paths in Euclidean graphs    

Problem: find shortest path from s to d

Algorithm:       

  start shortest-path PFS at s

  stop when reaching d

SUBLINEAR algorithm 

  need not touch all nodes

better yet: use geometry to limit search

wt[v]: 

  TREE: shortest distance from s to v

  FRINGE: shortest POSSIBLE distance from s to d through v

    tree path from s to v PLUS distance from v to d

#define P wt[v] + t->wt + dist(t->v, d) - dist(k, d)

19.6

All shortest paths      

Table of shortest paths for each vertex pair

Ex: map of New England    

.               P     W     L     N           

. Providence    0    53    54    48

. Westerley    53     0    18   101

. newLondon    54    18     0    12

. Norwich      48   101    12     0

Norwich-Westerly: 101 miles??

  12 miles Norwich-New London 

  18 miles New London-Westerly

  30 miles total

Need correct algorithm to get correct table
19.7

Floyd’s algorithm       

Another ancient algorithm (1962)

[same as Warshall, in a different context]

Want shorter path from s to d?

  take s to i, then i to d, if shorter (vertex relaxation)

  for (i = 0; i < G->V; i++)

    for (s = 0; s < G->V; s++)

      if (G->adj[s][i] != maxWT)

        for (t = 0; t < G->V; t++)

          if (G->adj[i][t] != maxWT)

            if (d[s][t] > d[s][i]+d[i][t]) 

              d[s][t] = d[s][i]+d[i][t];

Correctness proof:

  induction on i (same as Warshall)
19.8



Shortest paths ADT      

Same issues as reachability in digraphs

Classical Floyd-Warshall algorithm gives

  query: O(1)

  preprocessing: O(V^3)

  space: O(V^2)

Easy to reduce preprocessing to O(VE) 

  use Dijkstra for each vertex

End of story?

NOT QUITE      

  ADT is useful for a variety of disparate problems

  negative weights complicate matters

19.9

Reduction        

DEF: Problem A REDUCES TO Problem B 

    if we can use an algorithm that solves B

    to develop an algorithm that solves A

Typical reduction:

  given an instance of A

  transform it to an instance of B

  solve that instance of B

  transform the solution to be a solution of A

Uses of reduction

  algorithm for A (programmer using ADT)

  lower bound on B

PROBLEM-SOLVING MODELS

  problems that many other problems reduce to

NP-HARD PROBLEMS

  problems that ANY NP-hard problem reduces to 19.10

Reduction example: longest paths     

THM: Longest-paths reduces to shortest-paths   

Proof:       

  given an instance of longest-paths

  transform it to shortest-paths by negating weights

  solve shortest-paths

  negate weights on path to get longest path

CATCH       

  SP algs don’t work in the presence of negative weights!

Lessons:

  reductions have to be constructed with care

  they may not always give useful information

19.11

Reduction example: arbitrage      

Currency conversion

          dollars   pounds  1K yen

  dollars    1.000    1.631   0.669

 

  pounds     0.613    1.000   0.411

  1K yen     1.495    2.436   1.000

  $1000 dollars-pounds-dollars   

    $1000*(1.631)*(0.613) = $999

  $1000 dollars-pounds-yen-dollars

    $1000*(1.631)*(0.411)*(1.495) = $1002

SHORTEST PATH is best arbitrage opportunity  

  replace table entry x by -log x

  BUT, weights may be negative!

Need SP algs that work with negative weights 19.12



Shortest paths with negative weights    

Negative weights

  completely change SPT

  can introduce negative cycles

0-1  .41
1-2  .51
2-3  .50
4-3  .36
3-5 -.38
3-0  .45
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shortest path from 4 to 2: 4-3-5-1-2
19.13

Reduction example: SP with negative weights   

THM: SP with negative weights is NP-hard 

A: Hamilton path

B: SP with negative weights

Hamilton path reduces to SP with negative weights

  given an undirected graph

  transform to network with -1 wt on each edge

  find shortest simple path

  YES to Hamilton path if SP length is -V

19.14

Negative weights in SP problems    

NP-complete: don’t try to solve general problem

  restrict problem to solve it

Versions that we can solve

  no negative weights

  no cycles

  negative-cycle detection

  no negative cycles

Dijkstra’s algorithm: doesn’t work at all with negative weights

Floyd’s algorithm

  detects negative cycles

  solves all-pairs shortest paths if no neg cycles present

Ex: use Floyd’s to find SOME arbitrage opportunity 

  (much harder to find the BEST one)

19.15

Bellman-Ford shortest-paths algorithm      

Generic algorithm for single-source problem

  initialize wt[s] to 0, other wts to max

  repeat V times: relax on each edge

Order of processing edges not specified

Running time O(VE)

If no negative cycles present

  can use as preprocessing step for Dijkstra

  VE lg V for all-pairs problem

  improves on V^3 for Floyd

Not much harder to solve all-pairs than single-source (?!)

OPEN: Better alg for single-source?   
19.16


