
Minimum Spanning Tree

Some of these lecture slides are adapted from material in:
• Algorithms in C, R. Sedgewick.

2

Minimum Spanning Tree

Minimum spanning tree (MST). Given connected graph G with
positive edge weights, find a min weight set of edges that connects all
of the vertices.

Cayley’s Theorem (1889). There are VV-2 spanning trees on the
complete graph on V vertices.

■ Can’t solve MST by brute force.

1
3

8

2

6

7

4
5

5

23

10

21

14

24

16

6

4

18
9

7

11
8

1

3

8

2

6

7

4
5

5

6

4

9

7

11
8

G T w(T) = 50

3

Applications

MST is fundamental problem with diverse applications.

■ Designing physical networks.
– telephone, electrical, hydraulic, TV cable, computer, road

■ Cluster analysis.
– delete long edges leaves connected components
– finding clusters of quasars and Seyfert galaxies
– analyzing fungal spore spatial patterns

■ Approximate solutions to NP-hard problems.
– metric TSP, Steiner tree

■ Indirect applications.
– max bottleneck paths
– describing arrangements of nuclei in skin cells for cancer research
– learning salient features for real-time face verification
– modeling locality of particle interactions in turbulent fluid flow
– reducing data storage in sequencing amino acids in a protein

4

Optimal Message Passing

Optimal message passing.

■ Distribute message to N agents.

■ Each agent can communicate with some of the other agents, but their
communication is (independently) detected with probability pij.

■ Group leader wants to transmit message to all agents so as to
minimize the total probability that message is detected.

Objective.

■ Find tree T that minimizes:

■ Or equivalently, that maximizes:

■ Or equivalently, that maximizes:

– MST with weights = - log (1 - pij) weights pij also work!

1− 1− pij()
(i, j)∈T

∏

1− pij()
(i, j)∈T

∏

log 1− pij()
(i, j)∈T

∑

5

Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

■ Initialize F = φ, S = {s} for some arbitrary vertex s.

■ Repeat until S has V vertices:
– let f be smallest edge with exactly one endpoint in S
– add other endpoint to S
– add edge f to F

1

3

8

2

6

7

4

5

8

S

1

S

2
6
5
4

-

F

1-2
1-6
6-5
5-4

6

Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

■ Initialize F = φ, S = {s} for some arbitrary vertex s.

■ Repeat until S has V vertices:
– let f be smallest edge with exactly one endpoint in S
– add other endpoint to S
– add edge f to F

1

3

8

2

6

7

4

5

8

S

1

S

2
6
5
4
3

-

F

1-2
1-6
6-5
5-4
4-3

7

Prim’s Algorithm: Proof of Correctness

Theorem. Upon termination of Prim’s algorithm, F is a MST.

Proof. (by induction on number of iterations)

■ Base case: F = φ ⇒ every MST satisfies invariant.

■ Induction step: true at beginning of iteration i.
– at beginning of iteration i, let S be vertex subset and let f be the

edge that Prim’s algorithm chooses
– if f ∈ T*, T* still satisfies invariant
– o/w, consider cycle C formed by adding f to T*
– let e ∈ C be another arc with exactly one endpoint in S
– cf ≤ ce since algorithm chooses

f instead of e
– e ∉ F by definition of S
– T* ∪ { f } - { e } satisfies invariant

f

T*
e

Invariant: There exists a MST T* containing all of the edges in F.

S

8

Prim’s Algorithm: Classic Implementation

Use adjacency matrix.

■ S = set of vertices in current tree.

■ For each vertex not in S, maintain vertex in S to which it is closest.

■ Choose next vertex to add to S using min dist[w].

■ Just before adding new vertex v to S:
– for each neighbor w of v, if w is closer to v than to a vertex in S,

update dist[w]

B

D

A

C

G
E

F

I

H

A

Vertex

E

Nearest

B -
C -
D E
E -
F -
G -
H C
I E

15

Dist

-
-
9
-
-
-

23
11

9

Prim’s Algorithm: Classic Implementation

Use adjacency matrix.

■ S = set of vertices in current tree.

■ For each vertex not in S, maintain vertex in S to which it is closest.
■ Choose next vertex to add to S using min dist[w].

■ Just before adding new vertex v to S:
– for each neighbor w of v, if w is closer to v than to a vertex in S,

update dist[w]

B

D

A

C

G
E

F

I

H

A

Vertex

E

Nearest

B -
C -
D -
E -
F -
G -
H D
I D

15

Dist

-
-
-
-
-
-
4
6

10

Prim’s Algorithm: Classic Implementation

Running time.

■ V - 1 iterations since each iteration adds 1 vertex.

Each iteration consists of:
■ Choose next vertex to add to S by minimum dist[w] value.

– O(V) time.

■ For each neighbor w of v, if w is closer to v than to a vertex in S,
update dist[w].

– O(V) time.

O(V2) overall.

11

Prim’s Algorithm: Priority Queue Implementation

Q ← PQinit()
for each vertex v in graph G

key(v) ← ∞
pred(v) ← nil
PQinsert(v, Q)

key(s) ← 0
while (!PQisempty(Q))

v = PQdelmin(Q)
for each edge v-w s.t. w is in Q

if key(w) > c(v,w)
PQdeckey(w, c(v,w), Q)
pred(w) ← v

Prim’s Algorithm pseudocode

12

Prim’s Algorithm: Priority Queue Implementation

Analysis of Prim’s algorithm.
■ PQinsert(): V vertices.

■ PQisempty(): V vertices.

■ PQdelmin(): V vertices.

■ PQdeckey(): E edges.

Operation

insert

delete-min

decrease-key

Binary heap

log N

log N

log N

Fibonacci heap*

1

log N

1

Array

N

N

1

is-empty 1 11

Priority Queues

Prim E log V E + V log VV2

13

PFS vs. Classic Prim

Which algorithm is faster?

■ Classic Prim: O(V2).

■ Prim with binary heap: O(E log V).

Answer depends on whether graph is SPARSE or DENSE.

■ 2,000 vertices, 1 million edges
– Heap: 2-3 times SLOWER

■ 100,000 vertices, 1 million edges
– Heap: 500 times FASTER

■ 1 million vertices, 2 million edges
– Heap: 10,000 times FASTER.

Bottom line.

■ Classic Prim is optimal for dense graphs.

■ Heap implementation far better for sparse graphs.

14

Kruskal’s Algorithm

Kruskal’s algorithm (1956).

■ Initialize F = φ.

■ Consider arcs in ascending order of weight.

■ If adding edge to forest F does not create a cycle, then add it.
Otherwise, discard it.

1

3

8

2

6

7

4

5

Case 1: {5, 8}

1

3

8

2

6

7

4

5

Case 2: {5, 6}

15

Kruskal’s Algorithm: Implementation

How to check if adding an edge to F would create a cycle?

■ Naïve solution: use depth first search.

■ Clever solution: use union-find data structure from Lecture 1.
– each tree in forest corresponds to a set
– to see if adding edge between v and w creates a cycle, check if v

and w are already in same component
– when adding v-w to forest F, merge sets containing v and w

16

Kruskal’s Algorithm: C Implementation

// Fill up mst[] with list of edges in MST of graph G
void GRAPHmstE(Graph G, Edge mst[]) {

int i, k, v, w;
Edge a[MAXE]; // list of all edges in G
int E = GRAPHedges(a, G); // # edges in G
sort(a, 0, E-1); // sort edges by weight

UFinit(G->V);
for (i = k = 0; i < E && k < G->V-1; i++) {

v = a[i].v;
w = a[i].w;
// if edge a[i] doesn’t create a cycle, add to tree
if (!UFfind(v, w)) {

UFunion(v, w);
mst[k++] = a[i];

}
}

}

Kruskal’s Algorithm

17

Theorem. Upon termination of Kruskal’s algorithm, F is a MST.

Proof. Identical to proof of correctness for Prim’s algorithm except
that you let S be the set of nodes in component of F containing v.

Corollary. "Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through, and captures
the essence of the evolutionary spirit."

Gordon Gecko
(Michael Douglas)

Kruskal’s Algorithm: Proof of Correctness

18

Kruskal’s Algorithm: Running Time

Kruskal analysis. O(E log V) time.
■ Sort(): O(E log E) = O(E log V).

■ UFinit(): V singleton sets.

■ UFfind(): at most once per edge.

■ UFunion(): exactly V – 1 times.

If edges already sorted. O(E log* V) time.

■ Any sequence of M union-find operations on N elements takes
O(M log* N) time.

■ In this universe, log* N ≤ 6.

19

Advanced MST Algorithms

Deterministic comparison based algorithms.

■ O(E log V) Prim, Kruskal, Boruvka.

■ O(E log log V). Cheriton-Tarjan (1976), Yao (1975).

■ O(E log*V). Fredman-Tarjan (1987).

■ O(E log (log*V)). Gabow-Galil-Spencer-Tarjan (1986).

■ O(E α (E, V)). Chazelle (2000).

■ O(E). Holy grail.

Worth noting.

■ O(E) randomized. Karger-Klein-Tarjan (1995).

■ O(E) verification. Dixon-Rauch-Tarjan (1992).

