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Linear Programming

What is it?

■ Quintessential tool for optimal allocation of scarce resources, 
among a number of competing activities.

■ Powerful and general problem-solving method.
– shortest path, max flow, min cost flow, multicommodity flow, 

MST, matching, 2-person zero sum games

Why significant?

■ Fast commercial solvers:  CPLEX.

■ Powerful modeling languages:  AMPL, GAMS.

■ Ranked among most important scientific advances of 20th century.

■ Also a general tool for attacking NP-hard optimization problems.

■ Dominates world of industry.
– ex:  Delta claims saving $100 million per year using LP
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Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking. 
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management. 
Finance. Portfolio optimization.
Logistics. Supply-chain management, Berlin airlift.
Management. Hotel yield management.
Marketing. Direct mail advertising. 
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Physics. Ground states of 3-D Ising spin glasses.
Telecommunication. Network design, Internet routing.
Transportation. Airline crew assignment, vehicle routing.
Sports. Scheduling ACC basketball, handicapping horse races.
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Brewery Problem:  A Toy LP Example

Small brewery produces ale and beer.

■ Production limited by scarce resources:  corn, hops, barley malt.

■ Recipes for ale and beer require different proportions of resources.

How can brewer maximize profits?

■ Devote all resources to ale:  34 barrels of ale ⇒ $442.

■ Devote all resources to beer:  32 barrels of beer ⇒ $736.

■ 7.5 barrels of ale, 29.5 barrels of beer ⇒ $776.

■ 12 barrels of ale, 28 barrels of beer ⇒ $800.

Beverage Corn
(pounds)

Malt
(pounds)

Hops
(ounces)

Beer 15 204

Ale 5 354

Profit
($)

23

13

Quantity 480 1190160
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Brewery Problem  
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Brewery Problem:  Feasible Region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B ≤ 480

Hops
4A + 4B ≤ 160

Malt
35A + 20B ≤ 1190

(12, 28)

(0, 0)

(26, 14)
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Brewery Problem:  Objective Function

Ale

Beer

(34, 0)

(0, 32)

(12, 28)

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442

Profit

(0, 0)

(26, 14)
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Ale

Beer

(34, 0)

(0, 32)

(12, 28)

(0, 0)

Extreme points

Brewery Problem:  Geometry

Brewery problem observation. Regardless of objective function 
coefficients, an optimal solution occurs at an extreme point.

(26, 14)
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Standard Form LP

"Standard form" LP.

■ Input data: rational numbers cj, bi, aij .

■ Output:  rational numbers xj.

■ n = # nonnegative variables, m = # constraints.

■ Maximize linear objective function.
– subject to linear inequalities

Linear.  No x2,  xy,  arccos(x),  etc.
Programming. Planning (term predates computer programming).
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Brewery Problem:  Converting to Standard Form

Original input.

Standard form.

■ Add SLACK variable for each inequality.

■ Now a 5-dimensional problem.
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2-D geometry.

■ Inequalities : halfplanes.

■ Bounded feasible region : convex polygon.
Higher dimensional geometry.

■ Inequalities : hyperplanes.

■ Bounded feasible region : (convex) polytope. 

Convex: if y and z are feasible solutions, then so is (y +z) / 2.
Extreme point: feasible solution x that can’t be written as (y + z) / 2 for 
any two distinct feasible solutions y and z.

Geometry
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12

Geometry

Extreme Point Property. If there exists an optimal solution to (P), 
then there exists one that is an extreme point.

■ Only need to consider finitely many possible solutions.

Challenge.  Number of extreme points can be exponential!

■ Consider n-dimensional hypercube.

Greed.  Local optima are global optima.
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Simplex Algorithm

Simplex algorithm. (George Dantzig, 1947) 

■ Developed shortly after WWII in response to logistical problems.

■ Used for 1948 Berlin airlift.

Generic algorithm.

■ Start at some extreme point.

■ Pivot from one extreme point to a neighboring one.
– never decrease objective function

■ Repeat until optimal.

How to implement?
! Use linear algebra.
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Simplex Algorithm:  Basis

Basis. Subset of m of the n variables.

Basic feasible solution (BFS). Set n - m nonbasic variables to 0, solve 
for remaining m variables.

■ Solve m equations in m unknowns.

■ If unique and feasible solution  ⇒ BFS.

■ BFS corresponds to extreme point!

■ Simplex only considers BFS.

Ale

Beer

Basis
{A, B, SM}
(12, 28)

{A, B, SC}
(26, 14)

{B, SH, SM}
(0, 32)

{SH, SM, SC}
(0, 0)

{A, SH, SC}
(34, 0)

0,,,,

11902035

16044

480155t. s.

2313max

≥
=++
=++
=++

+

CMH

C

M

H

SSSBA

SBA

SBA

SBA

BA

Infeasible
{A, B, SH}
(19.41, 25.53)

15

0,,,,

550

32

32

736

tosubject  max

3
4

3
85

15
4

3
8

15
1

3
1

15
23

3
16

≥
=+−
=+−
=++

−=−−

CMH

CH

MH

H

H

SSSBA

SSA

SSA

SBA

ZSA

Z

Basis = {B, SM, SC}
A = SH = 0
Z = 736
B = 32
SM = 32
SC = 550

Simplex Algorithm:  Pivot 1
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A = B = 0
Z = 0
SH = 480 
SM = 160 
SC = 1190

Substitute:  B = 1/15 (480 – 5A – SH)
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Simplex Algorithm:  Pivot 1

Why pivot on column 2?

■ Each unit increase in B increases objective value by $23.

■ Pivoting on column 1 also OK.

Why pivot on row 2?

■ Ensures that RHS ≥ 0 (and basic solution remains feasible).

■ Minimum ratio rule:  min { 480/15,  160/4,  1190/20 }.
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Simplex Algorithm:  Pivot 2
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Substitute:  A = 3/8 (32 + 4/15 SH – SM)

Basis = {B, S M, SC}
A = SH = 0
Z = 736
B = 32
SM = 32
SC = 550

Basis = {A, B, S C}
SH = SM = 0
Z = 800
B = 28
A = 12
SC = 110
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Simplex Algorithm:  Optimality

When to stop pivoting?

■ If all coefficients in top row are non-positive.

Why is resulting solution optimal?

■ Any feasible solution satisfies system of equations in tableaux.
– in particular:  Z = 800 – SH – 2 SM

■ Thus, optimal objective value Z*  ≤ 800 since S H, SM ≥ 0.

■ Current BFS has value 800  ⇒ optimal.
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Simplex Algorithm

Remarkable property.  Simplex algorithm typically requires less than 
2(m+n) pivots to attain optimality.

■ No polynomial pivot rule known.

■ Most pivot rules known to be exponential in worst-case.

Issues.

■ Which neighboring extreme point?

■ Cycling.
– get stuck by cycling through different bases that all correspond

to same extreme point
– doesn’t occur in the wild
– Bland’s least index rule  ⇒ finite # of pivots

■ Degeneracy.
– new basis, same extreme point
– "stalling" is common in practice
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LP Duality:  Economic Interpretation

Brewer’s problem: find optimal mix of beer and ale to maximize profits.

Entrepreneur’s problem: Buy individual resources from brewer at 
minimum cost.

■ C, H, M = unit price for corn, hops, malt.

■ Brewer won’t agree to sell resources if 5C + 4H + 35M  <  13.
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LP Duality

Primal and dual LPs. Given rational numbers aij, bi, cj, find rational 
numbers xi, yj that optimize (P) and (D).

Duality Theorem (Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947).
If (P) and (D) have feasible solutions,  then max = min.

■ Special case:  max-flow min-cut theorem.

■ Sensitivity analysis.
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LP Duality:  Economic Interpretation

Sensitivity analysis.

■ How much should brewer be willing to pay (marginal price) for 
additional supplies of scarce resources?

! corn $1, hops $2, malt $0.

■ Suppose a new product "light beer" is proposed. It requires 2 corn, 
5 hops, 24 malt. How much profit must be obtained from light beer 
to justify diverting resources from production of beer and ale?

! Breakeven:  2 ($1) + 5 ($2) + 24 (0$) =  $12 / barrel.

How do I compute marginal prices (dual variables)?

■ Simplex solves primal and dual simultaneously.

■ Top row of final simplex tableaux provides optimal dual solution!
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History

1939.  Production, planning.  (Kantorovich)
1947.  Simplex algorithm.  (Dantzig)
1950.  Applications in many fields.
1979.  Ellipsoid algorithm.  (Khachian)
1984.  Projective scaling algorithm.  (Karmarkar)
1990.  Interior point methods.

Current research.

■ Approximation algorithms.

■ Software for large scale optimization.

■ Interior point variants.
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Ultimate Problem Solving Model

Ultimate problem-solving model?

■ Shortest path.

■ Min cost flow.

■ Linear programming.

■ Semidefinite programming.

■ . . . 

■ TSP???  (or any NP-complete problem)

Does P = NP?

■ No universal problem-solving model exists unless P = NP.
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Perspective

LP is near the deep waters of NP-completeness.

■ Solvable in polynomial time.

■ Known for less than 25 years.

Integer linear programming.

■ LP with integrality requirement.

■ NP-hard.

An unsuspecting MBA student transitions from tractable LP
to intractable ILP in a single mouse click.


