
COS 226 Lecture 18: Digraphs and DAGs

DIGRAPH: directed graph

 edge s-t from s to t

 edge t-s from t to s

 4-2 11-12

 4-11 5-4

 2-3 12-9

 4-3 0-5

 3-2 9-10

 3-5 6-4

 0-6 9-11

 7-8 6-9

 0-1 8-9

 8-7 7-6

 2-0 10-12

0

1 2

3

4

5

6 7 8

9 10

11 12

Can you get there from here? 18.1

Basic definitions

CONNECTIVITY

 path from s to t in undirected graph

REACHABILITY

 directed path from s to t in digraph

STRONG CONNECTIVITY

 directed paths from s to t AND from t to s

Connectivity ADT implementation (last lecture)

 query: O(1)

 preprocessing: O(E)

 space: O(V)

Can we do as well for reachability and strong connectivity?

18.2

DFS in a digraph (adjacency lists)

 void dfsR(Graph G, Edge e, int pre[], int post[])

 { link t; int i, v, w = e.w; Edge x;

 pre[w] = cnt0++;

 for (t = G->adj[w]; t != NULL; t = t->next)

 if (pre[t->v] == -1)

 dfsR(G, EDGE(w, t->v), pre, post);

 post[w] = cnt1++;

 }

 void GRAPHsearch(Graph G, int pre[], int post[])

 { int v;

 cnt0 = 0; cnt1 = 0; depth = 0;

 for (v = 0; v < G->V; v++)

 { pre[v] = -1; post[v] = -1; }

 for (v = 0; v < G->V; v++)

 if (pre[v] == -1)

 search(G, EDGE(v, v), pre, post);

 }

Need both PREORDER and POSTORDER numbering
18.3

DFS forests

Structure determined by digraph AND search dynamics

 use pre- and post- numbering to distinguish edge types

Edge types

 TREE

 BACK

 DOWN

 CROSS

9

11

12

9

10

12

0

5

4

3

5 2

0 3

11 2

1 6

9 4

7

6 8

7 9

0

5

4

3

5 2

0 3

11

12

9

11 10

12

2

1 6

9 4

7

6 8

7 9

ONLY the FIRST tree

 has the set of nodes reachable from its root 18.4

Transitive closure

Digraph G

Transitive closure G* has edge from s to

iff there is a directed path from s to t in G

0
0
0
0
1
1

0
0
0
1
1
0

0
0
1
1
0
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
0
0
0
10

0

1

1

2

2

3

3

4

4

5

5

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
1
1
1

1
1
1
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0

1 2

3

45

0

1 2

3

45

NOT symmetric

supports O(1) reachability queries with O(V^2) space 18.5

Boolean matrices and paths in graphs

Adjacency matrix A
 A[s][t] is 1 iff path from s to t

Square A*A = A^2
 A[s][t] is 1 iff path from s to t of length 2 in A [s-k-t]

Reflexive square A + A^2
 A[s][t] is 1 iff path from s to t of length < 2 in A

0
0
0
0
1
0

0
0
0
1
0
0

0
0
1
0
0
1

0
0
0
0
0
0

1
0
1
0
0
0

0
1
0
0
0
10

0

1

1

2

2

3

3

4

4

5

5

0
0
0
0
1
1

0
0
0
1
1
0

0
0
1
1
0
1

0
0
1
0
0
0

1
1
1
0
0
1

1
1
1
0
0
10

0

1

1

2

2

3

3

4

4

5

5

0
0
0
1
0
0

0
0
1
0
0
1

0
0
0
0
1
0

0
0
0
0
0
0

0
1
0
0
0
1

1
0
1
0
1
00

0

1

1

2

2

3

3

4

4

5

5

0
0
0
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
10

0

1

1

2

2

3

3

4

4

5

5

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

Transitive closure: A + A^2 + A^3 + A^4 + A^5 + ...
 same as lg V reflexive squares
 [A + (A + A^2)^2 = A + A^2 + A^3 + A^4]

leads to easy V^3 lg V transitive closure algorithm 18.6

Warshall’s algorithm

Method of choice for transitive closure of a dense graph

 running time proportional to V^3

 for (k = 0; k < G->V; k++)

 for (s = 0; s < G->V; s++)

 if (G->tc[s][k] == 1)

 for (t = 0; t < G->V; t++)

 if (G->tc[k][t] == 1) G->tc[s][t] = 1;

Proof of correctness (induction on k)

 there is a path from s to t (with no nodes > k) if

 EITHER

 there is path from s to k (with no nodes > k-1)

 AND a path from k to t (with no nodes > k-1)

 OR there is a path from s to t (with no nodes > k-1)

18.7

Warshall’s algorithm (example)

0
0
0
0
1
1

0
0
0
1
1
0

0
0
1
1
0
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
0
0
0
10

0

1

1

2

2

3

3

4

4

5

5

0
0
0
0
1
1

0
0
0
1
1
0

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
0
0
1
10

0

1

1

2

2

3

3

4

4

5

5

0
0
0
1
1
1

0
0
0
1
1
0

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
0
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
1
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
1
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
0
0
0

1
1
1
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
1
1
1

0
0
1
0
0
0

1
1
1
1
1
1

1
1
1
1
1
10

0

1

1

2

2

3

3

4

4

5

5

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45

0

1 2

3

45
18.8

Transitive closure lower bound

Consider Boolean (0-1) matrices

Premise: Matrix multiplication is not easy

 grade-school algorithm: V^3

 best known: V^c, c>2 [practical?]

THM: Transitive closure is no easier than matrix multiplication

Proof:

 Given a matrix multiplication problem

 can solve it with a TC algorithm

 I A 0 I A AB

 0 I B = 0 I B

 0 0 I 0 0 I

O(V^2) TC would yield O(V^2) matrix multiply (not likely)
18.9

DFS-based transitive closure

Package DFS to implement reachability ADT
 run new DFS for each vertex

 void TCdfsR(Graph G, int v, int w)
 { link t;
 G->tc[v][w] = 1;
 for (t = G->adj[w]; t != NULL; t = t->next)
 if (G->tc[v][t->v] == 0)
 TCdfsR(G, v, t->v);

 }
 void GRAPHtc(Graph G, Edge e)
 { int v, w;
 G->tc = malloc2d(G->V, G->V);
 for (v = 0; v < G->V; v++)
 for (w = 0; w < G->V; w++)
 G->tc[v][w] = 0;

 for (v = 0; v < G->V; v++) TCdfsR(G, v, v);
 }
 int GRAPHreach(Graph G, int s, int t)
 { return G->tc[s][t]; }

Running time? less than VE (V^2 for sparse graphs)
Violates lower bound? NO (worst case still V^3) 18.10

Abstract transitive closure

ADT function for reachability in digraphs

THM: DFS-based transtive closure provides

 VE preprocessing time

 V^2 space

 constant query time

GOAL:

 V^2 (or VE) preprocessing time

 V space

 constant query time

V^2 preprocessing guarantee not likely by TC lower bound

Next attempt:

 is the problem easier if there are no cycles (DAG)??
18.11

Topological sort (DAG)

DAG: directed acyclic graph
0

1 2

3

4

5

6 7 8

9 10

11 12

Topological sort: all edges point left to right

0 1 2 3 4 5678 9 10 11 12

0

0

1

1

2

2

3

3

7

8

8

7

6

6

5

4

4

5

9

9

10

10

11

11

12

12ts

tsI

0 1 2 3 4 5 6 7 8 9 10 11 12

Reverse TS: all edges point right to left

012345 6 7 89101112
18.12

DFS topological sort

Easy alg for reverse TS: DFS!

(postorder visit is reverse TS)

0

5 6

9

11

12

10 12

4

9

2

3

5 4

3 1

7

6

8

7

5 12 11 10 9 4 6 3 2 1 0 7 8post

0 1 2 3 4 5 6 7 8 9 10 11 12

 void TSdfsR(Graph G, int v, int ts[])

 { int w;

 pre[v] = 0;

 for (w = 0; w < G->V; w++)

 if (G->adj[w][v] != 0)

 if (pre[w] == -1) TSdfsR(G, w, ts);

 ts[cnt0++] = v;

 }

Quick hack for arrays:

 switch rows and cols to process reverse
18.13

DAG Transitive closure

Compute TC row vectors (in postorder) during reverse TS

0

5 6

9

11

12

10 12

4

9

2

3

5 4

3 1

7

6

8

7

 8: 0 0 0 0 1 0 1 1 1 1 1 1 1

 7: 0 0 0 0 1 0 1 1 0 1 1 1 1

 0: 1 1 1 1 1 1 1 0 0 1 1 1 1

 1: 0 1 0 0 0 0 0 0 0 0 0 0 0

 2: 0 0 1 1 1 1 0 0 0 1 1 1 1

 3: 0 0 0 1 1 1 0 0 0 1 1 1 1

 6: 0 0 0 0 1 0 1 0 0 1 1 1 1

 4: 0 0 0 0 1 0 0 0 0 1 1 1 1

 9: 0 0 0 0 0 0 0 0 0 1 1 1 1

10: 0 0 0 0 0 0 0 0 0 0 1 0 0

11: 0 0 0 0 0 0 0 0 0 0 0 1 1

12: 0 0 0 0 0 0 0 0 0 0 0 0 1

 5: 0 0 0 0 0 1 0 0 0 0 0 0 0

Good news: can skip down edges

 Bad news: there may not be any down edges 18.14

DAG transitive closure (code)

 void TCdfsR(Dag D, int w, int v)

 { int u, i;

 pre[v] = cnt0++;

 for (u = 0; u < D->V; u++)

 if (D->adj[v][u])

 {

 D->tc[v][u] = 1;

 if (pre[u] > pre[v]) continue;

 if (pre[u] == -1) TCdfsR(D, v, u);

 for (i = 0; i < D->V; i++)

 if (D->tc[u][i] == 1)

 D->tc[v][i] = 1;

 }

 }

worst-case cost bound: VE (no help!)

actual cost is V(V+ no. of down edges)

V^2 algorithm? lower bound?
18.15

Progress report on reachability ADT

Classical TC algs (Warshall) give

 query: O(1)

 preprocessing: O(V^3)

 space: O(V^2)

Reducing preprocessing to O(VE) is easy DFS application

NO PROGRESS on reducing space to O(V)

NO PROGRESS on better guarantees EVEN FOR DAGs (!!)

Next attempt:

 Is the STRONG reachability problem easier??

18.16

Strong components

STRONG COMPONENTS: mutually reachable vertices

0

1 2

3

4

5

6 7 8

9 10

11 12

sc 2 1 2 2 2 2 2 3 3 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

01

2 3

KERNEL DAG

 reachability among strong components

 collapse each strong component to a single vertex 18.17

Kosaraju’s SC algorithm

 Run DFS on reverse digraph

 Run DFS on digraph, using reverse postorder from first DFS

 to seek unvisited vertices at top level

0

1 2

3

4

5

6 7 8

9 10

11 12

0

2

3

4

6

7

8

7

0

5

0 3

2

4

1

0

9

6 8 12

10

9

11

4 9

post 8 7 6 5 4 3 2 0 1 11 10 12 9

 0 1 2 3 4 5 6 7 8 9 10 11 12

0

1 2

3

4

5

6 7 8

9 10

11 12

9

11

12

9

10

12

1 0

5

4

3

5 2

0 3

11 2

1 6

9 4

7

6 8

7 9

G->sc 2 1 2 2 2 2 2 3 3 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12

THM:

 Trees in (second) DFS forest are strong components (!)18.18

Kosaraju’s algorithm implementation

Add vertex-indexed array sc to graph representation

Use standard recursive DFS, with postorder numbering

 void SCdfsR(Graph G, int w)

 { link t;

 G->sc[w] = cnt1;

 for (t = G->adj[w]; t != NULL; t = t->next)

 if (G->sc[t->v] == -1) SCdfsR(G, t->v);

 post[cnt0++] = w;

 }

ADT function for constant-time strong reach queries

 int GRAPHstrongreach(Graph G, int s, int t)

 { return G->sc[s] == G->sc[t]; }

18.19

Kosaraju’s algorithm implementation (continued)

 int GRAPHsc(Graph G)

 { int i, v; Graph R;

 R = GRAPHreverse(G);

 cnt0 = 0; cnt1 = 0;

 for (v = 0; v < G->V; v++) R->sc[v] = -1;

 for (v = 0; v < G->V; v++)

 if (R->sc[v] == -1) SCdfsR(R, v);

 cnt0 = 0; cnt1 = 0;

 for (v = 0; v < G->V; v++) G->sc[v] = -1;

 for (v = 0; v < G->V; v++) postR[v] = post[v];

 for (i = G->V-1; i >=0; i--)

 if (G->sc[postR[i]] == -1)

 { SCdfsR(G, postR[i]); cnt1++; }

 return cnt1;

 }

LINEAR time to find strong components (!!) 18.20

Fast abstract transitive closure

1. Find strong components and build kernel DAG

2. Compute TC of kernel DAG

3. Reachability query:

 IF in same strong component, YES

 ELSE check reachability in kernel DAG

Running time depends on graph structure

 density (fast if sparse)

 size of kernel DAG (fast if small)

 cross edges in kernel DAG (fast if few)

Meets performance goals for many graphs

Huge sparse DAG? STILL OPEN

18.21

Fast transitive closure implementation

Testimony to benefits of careful ADT design

 Dag K;

 void GRAPHtc(Graph G)

 { int v, w; link t; int *sc = G->sc;

 K = DAGinit(GRAPHsc(G));

 for (v = 0; v < G->V; v++)

 for (t = G->adj[v]; t != NULL; t = t->next)

 DAGinsertE(K, dagEDGE(sc[v], sc[t->v]));

 DAGtc(K);

 }

 int GRAPHreach(Graph G, int s, int t)

 { return DAGreach(K, G->sc[s], G->sc[t]); }

18.22

