
COS 226 Lecture 18: Digraphs and DAGs  

DIGRAPH: directed graph

  edge s-t from s to t 

  edge t-s from t to s

  4-2  11-12  

  4-11  5-4

  2-3  12-9   

  4-3   0-5

  3-2   9-10  

  3-5   6-4

  0-6   9-11  

  7-8   6-9

  0-1   8-9   

  8-7   7-6

  2-0  10-12
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Can you get there from here? 18.1

Basic definitions       

CONNECTIVITY

  path from s to t in undirected graph

REACHABILITY 

  directed path from s to t in digraph

STRONG CONNECTIVITY      

  directed paths from s to t AND from t to s

Connectivity ADT implementation (last lecture)

  query: O(1)

  preprocessing: O(E)

  space: O(V)

Can we do as well for reachability and strong connectivity?

18.2

DFS in a digraph (adjacency lists)   

  void dfsR(Graph G, Edge e, int pre[], int post[])

    { link t; int i, v, w = e.w; Edge x;

      pre[w] = cnt0++; 

      for (t = G->adj[w]; t != NULL; t = t->next)

        if (pre[t->v] == -1) 

          dfsR(G, EDGE(w, t->v), pre, post); 

      post[w] = cnt1++; 

    }

  void GRAPHsearch(Graph G, int pre[], int post[])

    { int v;

      cnt0 = 0; cnt1 = 0; depth = 0;

      for (v = 0; v < G->V; v++) 

        { pre[v] = -1; post[v] = -1; }

      for (v = 0; v < G->V; v++)

        if (pre[v] == -1) 

          search(G, EDGE(v, v), pre, post); 

    }

Need both PREORDER and POSTORDER numbering 
18.3

DFS forests       

Structure determined by digraph AND search dynamics

  use pre- and post- numbering to distinguish edge types

Edge types
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ONLY the FIRST tree

    has the set of nodes reachable from its root 18.4



Transitive closure       

Digraph G

Transitive closure G* has edge from s to

iff there is a directed path from s to t in G
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NOT symmetric      

supports O(1) reachability queries with O(V^2) space 18.5

Boolean matrices and paths in graphs   

Adjacency matrix A
  A[s][t] is 1 iff path from s to t

Square A*A = A^2
  A[s][t] is 1 iff path from s to t of length 2 in A [s-k-t]

Reflexive square A + A^2
  A[s][t] is 1 iff path from s to t of length < 2 in A
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Transitive closure:  A + A^2 + A^3 + A^4 + A^5 + ...
  same as lg V reflexive squares
  [ A + (A + A^2)^2 = A + A^2 + A^3 + A^4 ]

leads to easy V^3 lg V transitive closure algorithm 18.6

Warshall’s algorithm       

          

Method of choice for transitive closure of a dense graph

  running time proportional to V^3

  for (k = 0; k < G->V; k++)

    for (s = 0; s < G->V; s++)

      if (G->tc[s][k] == 1)

        for (t = 0; t < G->V; t++)

          if (G->tc[k][t] == 1) G->tc[s][t] = 1; 

Proof of correctness (induction on k)

  there is a path from s to t (with no nodes > k) if

    EITHER

      there is path from s to k (with no nodes > k-1)

      AND a path from k to t (with no nodes > k-1)

    OR there is a path from s to t (with no nodes > k-1)

18.7

Warshall’s algorithm (example)      
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Transitive closure lower bound     

Consider Boolean (0-1) matrices

Premise: Matrix multiplication is not easy

  grade-school algorithm: V^3

  best known: V^c, c>2 [practical?]

THM: Transitive closure is no easier than matrix multiplication

Proof:

  Given a matrix multiplication problem

  can solve it with a TC algorithm

        I  A  0         I  A  AB

        0  I  B    =    0  I  B

        0  0  I         0  0  I

O(V^2) TC would yield O(V^2) matrix multiply (not likely)
18.9

DFS-based transitive closure      

Package DFS to implement reachability ADT
  run new DFS for each vertex 

  void TCdfsR(Graph G, int v, int w)
    { link t; 
      G->tc[v][w] = 1; 
      for (t = G->adj[w]; t != NULL; t = t->next)
        if (G->tc[v][t->v] == 0) 
          TCdfsR(G, v, t->v); 

    }
  void GRAPHtc(Graph G, Edge e)
    { int v, w;
      G->tc = malloc2d(G->V, G->V);
      for (v = 0; v < G->V; v++)
        for (w = 0; w < G->V; w++)
          G->tc[v][w] = 0;

      for (v = 0; v < G->V; v++) TCdfsR(G, v, v);
    }
  int GRAPHreach(Graph G, int s, int t)
    { return G->tc[s][t]; }

Running time? less than VE (V^2 for sparse graphs)
Violates lower bound? NO (worst case still V^3) 18.10

Abstract transitive closure      

ADT function for reachability in digraphs

THM: DFS-based transtive closure provides

  VE preprocessing time

  V^2 space

  constant query time

GOAL: 

  V^2 (or VE) preprocessing time

  V space

  constant query time

V^2 preprocessing guarantee not likely by TC lower bound

Next attempt:      

  is the problem easier if there are no cycles (DAG)??
18.11

Topological sort (DAG)      

DAG: directed acyclic graph
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DFS topological sort      

Easy alg for reverse TS: DFS! 

(postorder visit is reverse TS)
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  void TSdfsR(Graph G, int v, int ts[])

    { int w;

      pre[v] = 0; 

      for (w = 0; w < G->V; w++)

        if (G->adj[w][v] != 0) 

          if (pre[w] == -1) TSdfsR(G, w, ts); 

      ts[cnt0++] = v;

    }

Quick hack for arrays: 

  switch rows and cols to process reverse
18.13

DAG Transitive closure      

Compute TC row vectors (in postorder) during reverse TS
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 0: 1 1 1 1 1 1 1 0 0 1 1 1 1

 1: 0 1 0 0 0 0 0 0 0 0 0 0 0

 2: 0 0 1 1 1 1 0 0 0 1 1 1 1

 3: 0 0 0 1 1 1 0 0 0 1 1 1 1

 6: 0 0 0 0 1 0 1 0 0 1 1 1 1

 4: 0 0 0 0 1 0 0 0 0 1 1 1 1

 9: 0 0 0 0 0 0 0 0 0 1 1 1 1

10: 0 0 0 0 0 0 0 0 0 0 1 0 0

11: 0 0 0 0 0 0 0 0 0 0 0 1 1

12: 0 0 0 0 0 0 0 0 0 0 0 0 1
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Good news: can skip down edges

 Bad news: there may not be any down edges 18.14

DAG transitive closure (code)     

  void TCdfsR(Dag D, int w, int v)

    { int u, i;

      pre[v] = cnt0++;

      for (u = 0; u < D->V; u++)

        if (D->adj[v][u])

          { 

            D->tc[v][u] = 1; 

            if (pre[u] > pre[v]) continue;

            if (pre[u] == -1) TCdfsR(D, v, u); 

            for (i = 0; i < D->V; i++)

              if (D->tc[u][i] == 1) 

                D->tc[v][i] = 1;

          }            

    }

worst-case cost bound: VE (no help!)

actual cost is V(V+ no. of down edges)

V^2 algorithm? lower bound?
18.15

Progress report on reachability ADT    

Classical TC algs (Warshall) give

  query: O(1)

  preprocessing: O(V^3)

  space: O(V^2)

Reducing preprocessing to O(VE) is easy DFS application

NO PROGRESS on reducing space to O(V)

NO PROGRESS on better guarantees EVEN FOR DAGs (!!)

Next attempt:      

  Is the STRONG reachability problem easier??

18.16



Strong components       

STRONG COMPONENTS: mutually reachable vertices   
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KERNEL DAG      

  reachability among strong components

  collapse each strong component to a single vertex 18.17

Kosaraju’s SC algorithm      

  Run DFS on reverse digraph

  Run DFS on digraph, using reverse postorder from first DFS

    to seek unvisited vertices at top level
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THM:       

  Trees in (second) DFS forest are strong components (!)18.18

Kosaraju’s algorithm implementation      

Add vertex-indexed array sc to graph representation 

Use standard recursive DFS, with postorder numbering

  void SCdfsR(Graph G, int w)

    { link t;

      G->sc[w] = cnt1; 

      for (t = G->adj[w]; t != NULL; t = t->next)

        if (G->sc[t->v] == -1) SCdfsR(G, t->v); 

      post[cnt0++] = w;

    }

ADT function for constant-time strong reach queries

  int GRAPHstrongreach(Graph G, int s, int t)

    { return G->sc[s] == G->sc[t]; }

18.19

Kosaraju’s algorithm implementation (continued)     

  int GRAPHsc(Graph G)

    { int i, v; Graph R;

      R = GRAPHreverse(G);

      cnt0 = 0; cnt1 = 0;

      for (v = 0; v < G->V; v++) R->sc[v] = -1;

      for (v = 0; v < G->V; v++)

        if (R->sc[v] == -1) SCdfsR(R, v);

      cnt0 = 0; cnt1 = 0;

      for (v = 0; v < G->V; v++) G->sc[v] = -1;

      for (v = 0; v < G->V; v++) postR[v] = post[v];

      for (i = G->V-1; i >=0; i--)

        if (G->sc[postR[i]] == -1) 

          { SCdfsR(G, postR[i]); cnt1++; }

      return cnt1;

    }

LINEAR time to find strong components (!!) 18.20



Fast abstract transitive closure     

1. Find strong components and build kernel DAG

2. Compute TC of kernel DAG  

3. Reachability query:     

    IF in same strong component, YES

    ELSE check reachability in kernel DAG

    

Running time depends on graph structure

  density (fast if sparse)

  size of kernel DAG (fast if small)

  cross edges in kernel DAG (fast if few)

Meets performance goals for many graphs

Huge sparse DAG?  STILL OPEN

18.21

Fast transitive closure implementation     

Testimony to benefits of careful ADT design

  Dag K;

  void GRAPHtc(Graph G)

    { int v, w; link t; int *sc = G->sc;

      K = DAGinit(GRAPHsc(G));

      for (v = 0; v < G->V; v++) 

        for (t = G->adj[v]; t != NULL; t = t->next)

          DAGinsertE(K, dagEDGE(sc[v], sc[t->v]));

      DAGtc(K);

    }

  int GRAPHreach(Graph G, int s, int t)

    { return DAGreach(K, G->sc[s], G->sc[t]); }

18.22


