(COS5 226 Lecture 8: Balanced trees)

Symbol Table, Dictionary
e records with keys
o INSERT
* SEARCH

Goal: Symbol table implementation
e with O(IgN) GUARANTEED performance
o for both secarch and insert
e (and other ST operations)

Three approaches

1. PROBABILISTIC “quarantee”
2. AMORTIZED “guarantee”
3. WORST-CASE GUARANTEE

(Randomized BSTs)

IDEA: new node should be root with probability 1/(N+1)
DO IT!
link insertR(link h, Itemitem
{ Key v = key(itenm), t = key(h->item;
if (h ==2) return NEWitem z, z, 1);
if (rand() < RAND_MAX/ (h->N+1))
return insertT(h, iten);
it Tess(v, t) h->[= insertR(h->I, item;
else h->r = insertR(h->r, item;
(h->N) ++; return h;

}
void STinsert(ltemitem
{ head = insertR(head, item; }

Trees have same shape as random BSTs FOR ALL INPUTS

Random B5Ts: exponentially small chance of bad balance
8.2

(Randomized BST example)

Insert keys in order: tree shape still random!

®
B @ O
R as
®@ SO @ &
)
B
o ® C @
@) & 9
02625 GO &' ®®
®
®
R B ®
®
a S 19
o@@ (©) © ® 0@0
S ® ©)
@ Q) ®
R P R o ®
©® @9
®
® 0 R
® |
® @ ®
@ ®
® o S0
o R KR
S® @ 83
©)
)
(Other operations in randomized B5Ts)

FIND kth largest
* another use of size field already there
JOIN disjoint 5Ts
e straightforward recursive implementation
* to join 5Ts A (of size M) and B (of size N)
use A root with probability M/(M+N)
use B root with probability N/(M+N)
join other tree with subtree recursively
DELETE
* remove the node, do join (above)

THM: Trees still random after delete ()

8.4

(Randomized BSTs)

Always look like random BSTs

e implementation straightforward

o support all symbol-table ADT ops
* O(log N) average case

* bad cases provably unlikely

85

(Skip lists)

Idea: Add links to linked-list nodes to make “"fast tracks”

—
SRR EE

IQLI_L[_L 1

LL L4

x| -]-

JEA5E

IﬂL'_L 1
=
[l _L[_L 11 IRLI_L[_L 11
EL'_L 1
-

IﬂL]_L'_I_l
[-T-]

IQLI_LI_L 1

A el
B hior=
Challenges (see Section 13.5 for details):

e how to maintain structure under insertion
e how many links in a particular node?

LLLLIJ

Bottom line: similar to randomized B5Ts
o plus: easier to understand
e minus: more pointer-chasing

8.6

(Splay trees)

ldea: slight modification to root insertion
Check two links above current node
Orientations differ: same as root insertion
Orientations match: do top rotation first

©
@©0®e &)
S © ORRO)|
- : @@@m
O
O ®

© Wy &)

(Splay tree balance)

THM: Splay rotations halve the secarch path

v
=

WW’F
%w’?ﬁ

guaranteed performance over SEQUENCE of operations
8.8

(Splay tree implementation) (

Top-down 2-3-4 trees)

link splay(link h, Itemitem)
{ Key v = key(item;

Transform tree on the way DOWN
if (h==2) return NEWitem 2z, z, 1);

il ese(n, e GEm) * to ensure that last node is not a 4-node
{
if (hl == 2) return NEWitem z, h, h->N+1); Local transformations to split 4-nodes:
if (less(v, key(hl->iten)))
{ hl'l = splay(hll, itenm); h =rotR(h); }
el se %D
{ hlr = splay(hlr, item; hl =rotL(hl);}

return rotR(h);

R
b TYR® TRR

{
if (hr ==2z) return NEWitem h, z, h->N+1); Invariant: “current” node is not a 4-node
if (less(key(hr->item, v)) .
. | | |
0 er o sdlewirr. Leame b= el One of two loca frq.nsformahons‘mus-t apply at next node
ol & o Insertion at bottom is easy (not into a 4-node)
{ hrl = splay(hrl, item; hr = rotR(hr);}
return rotL(h);
}
} 8.9 8.n
(2-3-4 trees) (Top-down 2-3-4 tree construction)

Allow one, two, or three keys per node
Keep link for every interval beteen keys
e 2-node: one key, two children
e 3-node: two keys, three children

e 4-node: three keys, four children

SEARCH

e compare search key against keys in node

e find interval containing search key

o follow associated link (recursively)
INSERT

e search to bottom for key

° 2-node at bottom: convert to a 3-node

¢ 3-node at bottom: convert to a 4-node

* 4-node at bottom: ??

8o Trees grow up from the bottom

(Balance in 2-3-4 trees)

In top-down 2-3-4 trees,
e all paths from top to bottom are the same length

Tree height:
* worst case: IgN (all 2-nodes)
e best case: IgN/2 (all 4-nodes)
* between 10 and 20 for a million nodes
e between 15 and 30 for a billion nodes

Comparisons within nodes not accounted for

(Top-down 2-3-4 tree implementation)

Fantasy code (sketch):
link insertR(link h, Itemitem
{ Key v = key(item;
link x = h;
while (x !'= 2)
{ x = therightlink(x, v);
i f fourNode(x) then split(x); }

i f twoNode(x) then makeThree(x, v); else
i f threeNode(x) then makeFour(x, v); else
return head;

Direct implementation complicated because of
e “therightlink(x, v)"
e maintaining multiple node types
e large number of cases for split”
Search also more complicated than for BST

(Red-black trees)

Represent 2-3-4 trees as binary trees
e with “internal” edges for 3- and 4-nodes

AR RO R

Correspondence between 2-3-4 and RB trees

Not 1-1 because 3-nodes swing cither way

(Splitting nodes in red-black trees)

Two cases are ecasy (need only to switch colors)
TR R R

8

Two cases require ROTATIONS

N
T T

RB tree node split example)

Red-black tree implementation)

link RBinsert(link h, Itemitem int sw
{ Key v = key(item;
if (h ==2) return NEWitem 2z, z, 1, 1);
if ((hl->red) && (hr->red))
{ h->red = 1; hl->ed =0; hr->red = 0; }
if (less(v, key(h->item))

hl = RBinsert(hl, item O0);

if (h->red & hl->red & sw) h = rotR(h);
if (hl->red && hll->red)

{ h=rotR(h); h->red = 0; hr->red = 1; }

hr = RBinsert(hr, item 1);
if (h->red & hr->red & !sw) h = rotL(h);
if (hr->red && hrr->red)
{ h=rotL(h); h->red = 0; hl->red = 1; }
}
return h;
}
void STinsert(ltemitem
{ head=RBi nsert (head,item 0); head->red=0; } 8.8

(Red-black tree construction

(Balance in red-black trees

In red-black trees,

* LONGEST path at most twice as long as SHORTEST path

worst case: less than 2igN

Comparisons within nodes *arex* counted

8.20

(B-trees) (B tree example (continued))

Generalize 2-3-4 trees: up to M links per node
Split full nodes on the way down
Red-black abstraction still works

« BUT might use binary search instead of internal links e

000 (207 o>
B-trees for external secarch 207 TS [ars o

373 -j\ 277 -L—
373 e

000 000
526 526

e node size = page size

e typical: M = 1000, N € 1,000,000,000,000

]

Main advantage: flexibility to do fast insert/delete Eiltne

|

574 e—

Space-time tradeoff oo
’ : . e e Lk
* M large: only a few levels in tree 742 o e TE
37 e 601 e—~ 641 e—
M small: less wasted space #_» 742 o) ;22.}—-
s Lr o}
[742] e
. €
Bottom line: _J 755

*log_M N page accesses (3 or 4 in practice)

(B tree example) (B tree growth)

153 o‘—>
176 e

513 e—
706 e— 176 e— 176 e—

706 e—— 601 e

000 T
601

601 .‘_’
706 o‘—>
773 o

(Summary)

GOAL: 5T implementation with O(IgN) GUARANTEE for all ops
probabilistic guarantee: random B5Ts, skip lists

amortized guarantee: splay trees
optimal guarantee: red-black trees
Algorithms are varations on a theme (rotations when inserting)

Different abstractions, but equivalent
Ex: skip-list representation of 2-3-4 tree

— ol
TR BT T EE
Are balanced trees OPTIMAL?

* worst-case: no (can get CigN for C)

I

° average-case: open
Abstraction extends to give secarch algs for huge files

* B-trees 8.1

