( COS5 226 Lecture 8: Balanced trees )

Symbol Table, Dictionary
e records with keys
o INSERT
* SEARCH

Goal: Symbol table implementation
e with O(IgN) GUARANTEED performance
o for both secarch and insert
e (and other ST operations)

Three approaches

1. PROBABILISTIC “quarantee”
2. AMORTIZED “guarantee”
3. WORST-CASE GUARANTEE

( Randomized BSTs )

IDEA: new node should be root with probability 1/(N+1)
DO IT!
link insertR(link h, Itemitem
{ Key v = key(itenm), t = key(h->item;
if (h ==2) return NEWitem z, z, 1);
if (rand() < RAND_MAX/ (h->N+1))
return insertT(h, iten);
it Tess(v, t) h->[ = insertR(h->I, item;
else h->r = insertR(h->r, item;
(h->N) ++; return h;

}
void STinsert(ltemitem
{ head = insertR(head, item; }

Trees have same shape as random BSTs FOR ALL INPUTS

Random B5Ts: exponentially small chance of bad balance
8.2

( Randomized BST example )

Insert keys in order: tree shape still random!
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( Other operations in randomized B5Ts )

FIND kth largest
* another use of size field already there
JOIN disjoint 5Ts
e straightforward recursive implementation
* to join 5Ts A (of size M) and B (of size N)
use A root with probability M/(M+N)
use B root with probability N/(M+N)
join other tree with subtree recursively
DELETE
* remove the node, do join (above)

THM: Trees still random after delete ()

8.4



( Randomized BSTs )

Always look like random BSTs

e implementation straightforward

o support all symbol-table ADT ops
* O(log N) average case

* bad cases provably unlikely
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( Skip lists )

Idea: Add links to linked-list nodes to make “"fast tracks”
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Challenges (see Section 13.5 for details):

e how to maintain structure under insertion
e how many links in a particular node?
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Bottom line: similar to randomized B5Ts
o plus: easier to understand
e minus: more pointer-chasing
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( Splay trees )

ldea: slight modification to root insertion
Check two links above current node
Orientations differ: same as root insertion
Orientations match: do top rotation first
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( Splay tree balance )

THM: Splay rotations halve the secarch path
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guaranteed performance over SEQUENCE of operations
8.8



( Splay tree implementation ) (

Top-down 2-3-4 trees )

link splay(link h, Itemitem)
{ Key v = key(item;

Transform tree on the way DOWN
if (h==2) return NEWitem 2z, z, 1);

il ese(n, e GEm ) * to ensure that last node is not a 4-node
{
if (hl == 2) return NEWitem z, h, h->N+1); Local transformations to split 4-nodes:
if (less(v, key(hl->iten)))
{ hl'l = splay(hll, itenm); h =rotR(h); }
el se %D
{ hlr = splay(hlr, item; hl =rotL(hl);}

return rotR(h);

R
b TYR® TRR

{
if (hr ==2z) return NEWitem h, z, h->N+1); Invariant: “current” node is not a 4-node
if (less(key(hr->item, v)) .
. | | |
0 er o sdlewirr. Leame b= el One of two loca frq.nsformahons‘mus-t apply at next node
ol & o Insertion at bottom is easy (not into a 4-node)
{ hrl = splay(hrl, item; hr = rotR(hr);}
return rotL(h);
}
} 8.9 8.n
( 2-3-4 trees ) ( Top-down 2-3-4 tree construction )

Allow one, two, or three keys per node
Keep link for every interval beteen keys
e 2-node: one key, two children
e 3-node: two keys, three children

e 4-node: three keys, four children

SEARCH

e compare search key against keys in node

e find interval containing search key

o follow associated link (recursively)
INSERT

e search to bottom for key

° 2-node at bottom: convert to a 3-node

¢ 3-node at bottom: convert to a 4-node

* 4-node at bottom: ??

8o Trees grow up from the bottom



( Balance in 2-3-4 trees )

In top-down 2-3-4 trees,
e all paths from top to bottom are the same length

Tree height:
* worst case: IgN (all 2-nodes)
e best case: IgN/2 (all 4-nodes)
* between 10 and 20 for a million nodes
e between 15 and 30 for a billion nodes

Comparisons within nodes not accounted for

( Top-down 2-3-4 tree implementation )

Fantasy code (sketch):
link insertR(link h, Itemitem
{ Key v = key(item;
link x = h;
while (x !'= 2)
{ x = therightlink(x, v);
i f fourNode(x) then split(x); }

i f twoNode(x) then makeThree(x, v); else
i f threeNode(x) then makeFour(x, v); else
return head;

Direct implementation complicated because of
e “therightlink(x, v)"
e maintaining multiple node types
e large number of cases for split”
Search also more complicated than for BST

( Red-black trees )

Represent 2-3-4 trees as binary trees
e with “internal” edges for 3- and 4-nodes
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Correspondence between 2-3-4 and RB trees

Not 1-1 because 3-nodes swing cither way

( Splitting nodes in red-black trees )

Two cases are ecasy (need only to switch colors)
TR R R

8

Two cases require ROTATIONS
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RB tree node split example )

Red-black tree implementation )

link RBinsert(link h, Itemitem int sw
{ Key v = key(item;
if (h ==2) return NEWitem 2z, z, 1, 1);
if ((hl->red) && (hr->red))
{ h->red = 1; hl->ed =0; hr->red = 0; }
if (less(v, key(h->item))

hl = RBinsert(hl, item O0);

if (h->red & hl->red & sw) h = rotR(h);
if (hl->red && hll->red)

{ h=rotR(h); h->red = 0; hr->red = 1; }

hr = RBinsert(hr, item 1);
if (h->red & hr->red & !sw) h = rotL(h);
if (hr->red && hrr->red)
{ h=rotL(h); h->red = 0; hl->red = 1; }
}
return h;
}
void STinsert(ltemitem
{ head=RBi nsert (head,item 0); head->red=0; } 8.8

( Red-black tree construction

( Balance in red-black trees

In red-black trees,

* LONGEST path at most twice as long as SHORTEST path

worst case: less than 2igN

Comparisons within nodes *arex* counted

8.20



( B-trees ) ( B tree example (continued) )

Generalize 2-3-4 trees: up to M links per node
Split full nodes on the way down
Red-black abstraction still works

« BUT might use binary search instead of internal links e
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( B tree example ) ( B tree growth )
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( Summary )

GOAL: 5T implementation with O(IgN) GUARANTEE for all ops
probabilistic guarantee: random B5Ts, skip lists

amortized guarantee: splay trees
optimal guarantee: red-black trees
Algorithms are varations on a theme (rotations when inserting)

Different abstractions, but equivalent
Ex: skip-list representation of 2-3-4 tree
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Are balanced trees OPTIMAL?

* worst-case: no (can get CigN for C)

I

° average-case: open
Abstraction extends to give secarch algs for huge files

* B-trees 8.1



