Testing, Timing,
Profiling, & Instrumentation

CS 217

Testing, Profiling, & Instrumentatiog®;

ol

* How do you know if your program is correct?
o Will it ever core dump?
o Does it ever produce the wrong answer?
— Testing

* How do you know what your program is doing?
o How fast is your program?
o Why is it slow for one input but not for another?
o Does it have a memory leak?
— Timing
— Profiling
— Instrumentation

See Kernighan & Pike book:
“The Practice of Programming”

-

Program Verification

* How do you know if your program is correct?

o Can you prove that it is correct?
o Can you prove properties of the code?
- e.g., it terminates

Specification —— Program
setarray.c —| Checker
?

—— Right/Wrong

-

Program Testing

» Convince yourself that your program probably works

Specification ——» Test
Program

setarray.c—»

Probably
Right/Wrong

How do you write a test program?

(-)
Test Programs
 Properties of a good test program
o Tests boundary conditions
o Exercise as much code as possible
o Produce output that is known to be right/wrong
How do you achieve all three properties?
J

-

Program Testing

» Testing boundary conditions
o Almost all bugs occur at boundary conditions

o If program works for boundary cases, it probably works for others

» Exercising as much code as possible
o For simple programs, can enumerate all paths through code
o Otherwise, sample paths through code with random input
o Measure test coverage

» Checking whether output is right/wrong?

Match output expected by test programmer (for simple cases)
Match output of another implementation

Verify conservation properties

[}

o}

o}

o

Note: real programs often have fuzzy specifications

(BE
Example Test Program e

int main(int argc, char *argv[])
{

Set _T oSet;

Setlter_T oSetlter;

const char *pcKey;

char *pcVal ue;

int ilLength;

/* Test Set_new, Set_put, Set_getKey, Set_getValue. */
oSet = Set_new(2, nyStringConpare);

Set _put (oSet, "Ruth", "RightField");

Set _put (oSet, "Gehrig", "FirstBase");

Set _put (0Set, "Mantle", "CenterField");

Set _put (0oSet, "Jeter", "Shortstop");

L) S G e TR \n");
printf("This output should list 4 players and their positions\n");
L) S G e \n");

pcKey = (const char*) Set_get Key(oSet, "Ruth");
pcVal ue = (char*) Set_get Val ue(oSet, "Ruth");
printf("%\t%\n", pcKey, pcValue);

pcKey = (const char*)Set_get Key(oSet, "Gehrig");
pcVal ue = (char*) Set_get Val ue(oSet, "Gehrig");
printf("%\t%\n", pcKey, pcValue);

pcKey = (const char*) Set_get Key(oSet, "Mantle");
pcVal ue = (char*) Set_get Val ue(oSet, "Mantle");
printf("%\t%\n", pcKey, pcValue);

pcKey = (const char*)Set_get Key(oSet, "Jeter");
pcVal ue = (char*) Set_get Val ue(oSet, "Jeter");
printf("%\t%\n", pcKey, pcValue);

p
Systematic Testing

* Incremental testing
o Test as write code
o Test simple cases first
o Test code bottom-up

* Stress testing
o Generate test inputs procedurally
o Intentionally create error situations for testing
o Run tests as batch processes ... often

void *testmal |l oc(size_t n)
{
static int count = 0O;
if (++count > 10) return O;
el se return nmalloc(n);

}

(b
Timing, Profiling, & Instrumentatio

~

* How do you know what your code is doing?
o How slow is it?
— How long does it take for certain types of inputs?
o Where is it slow?
— Which code is being executed most?
o Why am | running out of memory?
— Where is the memory going?
— Are there leaks?
o Why is it slow?
— How imbalanced is my binary tree?

Input ——| Program — Output

p
Timing

» Most shells provide tool to time program execution
o e.g., bash “t i ne” command

bash> tail -1000 /usr/lib/dict/words > input.txt

bash> timesort5.pixie < input.txt > output.txt

real onl2. 977s
user Ont2. 860s
Sys 0onD. 010s

()
Timing

vvvv

» Most operating systems provide a way to get the time
o e.g., UNIX “get ti neof day” command

#i ncl ude <sys/tine. h>

struct tinmeval start_time, end_tinme;

getti meof day(&start _time, NULL);
<execute sonme code here>

getti meof day(&end_time, NULL);

float seconds = end_tine.tv_sec - start_time.tv_sec +
1.0E-6F * (end_tine.tv_usec - start_tine.tv_usec);

-

Profiling

» Gather statistics about your program’s execution
o e.g., how much time did execution of a function take?
o e.g., how many times was a particular function called?
o e.g., how many times was a particular line of code executed?
o e.g., which lines of code used the most time?

» Most compilers come with profilers
o e.g., pi xi e and pr of

-

Profiling Example

#i ncl ude <stdio. h>
#i nclude <string. h>

#include "stringarray.h"

int ConpareStrings(void *s1,

{
return strcnp(sl, s2);

}

int main()
StringArray_T stringarray = StringArray_new();
StringArray_read(stringarray, stdin);
StringArray_sort(stringarray,
StringArray_wite(stringarray, stdout)
StringArray_free(stringarray);
return O;

}

void *s2)

ConpareStrings);

-

Profiling Example

5 =

e

bash> cc -0 sort5.c etc.

bash> pixie sort5

bash> sort5.pixie < input.txt > output.txt

bash> prof sort5. Counts

Summary of ideal tine data (pixie-counts)--
3664181847 Tot al

3170984513: Tot al

16.261: Total

0. 865:

935 54. 9% 54.9%
897 36. 3% 91. 2%
386 8.5% 99. 7%
1% 99. 8%
0% 99. 8%
0% 99. 8%
0% 99. 9%
0% 99. 9%
0% 99. 9%
. 9%
0% 99. 9%
0% 99. 9%
0% 99. 9%
0% 99. 9%
0% 99. 9%

CeeLeoLo0ooLOoRrUNI®
o
o
N

o
S
N
OCO0O0O00000000
3
>
©
©

1742355689
1149885000
270290536
1879873
746528
700059
494950
420000
417401
340000
310028
267789
264264
263196
262829

nunber of
conputed cycl es
conputed execution tinme (secs.)
Average cycles / instruction

Function list, in descending order

1778629217
1299870000
575736340
2279949
584896
880214
666600
510000
411003
450000
250028
296579
345576
329639
413379

instructions executed

by exclusive ideal time

49995000
49995000
10000
20000
10001
10018
10000
10000
10000

1

2680
10164
10038
10000

function (dso: file, line)

Array_sort (sort5: array.c, 110
ConpareStrings (sort5: sortb.c, 7)
strcmp (libc.so.1: strcnp.s, 34
_doprnt (libc.so.1: doprnt.c, 227)
strlen (libc.so.1: strlen.s, 58

fgets (libc.so.1: fgets.c, 26)
_menccpy (libc.so.1: nenccpy.c, 29)
Array_addKth (sort5: array.c, 72)
strcpy (libc.so.1: strcpy.s, 103)
fprintf (libc.so.1: fprintf.c, 23)
StringArray_wite (sort5: str...c, 22)
resolve_rel ocations (rld: rld.c, 2636)
cleanfree (libc.so.1: malloc.c, 933)
nmencpy (libc.so.1: bcopy.s, 329)
_smalloc (libc.so.1: malloc.c, 127)

J

-

Instrumentation

vvvv

» Gather statistics about your data structures
o e.g., how many nodes are at each level of my binary tree?
o e.¢g., how many elements are in each bucket of my hash table?
o e.¢g., how much memory is allocated from the heap?

—{]
—L]
]

@)
©)
IO T moOoOw?>

NNANANNNR

)
-
L
0
-]

2,1,4,3,6,5,8,7,10,9, 11

-

Instrumentation Example

Hash table implemented as array of sets —:%
I B
typedef struct Hash *Hash_T; —*E
0
struct Hash { ;E
Set _T *buckets; ,ﬂ
int nbuckets; —*ﬂ

b

voi d Hash_Pri nt Bucket Count s(Hash_T oHash, FILE *fp)
{

int i;

/* Print nunber of elenments in each bucket */
for (i = 0; i < oHash->nbuckets; i++)
fprintf(fp, “% “, Set_getlLength(oHash->buckets[i]), fp);
fprintf(fp, “\n");
}

-

Summary & Guidelines

vvvv

» Test your code as you write it
o It is very hard to debug a lot of code all at once
o Isolate modules and test them independently
o Design your tests to cover boundary conditions
o Test modules bottom-up

* Instrument your code as you write it
o Include asserts and verify data structure sanity often
o Include debugging statements (e.g., #ifdef DEBUG and #endif)
o You'll be surprised what your program is really doing!!!

» Time and profile your code only when you are done
o Don't optimize code unless you have to (you almost never will)
o Fixing your algorithm is almost always the solution
o Otherwise, running optimizing compiler is usually enough

