
1

Processes

CS 217

Operating System

• Supports virtual machines
� Promises each process the illusion of

having whole machine to itself

• Provides services:
� Protection
� Scheduling
� Memory management
� File systems
� Synchronization
� etc.

Hardware

OS Kernel

User
Process

User
Process

2

What is a Process?

• A process is a running program with its own …
� Processor state

» PC, PSR, registers
� Address space (memory)

» Text, bss, data,
heap, stack

Hardware

OS Kernel

User
Process

User
Process

Operating System

• Resource allocation
� Sharing
� Protection
� Fairness
� Higher-level abstractions

• Common strategies
� Chop up resources into small pieces and

allocate small pieces at fine-grain level
� Introduce level of indirection and

provide mapping from virtual resources to physical ones
� Use past history to predict future behavior

Hardware

OS K ernel

User
Process

User
Process

3

Example: Process Scheduling

• We have a single physical CPU and
a whole lot of processes/jobs to run

� Which process do we run next?
� For how long do we run it?

• Solution 1:
� Run each of them to completion in

first-come first-served order

Process

1

2

3

4

5

Time

10

29

3

7

12

Average wait time of processes: (0+ 10+ 39+ 42+ 49)/ 5 = 28

CPU-bound
processes

CPU-bound
processes

Example: Process Scheduling

• We have a single physical CPU and
a whole lot of processes/jobs to run

� Which process do we run next?
� For how long do we run it?

• Another solution:
� Run them to completion in shortest-first order

Process

1

2

3

4

5

Time

10

29

3

7

12

Average wait time of processes: (0+ 3+ 10+ 20+ 32)/ 5 = 13

CPU-bound
processes

CPU-bound
processes

4

CPU-I/O Burst Cycle

• Typical execution of process:
l oad
add
st or e
r ead f r om f i l e

wai t f or I / O

st or e
i ncr ement i ndex
wr i t e t o f i l e

wai t f or I / O

l oad
add
st or e
r ead f r om f i l e

wai t f or I / O

. . .

CPU Burst

Wait for I/O

Wait for I/O

CPU Burst

Most processes are not CPU-boundMost processes are not CPU-bound

CPU-I/O Burst Cycle

• Schedule CPU burst for process B
while process A is waiting for I/O

� Better utilize CPU

CPU CPU CPUI/O I/O I/OA:
CPU CPU CPUI/O I/O I/OB:

5

Time Slicing

• Divide up time into quantums
� Schedule quantums, not complete jobs
� Schedule another process if perform I/O
� Preempt process at end of quantum

• Motivations
� CPU-I/O Burst Cycle
� Interactive response

Process

1

2

3

4

5

Time

10

29

3

7

12

1 2 3 4 5 1 2 3 4 5 1 2 4 5 1 2 4 5 1 2 5 2 5 2 2 2 2 2 2 2

T
im

e
S

lic
in

g

15 32 36 44 61

Life Cycle of a Process

• Running: instructions are being executed

• Waiting: waiting for some event (e.g., i/o finish)

• Ready: ready to be assigned to a processor

New Ready Running Halted

Waiting

6

Context Switch

Process Control Block

• For each process, the kernel keeps track of ...
� Process state (new, ready, waiting, halted)
� CPU registers (PC, PSR, global, local, ...)
� CPU scheduling information (priority, queues, ...)
� Memory management information (page tables, ...)
� Accounting information (time limits, group ID, ...)
� I/O status information (open files, I/O requests, ...)

7

Fork

• Create a new process (system call)
� child process inherits state from parent process
� parent and child have separate copies of that state
� parent and child share access to any open files

pi d = f or k() ;

i f (pi d ! = 0) {

/ * i n par ent * /

. . .

}

/ * i n chi l d * /

. . .

Fork
• Inheritted:

� user and group IDs
� environment
� close-on-exec flag
� signal handling settings
� supplementary group IDs
� set-user-ID mode bit
� set-group-ID mode bit
� profiling on/off/mode status
� debugger tracing status
� nice value
� stdin
� scheduler class
� all shared memory segments
� all mapped files
� file pointers
� non-degrading priority
� process group ID
� session ID
� current working directory
� root directory
� file mode creation mask
� resource limits
� controlling terminal
� all machine register states
� control register(s)

• Separate in child
� process ID
� address space (memory)
� file descriptors
� active process group ID.
� parent process ID
� process locks, file locks, page locks,

text locks and data locks
� pending signals
� timer signal reset times
� share mask

8

Exec

• Overlay current process image with a specified
image file (system call)

� affects process memory and registers
� has no affect on file table

• Example:
execl p(“ l s ” , “ l s” , “ - l ” , NULL) ;

f pr i nt f (st der r , “ exec f ai l ed\ n”) ;

ex i t (1) ;

Exec (cont)

• Many variations of exec
i nt exec l p(const char * f i l e,

const char * ar g, . . .)
i nt exec l (const char * pat h,

const char * ar g, . . .)
i nt execv(const char * pat h,

char * const ar gv[])
i nt exec l e(const char * pat h,

const char * ar g, . . . ,
char * const envp[])

• Also execve and execvp

9

Fork/Exec

• Commonly used together by the shell
. . . par se command l i ne . . .

pi d = f or k())

i f (pi d == - 1)

f pr i nt f (s t der r , “ f or k f ai l ed\ n”) ;

el se i f (pi d == 0) {

/ * i n chi l d * /

execvp(f i l e, ar gv) ;

f pr i nt f (s t der r , “ exec f ai l ed\ n”) ;

}

el se {

/ * i n par ent * /

pi d = wai t (&st at us) ;

}

. . . r et ur n t o t op of l oop . . .

Wait

• Parent waits for a child (system call)
� blocks until status of a child changes
� returns pid of the child process
� returns –1 if no children exist (already exited)

pi d_t wai t (i nt * s t at us) ;

10

System

• Convenient way to invoke fork/exec/wait
� Forks new process
� Execs command
� Waits until it is complete

i nt syst em(const char * cmd) ;

• Example:

i nt mai n()
{

syst em(“ echo Hel l o wor l d”) ;
}

Summary

• Operating systems manage resources
� Divide up resources (e.g., quantum time slides)
� Allocate them (e.g., process scheduling)

• A processes is a running program with its own …
� Processor state
� Address space (memory)

• Create and manage processes with ...
� f or k
� exec
� wai t
� syst em

}Used in shell

