Processes

CS 217

[

Operating System

» Supports virtual machines

o Promises each process the illusion of
having whole machine to itself

* Provides services:
o Protection User
Scheduling Process

[o]

o Memory management
o File systems OSKernd
o Synchronization
o etc.
Hardware

p
What is a Process?

e A process is a running program with its own ...
o Processor state
» PC, PSR, registers
o Address space (memory)
» Text, bss, data,

User User
heap, stack
Process | | Process
OSKerne
Hardware
J
-
Operating System
» Resource allocation Ule=r U=y
o Sharing Process | | Process
o Protection
. OSKernel
o Fairness
o Higher-level abstractions
Hardware

« Common strategies
o Chop up resources into small pieces and
allocate small pieces at fine-grain level
o Introduce level of indirection and
provide mapping from virtual resources to physical ones
o Use past history to predict future behavior

e N
Example: Process Scheduling ‘gg:;
 We have a single physical CPU and Frocesd s
a whole lot of processes/jobs to run 1 | 10

o Which process do we run next? 2 239
o For how long do we run it? CPU-bound 4 7
_ processes 5 12
» Solution 1:

o Run each of them to completion in
first-come first-served order

“ process | process 2

10

process
4

3

process 5

O process

~

49 61

oy
5]

Average wait time of processes: (0+ 10+ 39+ 42+ 49)/ 5 =28

K

Example: Process Scheduling

» We have a single physical CPU and Frocesd e
a whole lot of processes/jobs to run 1 | 10

o Which process do we run next? ——

o For how long do we run it? CPU-bound | [2 7
processes 5 12

e Another solution:

process | process 2 ;m prn:-\‘w process 3
&
10 39 42 49 61
Zen [process 4| process | process § process 2
3 10 20 32 ol

Average wait time of processes: (0+ 3+ 10+ 20+ 32)/5=13

[

CPU-I/O Burst Cycle

« Typical execution of process:

| oad

add
add - CPU Burst
read fromfile

wait for 1/0 - Wait for 1/10

store
i ncrement i ndex - CPU Burst

wite to file

wait for 1/0 - Wait for 1/10

| oad

add

store

read fromfile

wait for 1/0O

Most processes are not CPU-bound |

J

[

CPU-1/O Burst Cycle

» Schedule CPU burst for process B
while process A is waiting for I/O
o Better utilize CPU

A_ CPU /0O CPU 110 CPU 110

B: CPU /O CPU lfe} CPU I}

K

Time Slicing

 Divide up time into quantums Sroeeed TTe
o Schedule quantums, not complete jobs 1 10
o Schedule another process if perform 1/0O
o Preempt process at end of quantum

o wn
~

* Motivations
o CPU-I/O Burst Cycle
o Interactive response

N
N
N
N
N
N
N

5(1|2|5|2|5

Time
Slicing
|_\
N
w
N
6]
=
N
[08)
N
ul
[E=Y
N
N
ul
|_\
N
=

K

Life Cycle of a Process

* Running: instructions are being executed
» Waiting: waiting for some event (e.g., i/o finish)

* Ready: ready to be assigned to a processor

R,
N
\‘J

[

Context Switch

user program A operating user program B
svstem

interrupt vr SVC

cxh.-n!ingl //—\
o |

SOVE registers]

. i = idle
.
[reload rcgm
> idlke Pl executing
interrupt or SVC
| save registers
~ idle

fni .u.sl '\/

[

Process Control Block

» For each process, the kernel keeps track of ...
o Process state (new, ready, waiting, halted)

CPU reqisters (PC, PSR, global, local, ...)

CPU scheduling information (priority, queues, ...)

Memory management information (page tables, ...)

Accounting information (time limits, group ID, ...)

I/O status information (open files, 1/0O requests, ...)

o

o

o

o

o

/

Fork

i

» Create a new process (system call)
o child process inherits state from parent process
o parent and child have separate copies of that state
o parent and child share access to any open files

pid = fork();
if (pid!=0) {
/[* in parent */

}
/* in child */

/

Fork

* Inheritted:

o user and group IDs
environment
close-on-exec flag
signal handling settings
supplementary group IDs
set-user-ID mode bit
set-group-ID mode bit
profiling on/off/mode status
debugger tracing status
nice value
stdin
scheduler class
all shared memory segments
all mapped files
file pointers
non-degrading priority
process group ID
session ID
current working directory
root directory
file mode creation mask
resource limits
controlling terminal
all machine register states
control register(s)

© 000 0000000000000 0000 000

« Separate in child
oprocess ID
oaddress space (memory)
o file descriptors
o active process group ID.
o parent process ID
o process locks, file locks, page locks,

text locks and data locks

o pending signals
otimer signal reset times
o share mask

/

Exec

» Overlay current process image with a specified
image file (system call)
o affects process memory and registers
o has no affect on file table

« Example:
execl p(“ls”, “lIs”, “-17, NULL);
fprintf(stderr, “exec failed\n”);
exit(1);

/

Exec (cont)

* Many variations of exec
i nt execl p(const char *file,

const char *arg, ...)
i nt execl (const char *path,
const char *arg, ...)

i nt execv(const char *path,
char * const argv[])
i nt execl e(const char *path,
const char *arg, ...,
char * const envp[])

* Also execve and execvp

[

Fork/Exec

« Commonly used together by the shell
parse conmand |ine ..
pid = fork())
if (pid==-1)
fprintf(stderr, “fork failed\n”);
else if (pid == 0) {
[* in child */
execvp(file, argv);
fprintf(stderr, “exec failed\n”);

}

el se {

/[* in parent */

pid = wait(&status);
}

return to top of loop ..

[

Wait

» Parent waits for a child (system call)
o blocks until status of a child changes
o returns pid of the child process
o returns —1 if no children exist (already exited)

pidt wait(int *status);

K

System

« Convenient way to invoke fork/exec/wait
o Forks new process
o Execs command
o Waits until it is complete

int systen(const char *cnd);
« Example:

int main()

systen(“echo Hello world”);

K

Summary

» Operating systems manage resources
o Divide up resources (e.g., quantum time slides)
o Allocate them (e.g., process scheduling)

» A processes is a running program with its own ...
o Processor state
o Address space (memory)

» Create and manage processes with ...
o fork
o exec Used in shell
o wai t
o system

10

