
NPSNET: Constructing A 3D Virtual World
Michael J. Zyda*, David R. Pratt, James G. Monahan, Kalin P. Wilson

Naval Postgraduate School
Department of Computer Science
Monterey, California 93943-5100

zyda@trouble.cs.nps.navy.mil
*contact author

Abstract

The development of 3D visual simulation systems on inexpen-
sive, commercially available graphics workstations is occurring to-
day and will be commonplace in the near future. Such systems are
being constructed to move through and interact with 3D virtual
worlds. There are a variety of goals for these systems, including
training, planning, gaming and other purposes where the introduc-
tion of the physical player may be too hazardous, too expensive or
too frivolous to be tolerated. We present one such system, NPS-
NET, a workstation-based, 3D visual simulator for virtual world ex-
ploration and experimentation.

Virtual World Systems

The attention to virtual world systems is particularly appealing
to the researchers of the Graphics and Video Laboratory of the De-
partment of Computer Science at the Naval Postgraduate School as
our focus for years has been on the production of prototype 3D vi-
sual simulation systems on commercially available graphics work-
stations {9.18-25].3D visual simulation systems have many of the
characteristics of virtual world systems in that their purpose has
long been for visualizing and interacting with distant, expensive or
hazardous environments. If we turn off some of our physical mod-
eling, we can even simulate nonexistent 3D environments, so we
feel quite comfortable under the virtual worlds umbrella.

We do not study the construction of our 3D visual simulators on
specially-designed graphics hardware. We instead assume that such
hardware is available from commercial workstation manufacturers.
We build 3D visual simulators on inexpensive graphics worksta-
tions instead of specially-designed hardware because of our obser-
vation that the performance numbers from the manufacturers are so
suggestive.

NPSNET: Overview

The Graphics and Video Laboratory has been developing low-
cost, three-dimensional visual simulation systems for the last six
years on Silicon Graphics, Inc. IRIS workstations. The visual sim-
ulators developed include the FOG-M missile simulator, the VEH
vehicle simulator, the airborne remotely operated device (AROD),
the Moving Platform Simulator series (MPS-1, MPS-2 and MPS-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commerciaf advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
o 1992 ACM 0-89791.471-6/92/0003/0147...S1.50

3). the High Resolution Digital Terrain Model (HRDTM) system,
the Forward Observer Simulator Trainer (FOST). the NPS Autono-
mous Underwater Vehicle simulator (NPSAUV), and the Com-
mand and Control Workstation of the Future system (CCWF).

Our current visual simulation efforts are on tbe NPSNET SYS-

tern. a workstation-based, 3D visual simulator that utilizes SIM-
NET databases and networking formats. The DARPA-sponsored
SIMNBT project had the goal of developing a low-cost tank simu-
lator that provided a “70% solution” to the tank-war-gsming prob-
lem [17].

Unfortunately, the SIMNET system delivered has its graphics
hardware and software suffering from a rigid specification based on
1983 graphics technology and was not designed to take advantage
of ever faster and more capable graphics hardware and processor
power. Low-cost for the project meant $2SOK per station. Instead,
the contractor designed its own graphics platform, its own process-
ing system, and wrote software that worked only on that platform.
In NPSNBT, we want to be somewhat more flexible BUT still in-
teract with the DARPA investment.

The NPSNET system is an attempt to explore the SIMNET do-
main using a readily available graphics workstation, the Silicon
Graphics, Inc. IRIS workstation in all its incarnations (Personal
IRIS, GT, GTX, VGX...), instead of the contractor produced hard-
ware. Our starting point is that we assume databases and network
packet formats in a form similar to those utilized by the actual SIM-
NET system but allow the flexibility for continuing evolutions in
efficiency.

NPSNET is a real-time, 3D visual simulation system capable of
displaying vehicle movement over the ground or in the air. Displays
show on-ground cultural features such as roads, buildings, soil
types and elevations. The user can select any one of 500 active ve-
hicles via mouse selection and control it with a six degree of free-
dom spaceball or button/dialbox. In between updating events, all
vehicles are &ad reckoned to determine their current positions.
Speed in three dimensions and the location of the vehicle can accu-
rately be predicted as long as the speed or direction of the vehicle
does not change. Vehicles can be controlled by a prewritten script,
or can be driven interactively from other workstations, as the sys-
tem is networked via Ethernet. Additionally, autonomous players
can be introduced into the system via a programmable network
“harness” process (NPSNET-HARNESS).

As obvious from the above overview, NPSNET is in many ways
a departure from the goals of SIMNET. We can “push the enve-
lope” of real-time, workstation-based virtual reality while provid-
ing a worhtation-based SIMNET node. We present our plan for the
overall NPSNET effort in the following sections to provide an un-
derstanding of what is required to construct such a system.

147

SIMNET Database Display Work

The frost effort in any virtual world development is obtaining
the data that represents the world to be modeled. For 3D visual sim-
ulations, this usually begins with a large 2D grid of elevation data
that is turned into a 3D terrain carpet.

Once the terrain carpet has been extracted and displayed. atten-
tion then turns to on-ground cultural features and 3D vehicle icons.
On-ground cultural features include roads, forest canopies, trees,
building, corrals and other stationary objects. Many cultural fea-
tures are provided in 2D and have to be projected onto the terrain.
Significant work must be done to accomplish this. There is the pre-
processing work to turn 2D linear features like roads into 3D, car-
rectly projected onto the terrain carpet. Rejecting planar 3D road
segments onto the terrain carpet is also not easy. The problem is that
it requires projecting the road polygons onto the same place as the
terrain carpet. Under z-buffering, the standard hidden surface elim-
ination method for graphics workstations, coplanar, coincident
polygons cause what is known as z-buffer fearing [11. We see scan
lines alternately colored with the underlying terrain color and the
road color. We solve this by drawing the underlying terrain polygon
first into the RGB planes with z-buffering on but modifications to
the z-buffer off. We then draw the road overlay. Modifications to
the RGB planes are then turned off and the underlying terrain poly-
gon is again drawn this time with modifications to the z-buffer on.
This procedure must be done for all coplanar features in the system.
It requires that underlying layers be drawn multiple times and in an
ordered fashion. The visual simulator must handle this in a general
fashion. It is just part of the complexity of building such systems.

3D vehicle ic0n.r are the next consideration in constructing our
virtual world system. We call them 3D icons in that the goal is not
realism but rather low resolution indicators of players on the terrain.
Low resolution means whatever level of detail the user of the final
system is willing to live with.

Hierarchical Data Structures
for Real-Time Display Generation

If the modeled world is simple, just blasting all the polygons
through the graphics pipeline ought to get satisfactory display re-
sults. Since NPSNET uses data from the SIMNET Database Inter-
change Specification (SDIS) for an actual 5Okm x 5Okm terrain area
of Fort Hunter-Liggett, California and has a resolution of one data
point for every 125 meters [6]. thii will not do.

Hierarchical data structures are the heart of any complex real-
time, 3D visual simulator. Such data structures, in conjunction with
viewing information, provide for the rapid culling of polygons com-
prising the terrain carpet, the cultural features, the 3D icons and any
other displayable objects. The purpose of this operation is to mini-
mize or reduce the flow of polygons through the graphics pipeline
of the workstation’s hardware. A classic reference to understand
this problem in more detail is [2]. The culling operation is per-
formed through the traversal of a data structure that spatially parti-
tions the displayable data. The appropriate hierarchical data struc-
ture to use is problem domain dependent. As we have adopted NPS-
NET to additional tasks, we have had to modify and change our data
structure.

Expanding the Terrain Area

In order to increase performance, the initial NPSNET dataset
has been divided into 2500 text files based on the one kilometer
standard of the military “grid square” with each file containing data
for one square kilometer. These were preprocessed into binary for-
mat and three additional lower resolutions generated (250.500 and
1080 meter), together with till polygons for each level. The final

form of the dataset is 2500 binary files. each containing a multiple-
resolution (4 level) description of the terrain for one square km,
stored as a heap-sorted quadtree [7,12].

The fmal format for the binary terrain data files is designed for
fast access using the C function Fe@). All polygon descriptions
are stored in memory-image formaf therefore, no data conversion
has to be done during paging. The 2500 files resulting from prepro-
cessing contain:

P Count of polygons in each node of full four level quadtree (85
tOtid).

Cl Total polygon descriptions in the file.
P Multi-resolution description of terrain in this square kilometer

stored in quadtree heap-sort order, lower resolutions first (Fig-
ure 1).

125 Meter Level

I Figure 1 - Multiple Resolution Quadtree

As the fmal dataset is too large to store in main memory at one
time, and we do not wish to limit the simulation to some smaller
area, paging terrain data through a dynamic algorithm is required.

A 16km x 16km active area was chosen based on considerations
for memory size of available workstations, frame rates, required
field of view and desired range of views. This amount of terrain data
is in main memory at any given time and available for rendering.
Sixteen kilometers allows a seven kilometer field of view in all di-
rections for immediate rendering with one kilometer acting as a
buffer to ensure terrain is fully paged in before attempting to render
it (Figure 2).

Lc;c
Field of View

1oOq m square
senmg as center

1200x1200 m
bounding box
with driven vehicle

_ _ _ _ _ _ _ _ . _ _ . _ _ _ _ . _ +s bma;l Area Extending

Figure 2 Active Area of Terrain in NPSNET

148

On multi-processor workstations, the simulator does not wait
for additional terrain to be Paged in. Instead, the additional CPUs
are used to page in the terrain in parallel.

Terrain Paging Algorithm

When the simulator is initialized, the driven vehicle is centered
on a 16 x 16 active area. The indices of the center one kilometer
square containing the driven vehicle become the notional center.
Data is loaded into the appropriate elements of a 50 x 50 array, and
a bounding box is established around the driven vehicle (centered
on the index of the center square). When the driven vehicle reaches
the bounding box in any direction, memory space is freed in the di-
rection opposite of travel, terrain is paged in the direction of travel,
and the bounding box moves.The size of the bounding box can be
adjusted as required by vehicle speed/turn rate characteristics. Ter-
rain paging is independent of the hierarchical data structure imple-
mented.

Terrain Rendering

Terrain rendering involves several steps in NPSNET:
Cl Determine which 1OOOm x 1OOOm squares are actually in the

field of view.
Cl Determine resolution within each 1OOOm x 100&n square

(there may be at most two resolutions), including which fill
polygons are needed.

Cl Render the terrain.

Two algorithms are involved. One checks to see if a polygon is
within the field of view by calling a procedure that checks for the
intersection of a point (each point of the polygon) and a polygon
(the triangle composing the field of view) [3]. The other determines
the resolution, essentially which nodes of the quadtree to render, by
checking the intersection of nodes with concentric circles corre-
sponding to ranges of the resolutions [131. The circle-rectangle and
point-polygon intersection algorithms are applied repetitively to
render only terrain within the field of view and at the appropriate
resolution levels. Figure 3 depicts multi-resolution within the field
of view. NPSNET is graphics bound. Therefore, the computational
expense of the above algorithms is better than rendering terrain not
actually in the field of view.

16 x

Resolution

q loO()m

500m

H250m

n 125 m

16 Active Area Field of View

/

Figure 3 - Multi-Resolution Rendering

Implementation of the above has resulted in a doubling of the
performance of the simulation over high resolution rendering alone.
However, performance when large numbers of objects (trees. vehi-
cles) are present in the viewing area does not change.

NPSOFF: Overview

The development of interesting virtual world systems requires
the modeling of many different graphical objects. How these ob-
jects are represented in the system plays a major part in determining
the capabilities and efficiency of the system. We use a simple, flex-
ible object description language to model graphical and some non-
graphical aspects of our objects called NPSOFF.

NPSOFF is a language system that consists of “tokens” that rep-
resent graphical concepts. These tokens are combined in an ASCII
file to represent an object. The object can then be referenced by an
application in an abstract manner. The application does not need to
know the details of how the object is composed. The level of ab-
straction that NPSOFF Provides offers numerous advantages that
are discussed below. NPSOFF objects can have varying levels of
complexity to represent a wide range of graphical objects and envi-
ronments. NPSOFF also serves as a standard for application devel-
opment. This makes general purpose tools plausible and extremely
useful.

Functional Description

The NPSOFF language can be broken down into tokens. In ear-
ly versions of the language, the tokens corresponded almost one for
one to CL functions. Later versions have added more abstraction
and flexibility. The language tokens simplify the interface to the CL
library by labeling components and help encapsulate some of its
complexity.

NPSOFF extends the CL interface by allowing many system
settings to be named. Naming system definitions allows us to build
libraries of commonly used settings like materials and textures.

NPSOFF tokens generally belong to one of three categories:
definition, display or characteristics/composition. The definition
tokens define graphics system settings. Defmition tokens define
lights (normal and spot), lighting models (normal and two-sided),
materials, textures, and colors. DeFmition tokens are named and
stored in tables for later access.

Display or execution tokens make up the bulk of NPSOFF. Dis-
play tokens represent a change in graphics system state or graphics
primitives. They are stored in a sequential display list in the order
that they appear in an NPSOFF file. Example tokens that change
the system state are: setmaterial. setlight. settexture, etc. Each of
these tokens has a name argument that corresponds with an earlier
definition. In the case of set&h& the named light is associated with
one of seven possible light numbers [141. These state tokens make
it easy to manipulate the graphics pipeline. Complex lighting and
shading effects can be done with NPSOFF in a simple and straight-
forward way.

The graphics primitives used in NPSOF’F are: polygons, surface
(Polygon with vertex normals), triangular mesh and lines. Addition-
al display tokens perform manipulations of the system matrix stack.
NPSOFF objects and components of objects can be transformed
within the object definition file. The tokens lo&nut&, mulhna-
trix, pushmatrix. popmatrk, rotate, scale and transliate define
stack manipulations.

The thiid category of NPSOFF tokens allow the user to defme
object characteristics and composition. This allows a high level of
abstraction and supports complex graphics techniques. Two of the
main abstractions are composite objects and Polygon decaling. NP-

149

SOFF objects can be named and contain nested object definitions.
The nested definitions can contain any display tokens. This struc-
ture allows multiple related objects to be treated as a single object
for graphics display. It also minimizes the duplication of primitive
definitions. Objects are defied with the defobjecf token and dis-
played with the cufii#ect token. This structure is flexible and use-
ful for building complex objects from simpler sub-objects.

Using an NPSOFF object is also simple. Essentially the user
needs to use only three function calls to access and display an ob-
ject. There are many more programmatic entrypoints to NPSOFF
but many of them deal with in-memory manipulation that is not
needed for standard use. They are used primarily by tools that build
or manipulate NPSOFF objects.

Physical Modeling Support

In the past, simulations developed in the Graphics and Video
Laboratory have each handled physically-based modelling (PBM)
independently and internally. The latest extension of the NPSOFF
system is an object-oriented PBM system [8]. These enhancements
give NPSOFF objects physical characteristics and provide mecha-
nisms to control an object’s motion given a list of internal and ex-
ternal forces on the object, Objects are handled in an enclosed ref-
erence called the “environment”. All objects that participate in the
NPSOFF PBM system are members of the environment.

TheNPSOFF PBM system models object rigid-body dynamics
using a Newtonian framework. An object can be given many phys-
ical properties using the defphysics token. These properties include
the object’s initial location and location constraints in the environ-
ment, initial orientation and orientation constraints, initial linear
and angular velocities and constraints on each, the object’s mass
and center of mass. the object’s ability to absorb forces (elasticity),
the dimensions of a bounding volume and a local viewpoint for the
object. Each object can also use its own system of measurement.
The defrtnits token allows the user to specify the units of measure-
ment for dimensions, force magnitude and mass. Thii capability
was incorporated to accommodate the use of object models from
various sources. The PBM system uses reasonable constant or cal-
culated defaults for all physical characteristics so none of the prop-
erties is required to be present when object physical characteristics
are defined.

Forces are defined and added to an object’s force list with the
defforce token. Two types of forces are supported: deforming and
non-&forming. Deforming forces are used for object explosions
and bending. Nondeforming forces are used to alter an objects lin-
ear and angular velocities. Forces can be specified as awake or
asleep. This allows the selective application of previously defined
forces. The characteristics of a force defined withdefforce are: type
(deforminaon-deforming), origin relative to object center and or-
igin constraints, force direction vector, magnitude and magnitude
constraints and force state (asleep/awake).

The run-time interface of the NPSOFF PBM system is simple
and flexible. Once the PBM environment has been initialized, the
user can add or delete objects from the environmens add and mod-
ify global forces, modify object physical characteristics, add and
modify object force characteristics and modify object and force
states. The environment is processed once each display cycle. The
processing involves resolving forces, calculating object states and
displaying the objects. The NPSOFF PBM system provides us with
a simple environment to model object dynamics and interaction.
This is one of our first steps to add more physical reality to our ap-
plications.

Advantages

NPSOFF provides many advantages to the researchers in the
NPS Graphics and Video Laboratory:

Q NPSOFF allows an application independent description of
graphical objects. Objects can be designed and maintained by
general purpose tools. Collections of objects can be built and
shared with other reseachers.

Cl NPSOFF adds a level of abstraction that greatly simplifies ap-
plication development. Also, by having a large collection of
common objects, developers can concentrate on how objects
should be used rather than designing and rendering the objects.

Ci NPSOFF provides a simple, object oriented, run-time interface
to an object. Functions such as read-object(), display-object0
and delete-object0 all operate on individual objects in memo-
ry. Many functions are provided so flexible manipulations are
possible.

D The stand-alone, reusable nature of NPSOFF objects encourag-
es the use of common libraries of definition tokens such as ma-
terials and textures.

Support Tools

The wide use of NPSOFF in our laboratory has led to a variety
of tools to aid in the design and maintenance of NPSOFF objects.
These tools include: The OFF calculator, NPSME - a material edi-
tor, NPSTE - a texture editor, NPSICON - a model builder and
NPSMOVER - a physically based design editor.

The OFF calculator allows in memory manipulation of NP-
SOFF objects using a simple command line interface, Using the
OFF calculator, objects can be transformed (transformation applied
to all primitives), primitives can be added to an object, graphical
objects (spheres. boxes, etc.) can be added to an object and objects
can be concatenated

NPSME is a material editor that helps manage libraries of ma-
terials [26]. It reads and writes material definitions. Material defini-
tions can be selected from the library for viewing and editing. The
material editor helps us to maintain a large collection of material
definitions used by NPSOFF objects in our applications. The ability
to interactively design and modify material definitions is very im-
portant to rapid application development.

NPSTE is a texture editor that helps manage libraries of NP-
SOFF texture definitions [26]. NPSTE can use images in many for-
mats as textures. Portions of an image can be copied and used as a
texture image. Textures can be viewed on any NPSOFF object us-
ing either the texture coordinates specified in the object or automat-
ically generated coordinates using the GL function rexgeM) 1141.
Textures can be edited using a simple pixel editor. Finally, a texture
definition can be saved in a library of textures and the library saved
as an NPSOFF file. The texture editor lets developers interactively
create, select and view textures independent of a developing appli-
cation.

NPSICON is an interactive object design tool [lo]. NPSICON
lets a developer design or modify NPSOFF objects using a set of
predefined building blocks. NPSICON is designed to be used pri-
marily to build vehicular models. Objects can be edited and trans-
formed in many ways and then saved to an NPSOFF file. NPSICON
allows rapid prototyping of vehicular objects for use in applica-
tions. It also allows developers to modify existing models quickly
and easily.

NPSMOVER provides an environment for users to design and
test physical dynamics of NPSOFF objects [8]. NPSMOVER reads
any NPSOFF file and assigns default physical characteristics if not
present. The user can then adjust all physical characteristics of the
object. Forces can be defined and ad&d to an object’s force list us-
ing interactive controls. Once the object’s initial conditions, con-
straints and characteristics are set and the forces acting on the object

150

are specified, the dynamics can be “turned on”. The user can ob-
serve the effects of the forces and make necessary adjustments.
Once the user is satisfied, the object can be saved to an NPSOFF file
with all the needed tokens. The WSMOVER tool provides a sim-
ple, interactive environment to view and adjust an object’s basic dy-
namic behavior.

NPSOFF Future Directions

Current and future projects at NPS are working to extend and
improve NPSOFF including support for defining inter-object rela-
tionships and constraints. This would allow the composite object
structure to be extended to where each subobject has physical prop
erties and affects the behavior of the whole object. Also the notion
of linked objects will be explored in the context of NPSOFF. This
will allow the realistic modeling of such things as vehicle controls
(e.g. aircraft stick movement changes control surface which chang-
es forces on whole aircraft).

Another area that future research will address is animation sup
port within NPSOFF. Support for continuously animated portions
of an object (vehicle antennae) or constraint management of sub-
objects (doors, arms, etc.) would be very useful to our researchers.
Such a system would benefit from the standardization that NPSOFF
provides and offer much more capabilities to developers.

The NPSOFF system is object-oriented in its design and use but
is implemented in anon-object oriented language. Modifying or ex-
tending the current system is time consuming and error prone. We
are currently redesigning NPSOFF to be truly object-oriented and
implementing it in C+t. The main benefits of moving to an object-
oriented implementation will be increased extensibility through in-
heritance and polymorphism and better maintainability.

Collision Detection

In earlier versions, NPSNET did not detect nor respond to vehi-
cle collisions. Without collision detection and response, the realism
was poor. Even with texturing, environmental effects and realistic
looking vehicles, the virtual world falls apart the first time one ve-
hicle drives through another. A possible solution to this problem
would be to prevent interpenetrations by bouncing objects off of
each other after any contact, but this is rarely accurate. Another pos-
sible solution is to destroy the objects involved in collisions. A third
option is to combine these two solutions along with varying stages
of damage to involved objects depending upon the physical charac-
teristics of the involved objects. The current version of NPSNFT
detects and responds to collisions between objects in real-time. De-
tection is sufficiently fast to allow the time needed to respond pop
erly. Response time is dependent upon the level of physically-based
modeling.

Collisions with Fixed Objects

The algorithm for collisions with fixed objects constantly
checks moving vehicles to determine if a collision has occurred.
The position of the moving vehicle is updated constantly. Conse-
quently, as soon as a vehicle is moved and its position is updated, it
is checked for a collision, In order to maintain a real-time speed, the
scope of the collision detection is severely limited. A collision with
fixed objects is checked only if the moving vehicle is below a
threshold elevation. All fiied objects are in some way attached to
the terrain and thus below that threshold elevation. If an object is
below that elevation, NPSNET runs through a linked list of fixed
objects which are attached to the current gridsquare.

Collisions with Moving Objects

A collision with other moving objects is more complicated
since any other moving vehicle or object has the potential for col-
liding with the vehicle we are checking. The potential exists for
checking up to 500 vehicles and any of their expendable weapons.
Consequently, the scope of the collision detection range has been
limited in several ways.

As soon as each vehicle is moved, its position is checked
against the position of the neighboring vehicles. If the X or Z posi-
tion of any other vehicle is within 100 meters of the checked vehicle
then those two vehicles are sent to the second level check. At the
second level check, the distance between the two vehicles is calcu-
lated. If this distance is less than the combined radii of the two ve-
hicles, then a collision has occurred and the third level collision
check is done. A rudiientary form of ray tracing determines the ac-
tual point of collision.

If worst case numbers are used to determine the implicit range
limitations of all vehicles, it can be shown why this culling is fairly
accurate. Reasonable speed limitations of the various types of vehi-
cles are used to calculate worst cases for each (Table 1). Conse-
quently, the movement across more than two gridsquares within
one tenth of a second, one frame, is unlikely.

Table 1: VEHICLE MOVEMENT LIMITATIONS

Collision detection is accomplished by determining if one ob-
ject’s bounding sphere has interpenetrated another. The radius used
in the spherical check is the maximum distance from the center of
the object to the furthest outer vertex. In the colliiion response par-
tion of the system. the actual object’s penetration point is deter-
mined. A slightly smaller value than the actual radius of the object
is used for the radius. This produces a more realistic collision pos-
sibility since it increases the likelihood of an actual collision of the
checked objects and not just their spheres. Once the collision has
been detected, the extent of damage and collision response are de-
termined.

Collision Response

Collision response is handled by a function which takes into ac-
count speed and angle of impact, mass of the objects involved, ex-
plosive potential, resistance to destruction, moldability of the ob-
jects, rigidity and fabricated spring forces which determine the
bouncing-off effect and likelihood of survivability. Each of these
factors is weighted in order to provide as realistic an effect as pos-
sible while maintaining the environment in real-time.

Moving Objects

In the case where two moving objects impact, all of the physi-
cally-based modeling characteristics of each object must be consid-
ered. The collision point must be known to create realistic respons-
es in the involved objects. The collision point determines the point
for any type of bending, crumpling and molding. Moreover, if the
point of collision is part of a wall that is interconnected to several
other walls then there will have to be corresponding responses in
those interconnected walls. The only way to fmd the collision point
is through ray tracing.

151

The fist ray is shot from the center of a moving object towards
the center of an adjacent object to determine a possible point of col-
lision. This collision may simply be between the bounding spheres
of the two objects and not the actual objects themselves. The inter-
section between the first ray and the second object’s bounding
sphere is used to specify the direction of a second ray originating
from the adjacent object’s center.

The second ray determines if one of the object’s actual poly-
gons was penetrated. This second ray is the ray used in Haines’ al-
gorithm. This algorithm from Glassner [4] was adapted for use in
the collision point determination. It involves running through the
list of polygons that comprise the adjacent object and determining
if the second ray intersects the plane containing the polygon. If no
intersection is found once all of the polygons have been checked,
then only the spheres were penetrated and not the objects them-
selves.

Reactions

The proper response is performed by comparing the charactcr-
istics of two objects involved in the collision. For fixed objects, the
responses include several degrees of damage, based upon the speed
and mass of the colliding object. Up to three levels of damage plus
the original undamaged fixed object are available for display after
a collision. For mobile objects, the response depends upon the angle
of impact as well as the speed and mass of the two involved objects.
The mobile object reacts by either bouncing away or being de-
stroyed and exploding. In the special case of contact by munitions,
the only response is an explosion.The limited number of options
available for the response to the collision keep the response fast to
maintain the real-time criteria. The collision point and direction of
travel are passed to another module that handles physically-based
modeling of object movement. This function’s implementation can
be seen in [8].

SIMNET Networking Integration

SIMNET networking integration is part of our NPSNET efforts
on software structures for world modeling in that networking pro-
vides the locations and actions of other players in OUT visual simu-
lators. We use Ethernet and TCP/IP multicast packets of our own
design for the current NPSNET system. We are in the process of in-
tegrating the networking system with the SIMNET standard pack-
ets as the full description and documentation is now available. Thii
connection to SIMNET will provide players, weapons firing and
other state information with which we csn test our world modeling
efforts. At a later stage, we hope to examine some of the avaiIable
work on higher speed networks, such as FDDI, as it becomes com-
mercially available and relevant.

NPSNET-HARNESS Structure

The NPSNET-HARNESS process was developed to allow the
rapid integration of different components into the NPSNET simula-
tion system and in partial response to Ethernet’s speed and address-
ing limitations [151. The high level structure of the network harness
is shown in Figure 4. The harness is divided into two main sections,
the Network Daemon and the User Program Interface, which com-
municate via shared memory. The principle purpose of the Network
Daemon is to Provide low level data and network management sup-
port for user written NPSNET “player”programs. Player programs
developed by users are stand alone applications that provide specif-
ic world interaction functionality.

The User Program Interface consists of a set of routines that al-
low the programmer to interact with the network at a higher level of
abstraction. These functions include setting up the shared memory

space with the network daemon, creation of a network read key,
message formatting, and the actual reading and writing of network
messages.

Message Types

One of the interesting things about the Ethernet network is that
it is more efficient to have a few long messages rather then many
short messages[161. Thii influenced the creation of five message
types and formats.

The message types, NEWSTATMESS and DELSTATMESS,
are used when a a station enters the network and when it no longer
is an active player in the networked environment. These are used
solely as administrative messages and do not affect the appearance
of any vehicle.

user Program
Network Read

Interrupt E;;;agc Request for
Message

7
Shared Memory

Figure 4 Structure of the NPSNET Network Harness

1

1
One of the features of NPSNET is the capability of allowing the

user to change vehicles during the execution of the simulation. The
SWITCHh4ESS notifies all the other nodes on the network that the
user has changed vehicles. This does not affect the appearance of
any of the vehicles.

The UPDATEMESS is the largest message used in NPSNET
and it is also the most common, accounting for almost all the net-
work traffic. Before we discuss this message, the concept of the
state of the vehicle must be covered. As mentioned previously, the
vehicle’s position is updated only after a speed or direction change.
The tilt and roll of the vehicle can be derived from the location on
the terrain and need not be sent across the network. Additionally,
the orientation of the turret, the gun elevation, vehicle destruction,
and weapons firing all change the state of the vehicle. Whenever
any of these state parameters change, a message must be sent to up-
date the other network nodes.

Since it is more efficient to have a few long messages rather
then many short ones, we combined all of the vehicle state parame-
ters into a single message. This has the additional benefit of updat-
ing all of the vehicle parameters at the same time to ensure accurate
placement and orientation of the vehicle.

152

NPSNET-HARNESS Future Directions

Currently there are two major efforts underway concerning
NPSNET-HARNESS. The fust of these is the porting of the system
to Sun SPARC workstations. We envision providing the user a stan-
dard network interface for both the IRIS and Sun workstations. This
will allow the development of Autonomous Agents (AA) and Semi-
Automated Forces (SAF) that can interact with the vehicles that are
driven on the IRIS workstations. Our l&departmental Sun work-
stations would then serve as a distributed multiprocessor.

The second major effort is the utilization of the SIMNET Pro-
tocols [111. As shown in Figure 5, we plan on constructing an inter-
face between the User program and the Network Daemon to con-
vert the format of the protocols between the internal and external
protocol. This will later be extended to the DIS Protocols [S] as
well. The use of a translator will isolate the programmer born
changes in the protocols. Naturally, we will increase the number of
messages available to the user when we use the new protocols, but
the old message formats will remain.

I I Protocol Converter 1 1 Protocol Converter I

I
y /I&work Daemon

I

I

) Seril%K%ge
Network

Process
Receigoyezsage

A
Message

%%gi

Figure 5 Protocol Interface

Semi-Automated Forces

The current DARPA SIMNET system has a semi-automated
forces (SAF) component in it. The SAF system provides autono-
mous players to SIMNET when sufficient numbers of actual, inter-
active players are not available or affordable. The Graphics and
Video Laboratory has considerable experience in generating such
players as our visual simulation efforts have a close coupling to our
department’s artificial intelligence and robotics efforts [20.21]. We
are continuing those efforts and expanding that work to take advan-
tage of the available parallel processing capabilities of our worksta-
tiOIl!L

NPSNET-MES: Overview

Earlier versions of NPSNET used randomly guided vehicles to
populate the battlefield. These vehicles had very little intelligence
and were only capable of firing back at an attacker or running away.

It is not enough to have random vehicles moving about the battle-
field without a mission; we must populate the battlefield with com-
bat formations that act semi-autonomously as well. The NPSNET
Mobility Expert System (NPSNET-MES) provides realistic semi-
automated forces (SAF) to introduce sufficient numbers of un-
manned players into the system to make the simulation more chal-
lenging and exciting. NPSNET-MES consists of two components:
a path generation module and a vehicle controller module. The path
generation module determines the SAF route and mission based
upon the SAF controller input. The vehicle controller module uses
the programmable harness, NPSNET-HARNESS. to multicast data
packets via Ethernet to control the SAF vehicles during the simula-
tion. NPSNET-MES integrates SAF into an already existing net-
work simulator such that no changes are necessary to NPSNET.

Problem Description

One of the major objectives of our work is to determine the best
approach to integrate semi-automated forces into an already exist-
ing simulation. The following are the minimum capabilities of the
semi-automated forces: The SAF controller specifies a path that in-
cludes start and goal points with possible way points along the
route. The SAF must negotiate all known obstacles without hitting
them in a relatively optimal path. The SAF vehicles within a SAF
formation must follow the lead SAF vehicle such that they maintain
relative positions and do not collide with each other. The SAF con-
troller specifies the number of combat formations as well as the
number of vehicles, speed and type of each combat formation.
When a SAF vehicle is killed, it no longer moves. NPSNET-MES
integrates the SAF into the existing NPSNET without any change
to the system. Once the SAF controller determines the SAF prereq-
uisite information. NPSNET-MES makes that information avail-
able to NPSNET for use during the simulation. These basic consid-
erations drive the requirements for the NPSNET-MES prototype
system.

Integration with NPSNET

To get the desired results, NPSNET-MES is designed to act in
a stand alone mode. Thii means that NPSNET-MES integrates the
SAF into NPSNET by using the existing set of programmable net-
work harness routines, NPSNET-HARNESS. The main problem
separates into two distinct subsets: designing semi-automated forc-
es that can navigate and travel a specified path and transmitting the
information generated by the first part.

Path Generation Module

This module is a 2D map/interface that the SAF controller uses
to perform SAF vehicle placement and route selection. The SAF
controller is able to control the SAF parameters, such as number of
SAF formations, number of vehicles in each SAF formation, and
type of SAF vehicles and input a desired path with intermediate ren-
dezvous points as well as a speed for each path segment.

NPSNET-MES stores this information in a file available to the
vehicle controller module.The path selection criteria for this mod-
ule is not an optimal path, rather it is a relatively simple path that is
found quickly. This module generates a path based on a priori ob-
stacle information using a circle world.

Computational versus a priori Path Planning

The path generation module’s path generation algorithm uses a
modified breadth-first search of a bounding box rather than the
more traditional artificial intelligence approach of apriori generat-
ed paths because it is more efficient and less complex. The compu-

153

tational approach searches the bounding box, shooting a line be-
tween the start and goal to determine if the goal is visible from the
start. If the path has an obstacle, then the path finder is called recur-
sively until a path is found around obstacles enroute to the goal. The
NPSNET-MES path generation module algorithm bounds the
search area using the start and goal points to limit the search withim
a box.

An u priori path generation produces paths for the entire data-
base requiring a longer amount of time and more memory to store
those paths for quick access than a computational generation. The
recursive path planner grows in a linear fashion versus a non-linear
growth for the more traditional a priori method (Figure 6).

Computational Search a priori Search

Figure 6 Computational vs. a priori Search

Path Generation Module

The path generation module is the interface for NPSNET-MES
with NPSNET. This program places the generated paths in a sorted
linked list by ascending order of time. A path point time is a running
total lime for the vehicle from the start up to that point. Using the
system clock to maintain relative time, the paths are taken off a pri-
ority list. The NPSNET-HARNESS sends updated messages re-
flecting the new vehicle position, direction, and speed to NPSNET.
NPSNET receives the path data and the SAF vehicles respond to the
vehicle controller commands ensuring that the SAF vehicles stay on
track with the generated paths.

NPSNET-MES Results

NPSNET-MES provides a relatively efficient solution to fmd-
ing a good path for the SAF vehicles. The path found by the path
generation module does not attempt to find the best solution only a
good solution, since the human that it emulates usually only finds a
good solution when conducting path planning. The vehicle control
module provides the necessary interface between NPSNET-MES
and NPSNET so that the SAF forces travel as they would in real
life.The system provides a realistic friend or foe force on the simu-
lation battlefield. NFSNET-MES effectively integrates SAF into
NPSNET. This system is a prototype for research, therefore it has
many potential capabilities that can be added at a later time.

Path Generation Module Limitations

0 No dynamic path planning for the SAFs to react to other play-
ers during the simulation.

0 Produces only one cornbat formation type for the entire mis-
sion.

d Terrain slope considerations are not incorporated in the path
planning algorithm.

The most serious limitation with the system is the inability of
the SAF to react to other players in the simulation. The SAF mis-
sions are pre-set before the simulation begins and cannot be altered
once it commences. This was a design decision made at the outset
of the project. The deficiency can be corrected by incorporating a
local path generation capability within the vehicle controller mod-
ule. When a SAF comes within range of an active player, the vehi-
cle controller module path generation function would generate a lo-
cal path around the moving obstacle and then the SAF reenters the
previous path at the closest point.The path generation module plac-
es all follow-on vehicles in a column of wedges. This is a good
movement formation, but there are many occasions where other for-
mations would be appropriate. This additional flexibility is possible
by giving the SAF controller some options during his path planning
preparation. Terrain slope considerations are not incorporated into
the path generation module because the design calls for a fast and
efficient path planner. Terrain analysis requires more computation
per path segment since the path generator evaluates each path seg-
ment terrain slope for terrain selection.

Path Generation Module Limitations

Cl Limited SAF vehicle reaction to active simulation players.
Cl projected and actual path plots deviate due to clock speed and

network transmission times.

A design decision was made early in the design phase rejecting
multiple reaction capabilities. The SAF vehicles die when attacked
because NPSNET-MES no longer sends update positions and re-
duces the speed to zero. By increasing the number of items that the
vehicle controller module checks from the network, the reaction ca-
pability is upgradeable.

The fmal limitation is not a serious one since deviations are
small and the shifting movement is not conspicuous. To fix the
problem, the system must be able to operate at the millisecond rate
or faster since the path points are in an ascendiig order queue. Some
path points may have the same time stamp causing a delay for at
least one of the SAF vehicles. NlYtNET-HARNESS is not able to
operate faster than its current rate due to hardware system limita-
tions. The limitations create a bottleneck because there is only a sin-
gle wire and single port on the Ethernet. There will always be some
error due to transmission time &lay, but this effect is negligible as
long as the machines are in relative proximity.

Aural Cues for 3D Visual Simulation

A realistic virtual world must include aural cues about the ob-
jects in the world. These cues should provide feedback about the us-
er’s environment and actions taking place. A recent addition to
NPSNET is the support of sound feedback to the user.

The addition of sound to a complex virtual world is itself com-
plex. Often, parallel event generated sounds are routed to sound de-
vices which are serial in nature. This imposes a severe limitation
that must be worked around.

One solution we are investigating involves a process that can in-
telligently manage requests for sound issued from NPSNEI’.

154

This process would have several responsibilities:
0 Receive sound requests, resolve multiple similar sounds into a

single sound that can represent them and throw away requests
of significant age.

Cl Coordinate requests for continuous sounds (e.g. background
noise, other vehicular noise, etc.).

0 Manage the use of multiple sound production devices (e.g.
samplers, keyboards, MIDI devices, etc.).

Ci Facilitate the use of 3D sound.

This sound manager process would allow NPSNET to deal with
sounds in a fairly abstract manner. Only knowledge of classes of
sounds would need to be shared between NPSNET and the sound
manager. This will allow us to modify the sound manager easily
without affecting NPSNET.

Currently, sound support in NPSNET is limited. We use a Mac-
intosh IIci running in-house software to play digitized sound files.
The Macintosh is connected to an IRIS workstation running NPS-
NET by a serial link between RS-232 ports. When NPSNET wants
to produce a sound, it issues a request for a specific sound to be
played by the Mac via the serial port. The Macintosh queues there-
quess locates and plays the sound in the system resource. There are
several limitations to this solution:

Ct NPSNET must know specific sound names that exist on the
Macintosh and request them by name.

CI Currently all sound files on the Macintosh must reside in the
system folder. This limits the number of sounds that are avail-
able.

Cl Only discrete sounds are currently used. There is no notion of
continuous sounds.

Cl A single device with one channel is used to reproduce the
sound. This can lead to a backlog of requested sounds.

CI The queue of sound requests on the Macintosh can become
overloaded due to the above backlog. This can result in lost
sounds, delayed sounds or queue overflow.

Ongoing work with sound and NPSNET is approaching the
model outlined above. We are beginning to investigate high quality
sound samplers and MIDI devices attached to the Macintosh to col-
lect, create and reproduce various sounds. Sophisticated sound ed-
iting, sequencing and control software on the Mac give us many op-
tions for creatively employing aural feedback in NPSNET. Support
for 3D sound is also under research.

Since many sounds are object-based, NPSOFF objects will sup-
port the description and management of sound that pertain to them-
selves. The sound control with NPSOFF will provide a standard use
of sounds and facilitate the collection of sound definitions just as
we collect materials and textures.

We believe that sound is an integral part of any serious virtual
world simulation. We are actively pursuing efficient, extensible and
effective solutions to integrating sound into NPSNET.

NPSNET: Current Performance

The current NPSNET system runs on a variety of platforms.
Our highest performance system in the laboratory is the Silicon
Graphics, Inc. IRIS 240 VGX with 64MB CPU memory. The VGX
system is listed by the manufacturer as being capable of some 1 mil-
lion triangles per second, z-buffered and Gouraud-shaded. On that
system with terrain texturing on, NPSNET shows 6 frames/second
with many objects in the display and 9 frames/second with few vis-
ible objects. The system has a switch to turn off texturing of the ter-
rain and the frame rate roughly doubles respectively.

The performance of NPSNET is not affected by the addition of
the collision detection and response modules as it is. The response
time for detection of fixed objects is adequate regardless of the

speed of the moving objects. However, for collisions between two
high speed objects, collision detection is sometimes slow.

Fully Interactive and Detailed Virtual Worlds

While the NPSNET virtual world is not yet complete (and may
never be), it is still a consequential and somewhat useful system.
The NPSNET project itself is a good study of the complexity of
constructing 3D virtual worlds with available commercial technol-
ogy and why fully interactive and detailed virtual worlds are not yet
even on the horizon despite media promises. We are optimistic and
hope that by “pushing the envelope” of real-time, workstation-
based virtual reality, we are finding a way to reach the goal of a fnl-
ly interactive and detailed virtual world.

Acknowledgments

We wish to acknowledge the sponsors of our efforts, in partic-
ular George Lukes of the USA Engineer Topographic Laboratories,
Michael Tedeschi of the USA Test and Experimentation Command,
John Maynard and Duane Gomez of the Naval Ocean Systems Cen-
ter, San Diego, LTC Dennis Rochette, USA of the Headquarters
Department of Army AI Center, Washington, D.C. and Carl
Driskell of PM-TRADE.

References

1. Akely, Kurt, ‘“The Hidden Charms of the Z-Buffer,” IRIS Uni-
verse, Vol. 11, March 1990, pp. 33-34.

2. Clark, James, “Hierarchical Geometric Models for Visible Sur-
face Algorithms,*’ CACM. Vol. 19, No. 10, October 1976, pp. 547-
554.

3. Fichten, Mark and J ennings, David, Meaningful Real-Time
Graphics Workstation Performance Measurements, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December
1988.

4. Glassner. Andrew, editor, An Introduction to Ray Tracing, Aca-
demic Press, San Diego, CA, 1990, pp. 35-78

5. Institute for Simulation and Training, “Protocol Data Units for
Entity Information and Entity Interaction in a Distributed Interac-
tive Simulation”, Military Standard (DRAFT), IST-PD-90-2, Gr-
Iando, FL, September 1991.

6. Lang, Eric and Wever, Peters, SDZS Version 3.0 User’s Guide:
Interchange Specification. Class Definitions, Application Pro-
grammer’s Itierface, BBN Systems and Technologies, Bellevue,
WA, August 1990.

7. Mackey, Randall, NPSNET: Hierarchical Data Structures for
Real-Time Three-Dimensional Visual Simulation, M.S. Thesis,
Naval Postgraduate School, Monterey, California, September
1991.

8. Monahan, James, NPSNET: Physically-Based Modeling En-
hancements to an Object File Format, M.S. Thesis, Naval Post-
graduate School, Monterey, CA, September 1991.

9. Nizolak. Joseph Jr., Drummond, William T. Jr., and Zyda,
Michael J. “FOST: Innovative Training for Tomorrow’s Battle-
field,“Field Artillery, HQDA PB 6-90-l. February 1990, pp. 46-5 1.

155

10. Polcrack, Jane, Using Solid Modeling Techniques to Construct
Three-Dimensioncal Icons for u Visual Simukztor, MS. Thesis, Na-
val Postgraduate School, Monterey, CA, September 1991.

11. Pope, Arthur, ‘“The SIMNET Network and Protocols”, BBN
Report No. 7102. BBN Systems and Technologies, Cambridge,
MA, July 1989.

12. Samet, Hanan. “Applications of Spatial Data Structures”, Add-
ison Wesley, 1990. p. 426.

13. Shaffer, Cliiord. “Fast Circle-Rectangle Intersection”, Graph-
ics Gems, Ed. Andrew Glassner, Academic Press, Boston, 1990, pp.
51-53.

14. SiliconGraphics Computer Systems Inc., Graphics Library Ref-
erence Manual, C edition, IRIS4D series, 1990

15. Silicon Graphics, Inc. “Network Communications,” Document
Version 1.0, Document Number 007-0810-010. Mountain View.
CA, 1990.

16. Tancnbaum, Andrew, “Computer Networks”, Second Edition,
Prentice Hall, Englewood Cliffs, NJ, 1989, pp. 146-148.

17. Thorpe, Jack ‘The New Technology of Large Scale Simulator
Networking: Implications for Mastering the Art of Warfighting,”
Proceedings of the Ninth Interservice Industry Training System
Conference, November 1987.

18. Zyda, Michael “3D Visual Simulation for Graphics Perfor-
mance Characterization,” NCGA ‘90 Conference Proceedings. Vol.
I, 22 March 1990, pp. 705-714.

19. Zyda, Michael, Fichten, Mark, and Jennings, David H. “Mean-
ingful Graphics Workstation Performance Measurements,” Com-
puters & Graphics, Vol. 14, No. 3, 1990, Great Britain: Pergamon
Press, pp.519-526.

20. Zyda. Michael, McGhee, Robert, Kwak, S., Nordman, D.B.,
Rogers, R.C., and Marco, D. “3D Visualization of Mission Plan-
ning and Control for the NPS Autonomous Underwater Vehicle,”
IEEE Journal of Oceanic Engineering, Vol. 15, No. 3, July 1990,
pp. 217-221.

21. Zyda, Michael, McGhee, Robert, McConkle, Corinne M.. Nel-
son, Andrew H. and Ross, Ron S. “A Real-Time, Three-Dimeusion-
al Moving Platform Visualization Tool,” Computers & Graphics,
Vol. 14, No. 2, 1990, Great Britain: Pergarnon Press, pp.321-333.

22. Zyda, Michael, McGhee, Robert, Ross, Ron, Smith, Doug and
Streyle, Dale “Flight Simulators for Under $100,000.” IEEE Com-
puter Graphics&Applications, Vol. 8, No. 1, January 1988, pp. 19-
27

23. Zyda, Michael and Pratt, David “3D Visual Simulation as
Workstation Exhaustion,” Proceedings of Ausgraph 90, Mel-
bourne, Australia, 10 - 14 September 1990, pp. 313-328.

24. Zyda, Michael and Pratt, David “‘Zydaville.” on ACM SIG-
GRAPH Video Review, Vol. 60, August 1990, entitled “HDTV &
The Guest for Virtual Reality”. The video segment shows our NPS-
NET system and a brief interview of Professor Zyda.

25. Zyda, Michael and Pratt, David ‘YIPSNET: A 3D Visual Simu-
lator for Virtual World Exploration and Experimentation, “1991
SID International Symposium Digest of Technical Papers, Volume
XXII, 8 May 1991, pp. 361-364.

26. Zyda, Michael, Wilson, Kahn, Pratt, David, and Monahan,
James, NPSOFF: An Object Description Language for Supporting
Virtual World Construction, Naval Postgraduate School, Monterey,
CA. October 1991, in preparation.

156

