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Abstract

The number of polygons comprising interesting architectural mod-
els is many more than can be rendered at interactive frame rates.
However, due to occlusion by opaque surfaces (e.g., walls), only a
small fraction of atypical model is visible from most viewpoints.

We describe a method of visibility preprocessing that is efficient
andeffective foraxis-aligned oril.ria/ architectural m[}dels, A model
is subdivided into rectangular cc//.$whose boundaries coincide with
major opaque surfaces, Non-opaque p(~rtc~/.rare identified rm cell
boundaries. and used to form ana~ju{~’n~y,q)f~/>//connectingthe
cells nfthesubdivisicm. Next. theccl/-r/~-cc// visibility is computed
for each cell of the subdivisirrn, by linking pairs of cells between
which unobstructed .si,q/~t/inr. ~exist.

During an interactive ww/krhrm/,q/~ phase, an observer with a
known ~~sition and\it)M~~~)~t>movesthrc>ughthe model. At each
frame, the cell containingthe observer is identified, and the con-
tents {]fp{>tentially visible cells areretrieved from storage. The set
of potentially visible cells is further reduced by culling it against
theobserver’s view cone, producing the ~)yt>-r~]-t(>//\i,$ibi/ify, The
contents of the remaining visible cells arc then sent to a graphics
pipeline for hidden-surface removal and rendering,

Tests onmoderatelyc mnplex 2-D and 3-D axial models reveal
substantially reduced rendering loads,

CR Categrsries and Subject Descriptors: [Computer {;raph-
ics]: l.3.5Compuiational GeonletW and Object Model ing-,qe~~~~~ef-
ri( a(,qorilhnf.j, /<In,qMJ,qes,and ,sv.stetiI,s:1.3.7 Three-Dimensional
Graphics and Realism – ~i.siblc /irrc/.rrfi:fiwr’u/,cywi/hms.
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1 Introduction

Interesting architectural models of furnished buildings mfiy crrn~ist
of several million pcrlygorw. This i\manymore thantodtty’\work-
stations can render in a fmction of a \econd, us ii necessary for
smooth interactive walkthroughs.

However, such scmwstypicallyco nsistofl wgecnnnectedele-
ments of opaque material (e. g., w:ills), so that from most vwt(age
points only a small fructionof the model can be seen. The \cene
can be spatially subdivided into cc//.\. and the model partitioned
intrrsets ofpolygorw uttached toe~ch cell. Approximate visibility
information can then be computed offline. and associated with each
cell for later usc in an intemctive rendering phase. This approxi-
mate in fomlation must contain a wtpersct of the polygon~ visible
from any viewpoint in the cell. lfthis’’poterrtially visiblewt””or
PVS [11 excluded wrme visible polygon fo ran obierver position.
the interactive rendering pha~e wrruld exhibit flashing or holes there.
detracting from the simulation’s accuracy :ind realism.

1.1 Visibility Precomputation

Several researchers have proposed spatial wdxiivision techniques
for rendering acceleration. We broadly refer to these methods as
“visibility precomputatimm,” \incc by performing work offline they

reduce the effort invol~ed in solving the hidden-w-face problem.
Much tittention ha$ focuwi on computing CI{III visibility (e.g..
[5, 12, 16,2(), 221); that i\, c(Jmputing:in exact de\criptionofthc
visible elements of the scene data for every qualitatively di~tinct
region ofviewpoin[s. Such completc descriptimri may becombim-
torially complex anddifticult (oimplement[lfi. 1%1.even forhighly
restricted viewpoint regirrns (e.g., viewpoints tit infinity).

The binary space partition rrr BSP tree data slructurc [8] obvi-
ates the hidden-surface computation by producing a bac-k-twfrrrru
ordering of polygon~ from wry viewpoint. Thi$ technique ha~ the
drawback that, for an rl-polygon scene, the splitting opemtimw
needed to construct the BSP tree miry genemte ()( J)?) new polygmr~
1171. Fixed-grid andoctrcc \patial subdivisions [9, Illaccelecitc
ray-traced rendering by cfticiently answering queries ;ibout rays
propagating throughnrdered ~etsof parallclepipedal celli. To our
knowledge, these ray-propagation techniques have not bum used in
interact ivedispi;iy systems.

Given the wide availability of fait polygon-rendering hardware
[3, 14], itseenls rea\()nablc t()search l(~r~implcr, f:t$teralgorithnl\

which may {~1(’)t’.~(int(ll(’the set of visible polygons. computing a
,supcr.wf of the true answer. (h’aphlCS hardware can then solve the
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Figure I: Cone-octree culling: the boxed object is reported visible.

hidden-surface problem for this polygon superset in screen-space.
One approach involves intersecting a view cone with an octree-
based spatial subdivision of the input [10]. This method has the
undesirable property that it can report as visible an arbitrarily large
part of the scene when, in fact, only a tiny portion can be seen (Figure
1). The algorithm may also have poor average case behavior for
scenes with high depth complexity; i.e., many viewpoints for which
a large number of overlapping fiolygons paint the same screen pixel.

Another overestimation method involves finding portals, or non-
opaque regions, in otherwise opaque model elements, and treating
these as lineal (in 2-D) or areal (in 3-D) light sources [1]. Opaque
polygons in the model then cause shadow volumes [6] to arise with
respect to the light sources; those parts of the model inside the
shadow volumes can be marked invisible for any observer on the
originating portal. This portal-polygon occlusion algorithm has not
found use in practice due to implementation difficukies and high
computational complexity [I, 2].

obstacles
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Figure 2: Ray casting: the boxed object is not reported visible.

A third approach estimates visibility using discrete sampling,
after spatial subdivision. Conceptually, rays are cast outward from
a stochastic, finite point set on the boundary of each spatial cell.
Polygons hit by the rays are included in the PVS for that cell [l].
This approach can underesrima?e the cell’s PVS by failing to report
visible polygons (Figure 2). In practice, an extremely large number
of rays must be cast to overcome this problem.
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1.2 Overview

This paper describes a new approach to spatial subdivision and the
visibility problem. The scene space is subdivided along its ma-
jor opaque features; small, detailed scene elements are considered
“non-occluding” and are ignored. After subdivision, a maximal set
of sighdines is found from each cell to the rest of the subchision.
A novel aspect of our algorithm is that sightliness are not cast from
discrete sample locations. Instead, cell-to-ce/l visibility is estab-
lished if a sightline exists from any point in one cell to any point in
another. As a consequence, the cells reached by sightliness provably
contain a superset of the PVS for any given cell.

The data structure created during this gross visibility determi-
nation is stored with each cell, for use during an interactive walk-
through phase. The cell-to-cell visibility can be further dynamically
culled against the view cone of an observer, again producing a re-
liable superset of the visible scene data, the eye-to-cell visibility.
The detailed data contained in each visible cell, along with asso-
ciated normal, color, texture data etc., are passed to a hardware
renderer for removal of hidden surfaces (including, crucially, those

polygons invisible to the obsewer). The two-fold model pruning
described admits a dramatic reduction in the complexity of the exact
hidden-surface determination that must be performed by a real-time
rendering system.

We describe the spatial subdivision along major structural ele-
ments in Section 2, and the cell-to-cell visibility computation in
Section 3. Section 4 describes the additional culling possible when
the position and viewing direction of the observer are known. Some
quantitative experimental results are given in Section 5, based on
an implementation for axial 2-D models. Section 6 describes work
in progress toward a more general algorithm.

2 The Spatial Subdivision

2.1 Assumptions About Input

We make two simplifying assumptions. First, we restrict our atten-
tion to “faces” that are axial line segments in the plane; that is, line

segments parallel to either the x- or y-axis. These admit a particu-
larly simple subdivision technique, and are useful for visualization
and expository purposes. Second, we assume that the coordinate
data occur on a grid; this allows exact comparisons between po-
sitions, lengths, and areas. Relaxing either assumption would not
affect the algorithms conceptually, but would of course increase the
complexity of any robust implementation.

Throughout the paper we use example data suggestive of archi-
tectural floorplans, since realizing truly interactive architectural and
environmental simulations is a primary goal of our research. How-
ever, we note that the methods we describe have a modular nature
and can be used to accelerate a range of graphics computations, for
example ray-tracing and radiosity methods, flight simulators, and
object-space animation and shadowing algorithms.

2.2 Subdivision Requirements

We require that any spatial subdivision employed consist of convex

cells, and support point location, portal enumeration on cell bound-
aries, and rreighhor jinding. We will demonstrate the algorithm’s
correctness for any such spatial subdivision. Its effectiveness, how-
ever, depends on the more subjective criterion that cell boundaries
in the subdivision be “mostly opaque.”
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2.3 Subdivision Method

The input or .x,cne data consists of n axial faces. We perform
the spatial subdivision using a BSP tree [8] whose splitting planes
contain the major axial faces. For the special case of planar, axial
data, the BSP tree becomes an instance of a k-D tree [4] with k = 2.
Every node of a k-D tree is associated with a spatial cell bounded by
k half-open r.rfenrs [w),,,,,,, ... X(,,,,,,,J), .... [ok_,,,,,,,, . x,._,.,,,a=).
If a k-D node is not a leaf, it has a split dimension s such that
O < s < k: a split abscissa a such that r.,,,,,,, < a < x..,,,,,=;

and km’ and high child nodes with extents equivalent to that of the
parent in every dimension except k = s, for which the extents are

[T,.,,,,,,, . ..o) and [a.. ..r..,,,,,,~), respectively. A balanced k-D tree
supports logarithmic-time point location and linear-time neighbor
queries.

The k-D tree root cell’s extent is initialized to the bounding box
of the input (Fig, 3-a). Each input face F is classified with respect
to the root cell as:

●

●

●

●

disjoint if F has no intersection with the cell;

spanning if F partitions the cell interior into components that
intersect only on their boundaries:

covering if F lies on the cell boundary and intersects the bound-
ary’s relative interior;

incident otherwise.

Spanning, covering, and incident faces, but not disjoint faces,
are stored with each node. Clearly no face can be disjoint from
the root cell. The disjoint class becomes relevant after subdivision,
when a parent may contain faces disjoint from one or the other of
its children.

(a)

(b)

— input faces

I‘.: ::::.:iii,iil kd ceiia

x=m

Figure 3: (a): A K-D tree root celi and input face classifications.
(b): The right-hand cell and contents after the first split at I = m.

We say that face A dea}’es face B if the line suppofiing A inter-
sects B at a point in B’s relative interior (Fig. 3-u). We recursively
subdivide the root node, repeatedly subjecting each leaf cell of the
k-D tree to the following procedure:

● If the k-D cell bas no incident faces (its interior is empty). do

nothing;

● if any spanning faces exist, split on the median spanning face;

c otherwise, split on a sufficiently obscured minimum cleaving

abscissa; i.e., along a face A cleaving a minimal set of faces
orthogonal to A.

“Sufticientiy obscured” means that the iengtbs of tbe faces at this
abscissa sum to more than some threshold. If several abscissae are
minimally cieaving, the candidate closest to that of the median face
is chosen. Figure 4 depicts four minimaily cleaving abscissae in r,

marked as O; the median abscissa is marked as *.
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Figure 4: Cleaving abscissae (the split abscissa is marked *).

After each split, the contents of the parent node are reclassified as
disjoint, spanning, covering, or incident with respect to each child,
and all but the disjoint faces are stored with the child. Figure 3-u
depicts a k-D tree root node; after this node is spiit at I = ui, Figure
3-b shows the reclassification of the root’s contents with respect to
its high (i.e., right-hand) child.

This recursive subdivision continues until no suitable split abscis-
sae are identified. We have found that these criteria, although \ome-
what naive, yield a tree whose cell structure reflects the “rooms” of
tbe architectural models fairly well. Moreover, the splitting proce-
dure can be applied quickly. At tbe cost of performing an initial
O(n Ig n) sort, the split dimension and abscissa can be determined
in time O(j) at each split. where ~ is the number of faces stored
with the node.

After subdivision terminates, tbe portals (i.e., non-opaque por-
tions of shared boundaries) are enumerated and stored with each
leaf cell, along with an identifier for the neighboring cell to which
the portal leads (Ftgure 5). Enumerating the portals in this fashion
amounts to constructing an adjacency graph over tbe subdivision
leaf cells, in which two leaves (vertices) are adjacent (share an edge)

if and only if there is a portal connecting them.

3 Cell-to-Cell Visibility

Once tbe spatiai subdivision has been constructed, we compute
ce//-fcellll visibility information about the ieaf cells by determining
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Figure 5: Subdivision, with portals and adjacency graph.

cells between which an unobstructed sighdine exists. Clearly such
a sightline must be disjoint from any opaque faces and thus must
intersect, or .wub, a portal in order to pass from one cell to the
next. Sightliness connecting cells that are not immediate neighbors
must tmverse a ports/ sequence, each member of which lies on
the boundary of an intervening cell. Observe that it is sufficient
to consider sightliness originating and terminating on portals since,
if there exists a sightline through two points in two cells’ interiors,
there must be a sightline intersecting a portal from each cell. The
problem of finding sightlines between cell areas reduces to finding
sightliness between line segments on cell boundaries.

L (a) L

(b) (c)

Figure 6: Oriented portal sequences, and separable sets L and R.

We say that a portal sequence admirs a sightline if there exists a
line that stabs every portal of the sequence. Figure 6 depicts four
cells A. B, C, and D. There are four portal sequences originating
at A that admit sightlines: [A/B, B/C’, C’/D], [A/C, C’/B, B/D],
1.4/13, B/D], and [A/C, C/D], where P/Q denotes a portal from
cell P to cell Q. Thus A, B, C, and D are mutually visible.

3.1 Generating Portal Sequences

To find sightliness, we must generate candidate poflal sequences,
and identify those sequences that admit sightlines. We find candi-
date portal sequences with a graph traversal on the cell adjacency
graph. Two cells P and Q are trei,qhbm-s if their shared boundary is
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not completely opaque. Each connected non-opaque region of this
shared boundary is a portal from P to Q. Given any starting cell C
for which we wish to compute visible cells, a recursive depth-first
search (DFS) of C’s neighbors, rooted at C, produces candidate
portal sequences. Searching proceeds incrementally; when a can-
didate portal sequence no longer admits a sightline (according to
the criterion described below), the depth-first search on that portal
sequence terminates. The cells reached by the DFS are stored in a
sralr rree (see below) as they are encountered.

3.2 Finding SightlinessThrough Portal Sequences

The fact that portal sequences arise from directed paths in the sub-
division adjacency graph allows us to orienr each portal in the
sequence and find sightliness easily. As the DFS encounters each
portal, it places the portal endpoints in a set L or R, according to
the portal’s orientation (Figure 6). A sightline can stab this portal
sequence fand only if the point sets L and R are linearly separable;
that is, iff there exists a line S such that

S. L>O, VLEL

S. R<O, VRER. (1)

For a portal sequence of length m, this is a linear programming
problem of 2m constraints. Both deterministic [ 15] and randomized
[19] algorithms exist to solve this linear program (i.e., find a line
stabbing the portal sequence) in linear time; that is, time O(m). If
no such stabbing line exists, the algorithms report this fact.

3.3 The Algorithm

Assume the existence of a routine S?abbing.Line(P) that, given
a portal sequence P, determines either a stabbing line for P or
determines that no such stabbing line exists. All cells visible from
a source cell C can then be found with the recursive procedure:

Find-Visible-Ce/l.r (cell C. portal sequence P, visible cell set V)
V=vuc
for each neighbor N of C’

for each portal p connecting C and N
orient p from C to N
P’ = P concatenate p
if .Wabbirrgline (P’) exists then

Firrd.Visib/e.Ce//.s (N, P’, V)

Figure 7 depicts a spatial subdivision and the result of invoking
Find_ Visible_Ce//s (cell 1, P = empty, V = a). The invocation
stack can be schematically represented as

Fin,J-Visible.Cell.f (1, P = [ ], V = 0)
Find. Visible.Cells (F, P = [1/F], V = {1})

Find-Visible-Cells (J?, P = [I/F, F/B], V = {1, F})

Find. Visible.Cells (E, P = [I/F, F/E], V = {1, F, B})
Find. Visible.Celh (~, P = [1/F. F/E, E/C]. V = {I, F, B, E})

Find_Visi/de_Cells(J, P = [1/.11,V = {1, F, B, E, C})
Find_Visiblc.Cells (H, P = [1/J, Jlff,l, V = {1, F. B, E. C’,J})
Find-Visihl<,-Cells( H, P = [IJ.J, JIH2 ], V = { I, F, l?, E, C’,J, H })

The last line shows that the cell-to-cell visibility V returned is
{1, F. B, E, C. J, H}.

The recursive nature of Find-Visib/e-Cellso suggests an efficient
data structure: the .s/ab tree (Figure 8). Each node or vertex of
the stab tree corresponds to a cell visible from the source ceil (cell
I in Fig. 7). Each edge of the stab tree corresponds to a portal
stabbed as part of a portal sequence originating on a boundary of
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Figure 7: F;nding sightliness from 1,

the source cell, Note thal the stab tree is isomorphic to the call graph
of Fin[l-t’isilde .Cells( ) above, and that leaf cells are included in the
stab tree once for each distinct portal sequence reaching them. A
stab tree is computed and stored with each leaf cell of the spatial
subdivision; the cell-to-cell visibility is explicitly recoverable as the
set of stab tree vertices.

f-n
IIF

FIB

/
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(3c
Figure 8: The stab tree rooted at I

3.4 Algorithmic Complexity

Since linear progrorns are dvable in linear time, Fi)?t/-Vi,rib/~~-Ct,//,~

adds or reject~ efich candidate visible cell in time linear in the length
of the portal sequence retiching that cell. Determining a useful
upper bound on the total number of such sequences as a function
of IVI seems challenging. as this quantity appears to depend on the
sputitsl subdivision in a complicated way. However, for architectural
models. we expect the length of most portal sequences to be a small
con~tant. since mo~; cells will not see more than a constant number
of other cells. Were this not so. most of the model would be visible
from most vontage points. and visibility preprocessing would be
futile,

Our algorithm does not yet fully exploit the coherence and sym-
metry of the visibility relationship. Visibility is found one cell at
a time, and the sigbtlines so generated are effectively useful only
to tbe source cell. Later visibility computations on other cells do
not “reuse” the already computed sightlines, but instead regener-
ate them from scratch. To see why reusing sightliness is not easily
accomplished, consider a general cell with several portals. Many
sigbtlines traverse this cell, each arriving with a different “history”
or portal sequence. Upon encountering a cell, it may be more work
for a sightline to check every prior-arriving sigbtline than it is for tbe
new sigbtline to simply generate the (typically bigbly constrained)
set of sightliness that can reach the cell’s neighbors.

The algorithm as stated may require storage quadratic in the
number of leaf cells (since, in tbe worst case, every leaf cell may see

every other through many different portal sequences). In practice
we expect the storage required to be linear in the number of leaf
cells, with a constant close to the average portal sequence length.
Nevertheless, we are seeking ways to combine uII of the stab tree>
into a single, suitably annotated adjacency graph.

4 Eye-to-Cell Visibility

The cell-to-cell visibility is an upper bound on the view of an un-

~wn.sfrairred ob.wnvr in a particular cell: that is. one able to look
simultaneously in all directions from all positions inside the cell.
During an interactive walkthrougb phase, bowever, the observer is
at a known point and has vision limited to a \’ic~ cone emanating
from this point (in two dimensions, the cone can be defined by a
view direction and field of view; in three dimensions, by tbe usual
left, right, top, and bottom clip planes). We define the [’ye-/o-ce//
visibility as the set of cells partially or completely visible to an ob-
server with a specified view cone (Figure 9), Clearly the eye-to-cell
visibility of any observer is a subset of the cell-to-cell visibility for

the cell containing the observer.

4.1 Eye-to-Cell Culling Methods

Let O be the cell containing the observer. C’ the view cone. S the
stab tree rooted at 0. and V the set of cells visible from O (i. e..
{0, D. E, F, G. Ff}). We compute the observers eye-to-cell visi-
bility by ~w//in,g S and V against (’. We discuss several methods
of performing this cull, in order of increasing effectiveness and
computational complexity. All but the last method yield an overes-
timation of the eye-to-cell visibility: that is, they can fail to remove
a cell from V for which no sightline exists in C’. Tbe last method
compute~ exact eye-to-cell visibility.

Disjoint cell. The \implest cull removes from V those cells that
are disjoint from C’; for example. cells E and F in Figure 9-u. This
can be done in O(lV~ ) time, hut does not remove all invisible cells.
Cell (7 in Figure% has a non-empty intersection with C’. but is not
visible; any sigbtline to it must traverse the cell F’, which is disjoint
from C’. More generally, in the cell adjacency grdpb, the visible
cells must form a single wnnec[ed mrtrponenf, each cell of which
has a non-empty intersection with (’. This connected component
must also, of course, contain the cell 0.

Connected component. Thus. a more effective cull employ~
a depth-tirst search from () in S. subject to the constraint that
every cell traversed must intersect the interior of (’. Tbi\ requires
time 0( ISI ), and remove~ cell G in Figure 9-(/. However. it f~il~
to remove G’ in Figure Y-b, even though G’ is invisible from the

65



SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

“I’m
‘a)FM “I

(b)

(c)

Figure 9: Culling O’s stab tree against a view cone C.

observer (because all sightliness in C from the observer to G must
traverse some opaque input face).

Incident portals. The culling method can be refined further by
searching only through cells reachable via portals that intersect C’s
interior. Figure 9-c shows that this is still not sufficient to obtain an
accurate list of visible cells; cell H passes this test, but is not visible
in C, since no sightline from the observer can stab the three portals
necessary to reach H.

Exact eye-to-cell. The important observation is that for a cell to
be visible, some portal sequence to that cell must admit a sightline
that lies inside C and con[ains the view, position. Retaining the
stab tree S permits an efficient implementation of this sufficient
criterion, since S stores with O every portal sequence originating
at O. Suppose the portal sequence to some cell has length m. As
before, this sequence implies 2m linear constraints on any stabbing
line. To these we add three linear constraints: one demanding
that the stabbing line contain the observer’s view point, and two
demanding that the stabbing ray lie inside the two halfspaces whose
intersection defines C’ (in two dimensions). The resulting linear
program of 2m + 3 constraints can be solved in time O(m), i.e.,
0( [VI) for each portal sequence.

This final refinement of the culling algorithm computes exact eye-
to-ceil visibility. Figure 9-c shows that the cull removes H from
the observer’s eye-to-cell visibility since the portal sequence [0/F,

F/G, G/H] does not admit a sightline through the view point.

During the walkthrough phase, the visible area (volume, in 3-D)

can readily be computed from the stored stab tree. The visible area
in any cell is always the intersection of that (convex) cell with one
or more (convex) wedges emanating from the observer’s position
(Figure 10). The stab tree depth-first search starts at the source cell,
and propagates outward along the stab tree. Upon passing through a

portal, the wedge is either suitably narrowed by the portal’s extrema
(e.g., portal I/F in Figure 10), or completely eliminated if the
wedge is disjoint from the portal (e.g., portal F/B in Figure 10). In
this case, the DFS branch terminates, descending no further into the
stab tree.

Figure 10: The view cone during the stab tree DFS.

4.2 Frame-to-Frame Coherence

In practice, there is considerable frame-to-frame coherence to be
exploited in the eye-to-cell visibility computation. During smooth
observer motion, the observer’s view point will typically spend
several frame-times in each cell it encounters. Thus, the stab tree
for that cell can be cached in fast memory as long as the observer
remains in the cell. Moreover, the cell adjacency graph allows sub-
stantial predictive power over the observer’s motion. For instance,
an observer exiting a known cell must emerge in a neighbor of that
cell. An intelligent walkthrough program might prefetch all poly-
gons visible to that cell before the observer’s arrival, minimizing or
eliminating the waiting times associated with typical high-latency
mass-storage databases.

5 Experimental Results

We have implemented the algorithms described for 2-D axial en-
vironments, and all but the eye-to-cell computation for 3-D axial

environments. The subdivision and visibility computation routines
contain roughly five thousand lines of C language, embedded in an
interactive visualization program written for a dual-processor, 50-
MIP, 10-MFLOPS graphics superworkstation, the Silicon Graphics
320 GTX.

Our test model was a tloorplan with 1000 axial faces (Figure
1I -a). Subdividing the k-D tree to termination with the procedure
of Section 2.3 required 15 CPU seconds, allocated 1 Mb of main
memory, and produced about 700 leaf cells. Portal enumeration,
creation of the cell adjacency graph, and the cell-to-cell visibility
computation were then performed for every leaf cell. This required
30 CPU seconds and increased the memory usage to 2 Mb. Roughly
10,500 total stab tree vertices were allocated to store all of the 700
leaf cells’ stab trees (Figure 11-b). Thus the average stab tree size
was about I5.
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(a) A source  cell (dark blue).  its cell-to-cell
visibility  (light  blue). and stabbing  lines.

(b) The source cell (dark blue),  cell-to-cell
visibility  (light  blue),  and stab  tree.

(c) An observer  with a 360” view cone. (d) The same observer,  with a 60” view cone.
The  eye-to-cell  visibility  is shown  in blue; The eye-to-cell  visibility  is shown  in blue;

the exact visible area is shown  in blue-green. the exact visible area is shown  in blue-green.
The  green cells have been dynamically  culled. The green cells have been  dynamically  culled.

Figure I I : An axial model  with roughly  I .OOO  faces (black),  subdivided  into  about  700 spatial  cells (white)
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We empirically evaluated the efficacy of cell-to-cell visibility
pruning and several eye-to-cell culling methods using the above
floorplan. We performed 10,(X)Ovisibility queries at random loca-
tions within the model, with the view direction chosen randomly,
and for both 360° and 60° view cones (Figures 1l-c and 1I-d). For
every generated view cone, visibility was computed with each of
the culling methods of Sections 3 and 4. The area of the potentially
visible region was averaged over the random trials to produce the

figures tabulated below. The quantities shown are generally sums
of cell areas and are expressed as percentages of total model area.
The last row displays the total area of the view cone’s irrfa-sectiorr
with all cells reached by the stab tree DFS (e.g., the shaded areas in
Figure 1O).

culling method 360° view cone
l’is. reduction

area factor

none (cell-to-cell vis.) 8.1% lox

disjoint cell 8.1% lox

connected component 8.1% lox
incident portals 8.1% lox
exact eye-to-cell 4.9% 20X
exact visible area 2.1% 50X

6 Extensions and Discussion

60° view cone

T

vis. reduction

area facIor

8.170 lox

3.19Z0 30X

2.4Yc 40X

2.2YC 40X
1.8% 50X
0.3% 300X

We briefly discuss extensions of the visibility computation algo-
rithms to three-dimensional scenes.

6.1 Three-Dimensional Models

Here we assume that all faces are rectangles whose normals and
edges are parallel to the r, y, or z axis. Subdivision again proceeds
with a k-D tree (and k = 3). The face classification and splitting
criteria extend directly to three dimensions. Portals are no longer
line segments, but are instead rectilinear non-convex regions formed
by (rectangular) cell boundaries minus unions of covering faces.

There are at least two ways to accommodate these more general
portals. First. given any set of non-convex portals, rectangular large
por[als maybe created by computing the axial bounding box of the
set. Replacing collections of portals (e.g., all portals through a
boundary) with large portals can only increase the computed cell-
to-cell visibility estimation, ensuring that it remains a superset of
the true visibility.

A second alternative is to decompose each non-rectangular portal
into rectangles. This approach should produce smaller potentially
visible sets than the one above, since it does not overestimate portal

sizes. However, this improved upper bound comes at the cost
of increased combinatorial complexity, since many invocations of
Find-Visib/e-Ce//.r will be spawned in order to explore the more
numerous portals.

In either event, sightliness are found by stabbing oriented rect-
angle sequences (Figure 12), in analogy to the two-dimensional
case. To accomplish this, we have developed and implemented a
novel algorithm that determines sightlines through rectangles [ 13].
Briefly, the algorithm operates in a dual space in which the problem
reduces to performing a linear number of convex polygon-polygon
intersections, each requiring logarithmic time [7]. The algorithm
finds a stabbing line through n oriented, axis-aligned rectangles, or
determines that no such stabbing line exists, in O(rr lg n ) time.

Assuming a rectangular dkplay for rendering, culling against a
three-dimensional view pyramid is a direct extension of the planar
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Figure 12: Stabbing a sequence of rectangular portals in 3-D.

culling methods described earlier. When the observer’s position is
known, each portal edge contributes a linear constraint on the eye-
to-cell visibility. The view pyramid implies four additional linear
constraints; one each for the left, right, top, and bottom clipping
planes. Thus, computing eye-to-cell visibility in three dimensions
again reduces to a linear-time linear programming problem.

Generalizing the visibility computations described here to non-
axial scenes appears to pose problems both conceptual and technical
in nature. First, suitable techniques must be found for decom-
posing large collections of general polygons into convex spatial
subdivisions, generating an appropriate cell adjacency graph, and
enumerating the portals of each subdivision cell. Second, efficient
algorithms are needed for stabbing portal sequences comprised of
general polygons in three dimensions. We have made some head-
way against the latter problem by developing a randomized 0(rr2 )
algorithm that stabs sequences of n oriented convex polygons [21].

6.2 Discussion

The methods described here are particularly appropriate for input
with somewhat restricted “true” visibility, such as that occurring in
many architectural models. However, adversarially chosen input
can produce unbalanced spatial subdN ision trees under our naive
criteria, slowing basic operations on the subdivision. Input with
a large number of portals per cell boundary (for example, walls
with tens or hundreds of windows) may confound the cell-to-cell
visibility algorithm with a combinatorially explosive set of sight-
Iines. Large portals ameliorate this problem, at the possible cost
of decreasing the usefulness of the attained (overlarge) visibility
estimates.

It may occur that subdivision on the scene’s major structural ele-
ments alone does not sufficiently limit cell-to-cell visibility. In this
instance, further refinement of the spatial subdivision might help (if
it indeed reduces visibility) or hurt (if it leaves visibility unchanged
but increases the combinatorial complexity of tinding sightlines).
Again, there is an ameliorating factor: when subdividing a leaf cell,
its children can see only a subset of the cells seen by their parent,
since no new exterior portals are introduced (and the childrens’
freedom of vision is reduced). Thus each child’s sightline search is
heavily constrained by its parent’s portal/visibility list. Moreover,
the portals generated by the subdivision will generally restrict vis-
ibility during the walkthrough phase. We are studying the issue of
how to subdivide spatial cells as a function of cell-to-cell visibility
and cell data density.
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Conclusion

We have implemented und utwlyzed an eftkient and effective vis-
ibility preprocewing tind query algorithm for axial architectural
models, The algorithm’s effectiveness depends on a decomposition
of the [models into rectangular or parallelepipeds cells in which
signitictint parts of most cell boundaries tire optique.

The cell-based visibility determination relies on an efficient
search for sightliness connecting pairs of ccll~ through non-opaque
portalf, In two dimensions, this search reduces to d linear pro-
grwnming problem. Finding sightliness through portals in three

dimensions is somewhat harder. We show that, when relevant por-
ttil sequence~ are retained, determining viewpoint-based visibility in
both two and three dimensions also reduces to a linear programming
problem.

We present some empirical evidence of rendering speedups for
axial two-dimensional environments. The visibility computation
cm be performed :it reasonable preprocessing and storage costs and.
for most viewpoints. dramatically reduces the number of polygons
that must be procmsed by the renderer.
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