
An Object-Oriented 3D Graphics Toolkit

Comcruter Graphics, 26,2, July 1992

Paul S. Strauss
Rikk Carey

Silicon Graphics Computer Systems

2011 North Shoreline Blvd.

Mountain View, CA 94039-731 I

pss@sgi.tom, rikkf@sgi.com

Abstract

This paper presents an object-oriented toolkit for developers of in-
teractive 3D graphics applications. The primary goal of the toolkit
is (o make it easier for programmers to create 3D graphics applica-
tions that employ direct manipulation techniques in addition to con-
ventional 2D-widgets. Such techniques have generally been ig-
nored in previous graphics packages and systems.

The toolkit provides a general and extensible framework for repre-
senting 3D scenes so that applications can integrate their data with
graphical objects rather than having duplicate copies. A simple, in-
tegrated event model that enables direct interaction with 3D objects
is also included.

CR Categories and Subject Descriptors

1.3.2 Graphics Systems; 1.3.4 Graphics Utilities, Application Pack-
ages, Graphics Packages: 1.3.6 Methodology and Techniques - in-
teraction Techniques; 1.3.7 Three-Dimensional Graphics and Real-
ism. Animation

Keywords

Interactive 3D graphics, object-oriented design, scene representa-
tion, direct manipulation.

Introduction

Writing interactive 3D graphics applications has traditionally been
a tedious, time-consuming, and difficult task requiring a high level
of expertise by the programmer. Because it has been so difficult, de-
velopers and researchers have either invented their own software
abstractions above the low-level graphics commands or produced
portable, “lowest common denominator” applications with little or
no direct 3D interaction. The former choice yields short-term soh-
tions that are rarely given sufficient design and implementation ef-
fort. The latter approach is more common in industry and results in
disjoint user interfaces in which users view 3D areas but can inter-
act only through remote user interface widgets or keyboard com-

Pcrmlssmn 10 COPYwithout FCCJll or part of this material is granted
provided that the copm arc not made or distributed for direcl
commercial tidvmrtagc, {he ACM copyright notice and the [Itlc of’ the
publica~ionand Its date appmr, and notice is given th~tcopying is by
fxrmission of the Ashomtmn fnr Compuling Machinery. To copy
o!herwiw. or t{) republish. rcquirc~ a fee tind/or specitic permission.

mand languages.

A 3D graphics toolkit could Facilitate writing interactive applica-

tions. A truly interactive 3D toolkit should provide a rich and exten-
sible set of 3D objects and should support direct manipu/a(ion, al-
lowing users to interact with those objects in the same window in
which they appear. This technique is common in 2D graphics appli-
cations, yet it bas rarely appeared in 3D applications. There are
three fundamental areas in which a toolkit can enable the develop-
ment of such interactive 3D programs:

●

●

●

Object representation. Graphical data should be stored as edit-
able objects and not just as collections of drawing primitives used
to represent fhem. That is, applications should be able to specify
n,haf it is and not have to worry about how /o dran, II.

Interactivity. An event model for direct interactive program-
ming must be integrated with the representation of graphical ob-
jects.

Architecture. Applications should not have to adapt to object
representation or interaction policies imposed by the toolkit. in-
stead, the toolkit mechanisms should be used to implement the
desired policies. Such flexibility should also be reflected in the
ability to extend tbe toolkit when necessary.

Traditional 3D graphics application systems can he characterized as
taking one of two approaches to object representation. GKS [3] and
PHIGS+ [6] represent the display Iisr approach in which objects are
defined as sequences of drawing commands and cannot be treated
as first-class 3D objects. Dor6T~ [Ij and HOOPST~ [9] significant-
ly improve the display list model by providing additional editing ca-
pabilities, but they still fall short of true 3D object representation.

/mmediafe mode libraries such as Iris GLTM[2], StarbaseT~ [71, and
RenderManT~ [8] are streamlined drawing packages; they have no
notion of retained or represented 3D objects (although CL and Star-
base also support display lists). These libraries are focused on pro-
viding flexible and efficient interfaces to specific graphics devices
or programs.

The main problem with both of these approaches is that they con-
centrate solely on the rendering or display aspects of application
writing (a worthy task, especially considering advances in render-
ing hardware and algorithms during the 1970’s and 1980’s). How-
ever, rendering is only a small part of the task of writing an interac-
tive application. 3D graphics packages, for the most part, have ig-
nored user input; they often provide little more than gross-object
picking. Furthermore, the programming models for these packages
do not treat 3D objects as geometric, physical entities, Thus, previ-
ous systems are committed to display-oriented application develop-
ment and provide little help for direct, 3D interaction support.

t IW2 ACM-O-8979 1-479- lKK!/(M)7/034I $01.50 34 I

SIGGRAPH ’92 Chicago, July 26-31, 1992

Another shortcoming of traditional graphics packages is that they
proliferate the “duplicate database” problem. Applications store
their objects in a form suited to their needs, but must convert them
into structures required by the graphics package, which maintains
an additional copy. Furthermore, graphics packages are typically
closed systems that do not aHow applications to add their own ob-
ject geometries, properties, or operations.

There have been few published descriptions of 3D toolkits which
attempt to solve the problems presented here. The InterViews [5]
system successfully integrates rendering and interaction in the
world of 2D graphics and text, but it does not extend to 3D. The
Brown Animation Generation System [10] is one published system
that successfully integrates abstract, 3D object representation and
dynamics. It is designed primarily for animation but does include
support for interactive techniques.

The toolkit described in this paper attempts to meet the needs de-
scribed above. It defines an object-oriented framework for descri-
bingscenes containing 3D objects and operations on them. 3D ob-
jects are abstract representations that can render themselves when
requested; they are not merely display lists. The methods by which
objects are rendered can vary from machine to machine, but their
representations are constant.

The framework of this toolkit is designed with application extensi-
bility in mind. Application writers are able to add new, application-
specific objects to the toolkit when necessary. By allowing applica-
tion data to be incorporated into the toolkit, the need for duplicate
databases is greatly reduced. Extensibility also includes object op-
erations such as new rendering methods and geometric computa-
tions.

A simple, yet effective, model for handing events to 3D objects is
integrated into the toolkit. Several interactive 3D objects are pro-
vided, allowing applications to add interactive operations, such as
rotation, easily. This set of interactive objects is also extensible, and
the toolkit provides several levels of support to make it easy for ap-
plications to create their own objects for direct interaction.

Overview

The 3D toolkit library consists of three main sections, as illustrated
in Figure 1. Furthermore, there are two window system utility li-
braries built on top of the toolkit that provide window objects and
handle event translation.

EKE)
Scene

Database

To%!kit

Ffgure 1. Overall toolkit architecture.

Each of the three toolkit sections provides a different level of pro-

342

gramming support. They are introduced herein order from low-lev-
el to high-level.

The foundation of the 3D toolkit is the scene database. Itstores dy-
namic representations of 3D scenes as graphs (typically directed
acyclic graphs) of objects called nodes. Various classes of nodes
implement different geometries, properties, and database traversal
behaviors. The database provides a set of actions that can be applied
to scenes or parts of scenes; examples of actions are rendering,
picking, computing a bounding box, handling an event, and writing
to a file. The format and methods for storing scenes in files and re-
trieving them are defined by the database. Also included are objects
for adding animation to scenes and for tracking changes to them.

The interaction section of the toolkit introduces event classes and
“smart” nodes that process events. Event classes define an extensi-
ble set of abstract events such as ButtonEvent and Location2-

Event. An example of a smart node is the selection node, which
provides an easy way for applications to maintain lists of selected
objects. Selection tracks picking, supports various policies for re-
placing and extending selections, and graphically highlights select-
ed objects. Another type of smart node is a manipulator, which re-
sponds to interaction events and edits other nodes in a database. A
manipulator typically employs a surrogate object (e.g., bounding
sphere or box) that represents the manipulator visually and provides
a means for translating events into changes to the database. For ex-
ample, the Trackbal 1 manipulator uses a bounding sphere around
an object to modify the rotation of that object, Other manipulators
perform object-specific functions, such as changing the iHumina-
tion direction of a light source or dragging a vertex of a polyhedral
shape. Manipulators provide an easy way for applications to incor-
porate direct 3D interaction.

The third section of the toolkit defines node kits, which make it eas-
ier to create structured, consistent databases. Each node kit object
combines some scene database subgraph, attachment rules, and oth-
er policies into a single class. For example, the SphereKi t is a
wrapper around a sphere node that adds material, geometric trans-
formation, and other properties in the correct place when needed.
Node kits also allow programmers to create higher-level objects
that encapsulate application-specific behavior.

Note that the 3D toolkit itself does not include any objects that rep-
resent windows on the display screen. This decision was made to
ensure window system independence and greater portability. Urility

libraries tied to specific window systems (such as X and GL) are
built on top of the toolkit to provide convenience to application pro-
grammers. Each utility library provides a basic RenderArea object
that maintains a resizable window that handles automatic redraw-
ing, translates window system events into toolkit events, and dis-
tributes events to objects rendered in the window. Furthermore, the
utility libraries can also provide a set of application-level compo-
nents that implement common interactive functions. Examples of
components are color editors, surface material editors, light source
editors, and viewers, which process user interaction to edit cameras.

Architecture

The 3D toolkit is implemented in C++, which supports many of the
object-oriented paradigms essential to extensible systems. C bind-
ings are also provided, although much of the extensibility is not ac-
cessible from C.

Nodes

Each node in a scene database performs some specific function.
There are shape nodes that represent geometric or physical objects
(see Figure 7), properry nodes that describe various attributes of

ComputerGraphics,26,2, July 1992

those objects (see Figure 8), and group nodes, which connect other
nodes into graphs and subgraphs. Other nodes, such as cameras and
lights, are also provided. A representative sampling of node classes
is given in Table 1.

Shape nodes: Group nodes:
Cone GrouP

Cube Separator

Cylinder Switch

Face Set Selection

Index edFace Set Manipulator

IndexedLineSet LayerGroup

IndexedTriangleMesh Array

LlneSet

NurbsCurve

NurbsSurface

Point Set

QuadMesh

Sphere

Text2

Text3

TriangleStripSet

MultipleCopy

Property nodes:
BaseColor

Complexity

Coordinate

DrawStyle

Environment

Font

LightModel

Light/camera nodes: Material

OrthographicCamera
MaterialBinding

Perspect iveCamera
Normal

DlrectlonalLight
NormalBinding

PointLight
Texture2

SDoELiaht
TextureCoordinate2

Transform

Table 1. Some node classes.

Instance-specific information is stored within nodes in sub-objects
called fiekfs. Each node class defines some number of fields, each
withaspecific value type associated with it. Forexample, thecYl-
inder shape node contains tworeal-number (float) fields that rep-
resent the radius and height of a specific cylinder instance. Field ob-
jects provide a consistent mechanism for editing, querying, reading,
writing, and monitoring instance data within nodes.

The set of nodes is designed to allow most of the high-volume data
tolx shared when possible. Forexample, coordinates and normal
vectors are specified in separate (property) nodes that can be shared
among various shapes. This scheme has the additional benefit of en-
forcing consistency of representation.

A variety of group node classes connect nodes into graphs. Each
group node class determines if and how traversal of children is per-
formed and how properties are inherited. A node typically inherits
properties from its parent, and children of a group n-tie usually in-
herit from prior siblings. Some groups provide inheritance from the
group node to its parent, making insertion of properties in sub-
graphs simple. Other groups, such as Separator nodes, save state
before and restore state after traversing children, isolating their ef-
fects from the rest of the graph.

These groups represent traditional, hierarchical grouping objects
found in most 3D systems, However, other behaviors can be imple-
mented. For example, the Switch node selects one of its children
to traverse; this can be useful for implementing Ievel-of-detail, for
example, The Ar r a Ynode traverses its children multiple times, ap-
plying a transformation before each traversal to arrange the results
ina3Darray.

Figure 2 depicts a scene graph whose rendered result appears in
Figure 9.

,

‘eparatorgroup‘ranSfomtie ‘
~’”rg’w-oo‘er~”p”~nde

““”’’”~”@o ‘K”
Lightnoda @ @ Manipulator

Shape node
@

‘~ Sensor

@
A

Appaarancenode /\ Subgraph----

Key _ Path
1

Q

Qsp’ (&p
Sinding Set

Figure 2. A simple scene graph.

Paths

A node may be a child of more than one group, allowing common
subgraphs (multiple instances) to be shared. For example, a model
of a bicycle may use a subgraph representing a wheel twice, with
different transformation nodes applied to each instance of the
wheel. This scheme can result in more compact and manageable
scene representations in many cases. The downside is that it is not
always possible to refer unambiguously to an object (such as the
rear bicycle wheel) in the 3D scene simply by pointing to a single
node. To remedy this problem, the toolkit supports parh objects,
which point to nodes in a chain from some node in the graph down
to the node in question (see Figure 3). For example, performing a
pick operation returns a path from the red of the graph to the shape
node under the cursor, unambiguously indicating the object that
was picked.

Note that a path actually defines a subgraph consisting of more than
just the connected chain of nodes. The subgraph also includes all
nodes (if any) below the last node in the chain and all nodes (typi-
cally to the left of the chain) that have an effect on these nodes. This
definition is extremely important when performing graph editing
such as cut-and-paste; all of the subgraph nodes are necessary to
fully represent the selected object.

Actions

Objects called actions traverse scene graphs to perform specific op-
erations, such as rendering, computing a bounding box, searching,
or writing to a file. Several currently supported actions are listed in
Table 2. An application performs an action on a scene in a database
by applying it to a node in the scene graph, typically the root. Ac-
tions may also be applied to paths. The next section discusses the
mechanism of applying actions in more detail.

343

SIGGRAPH ’92 Chicago, July 26-31, 1992

FrorrWWree/

Coords Normals Face

Figure 3. The Wheel node is multiply instanced, since it is a
child of both FronrWhee/ and RearWheel. The path (heavy line)
refers unambiguously from the local graph root to the shape de-
fining the rear wheel. Within the parallelogram is the subgraph
defined by the path.

Call backAct Ion Generic scene traversal with user callbacks.
GLRenderActlon Renders objects in database.
Get Bound ingBoxAct ion Computes bounding box of scene or parl of

scene.

GetMat rlxAct lon Computes cumulative transformation matrix
for object in scene.

HandleEvent Action Gives nodes in database acbance to handle an
event.

RayPickAct ion Returns frontmost object or all objects inter-
sected by a ray cast into scene.

PrintAct Ion Produces PostScript primitives or other print-

able form of rendered scene.

SearchAct Ion Looks for specific node or type of node in da-
tabase.

Table 2. Action classes.

The 3D toolkit is designed to be extensible in many areas. It is as-
sumed that users will often extend the set of nodes to create new
shapes, properties, manipulators (which are derived from nodes),
and other classes. Similarly, it may be useful in some applications
to create actions to perform new tasks while traversing a scene
graph. Unfortunately, the standard virtual method table implemen-
tation in C++ makes this two-way extensibility very difficult: it is
relatively easy to create a new node class that supports all of the
standard actions, but it is not possible for application writers to add
new action methods to existing standard node classes. This could be
done by creating subclasses of all nodes that supported the new ac-
tions, but this is an unattractive solution.

To solve the two-way extensibility problem, the toolkit uses a two-
dimensional virtual table to implement node/action methods. Each
entry in the table is a method that implements a certain action for a
particular node. Adding a new node is equivalent to adding a col-
umn to this table, whereas adding a new action involves adding a
new row. For convenience, standard action methods are implement-
ed as regular virtual functions on nodes.

This method lookup scheme is the justification for implementing

actions as separate objects. The resulting syntax for applying an ac-
tion to a graph, action ->apply (node) , is fairly easy to use and
understand.

Applying Actions

Applying an action to a scene graph usually results in a traversal of
the graph, Although group node subclasses are free to define their
own traversal behavior, standard groups visit their children in left-
to-right order. Therefore, scene graph traversal is usually depth-
first.

Most actions require state to be accumulated during traversal. For
example, when a shape node is encountered during rendering tra-
versal, it may need to know the current material, set of coordinates,
and drawing style. Each of these properties is stored in an element
in the state. Typically, property nodes change one or more state el-
ements, and shape nodes interpret the current values of the ele-
ments.

When a separator node (a type of group) is encountered, traversal
state is saved before visiting its children and is restored afterwards.
Because this node is used very often in scene graphs to segregate
objects, state saving and restoration must be efficient. The state puts
off saving element values until those values are modified after the
save; this “lazy” scheme avoids copying data unnecessarily.

Rendering and Picking

Because the toolkit is designed for interactive graphics applica-
tions, the action that performs rendering must be capable of interac-
tive speeds. Therefore, the rendering methods built into nodes have
been tuned for maximum performance. The toolkit can also boost
rendering performance by caching state at crucial points. For exam-
ple, once it has been determined how to render a subgraph, caching
a display list can make the next traversal fast and easy. Caching is
built into Sepa rat or nodes and can be activated by an application
when desired. References to nodes used to build a cache are stored
with it, so any changes to those nodes wi}l automaticallyy invalidate
the cache. Additionally, it is possible to abort a rendering action
during traversal; this is useful when implementing real-time appli-
cations and for minimizing the wait for event processing in interac-
tive applications.

Some rendering features, such as texture mapping, are not imple-
mented on all supported platforms. Users of the toolkit do not need
to test whether a particular machine supports a feature; they can just
specify the feature by inserting nodes in the scene database, and the
toolkit does the rest. On architectures that do not support the fea-
ture, the toolkit can simulate it in software (if this would not greatly
compromise interactive performance) or elide it.

Interactive applications require flexible and efficient picking. The
Ray PickAction can be used to find a path to the frontmost object
under the cursor. If an application requires more information, it can
query the action for more details, such as the world-space and ob-
ject-space points of intersection and the surface normals at those
points. Each shape node class can define additional, specific infor-
mation that can be queried. For example, objects constructed from
sets of vertices can return the face containing the intersection point
and the edge and vertex closest to it.

Picking performance, like that of rendering, is improved by cach-
ing. separator nodes automatically cache bounding boxes, which
are used by the pick action for culling. This caching speeds picking
enough to make locate highlighting (dynamic highlighting of the
object under a moving cursor) possible.

344

Computer Graphics, 26, 2, July 1992

Sensors

.$ens(w ob@s are used to track changes to nodes and to implement
simple an’imatirm. There are two major types of sensors, each of
which calls a user-defined callback function when triggered. A dura
,scns(w is attached to d node and is triggered when it detects changes
In data in tha{ node or any descendant node. These sensors can be
used by an interactive editor to update sliders or other indicators
whenever any other program element changes values used by the
editor. A data sensor can also be attached to the root of a graph to
track changes to the entire scene (e.g., to determine when to re-
draw).

Tbe other type of sensor is a rimer sensor, which is triggered at a
specified time or at regular intervals. For example, an application
can set a timer sensor to trigger 30 times a second to animate parts
of a graph. Figure 4 illustrates how sensors can be connected to a
scene databaw.

~ Redraw
I

1 30th Edit ~

@ ‘“”–+36-4-
Second

Clock Timer
Sensor

Figure .#. A scene graph with sensors attached, The data sensor
at the top of the graph is triggered whenever a change is made
to any node below the top: it is used to determine when to re-
draw the graph, The timer sensor connected to the clock fires at
regular intervals. animating the rotation of the object at the low-
er right.

3D Event Model

The toolkit and utility libraries use a very simple algorithm to dis-
tribute user events to manipulators and other smart nodes, An event
specific to the window sys[em is generated as the result of some
user action (mouse motion, keyboard button press, etc.) and is
passed to the instance of the utility library’s Rende rArea object
that corresponds to the window in which the event occurred. If the
Kt x~~eIA I<~+ is part of a component, the component might handle
the event itself. For ex~mple. a viewer component might process all
mouse motitm to edi[the position and orientation of a camera in the
scene.

It’ the component does not process the event, the Rende rA rea

translates the window system event into a toolkit event (indepen-
dent of any window system) and distributes it to the nodes in the 3D
scene. The [.~.~,.!t.~;,~,,a applies an instance of the Handle Ever.–
,,-,,..:.:,[o the root node of the graph to distribute the event, This
tiction performs a standard traversal of the graph. Any node that is
interested in events may process the event and indicate that it has
handled it, As with all other actions, each node class is free to define
its own behavior when handling events.

Some nodef. such as manipulators may be interested in mouse
events only when the cursor is over their rendered objects. Such
nodes may ;lsli the ,) . . j. ..! ..e::, .A-+ n for a path to the object

under the cursor. To process this request, the action automatically
performs a pick (using a Ray PickAct ,or.)to determine this path;
it is cached so further inquiries do not require additional picks.
Therefore, pick correlation is performed only when requested,
speeding up the event handling process.

Database traversal for the Har,d1eEver.tAct: ~r,stops as soon as a
node is found to handle tbe event. Nodes that want to monitor
events without ending the tmversal can do so by omitting the step
that marks the event as handled. Also, nodes that are interested in
future events can perform a “grab,” meaning that they will receive
all events until further notice. Event grabbing is useful for process-
ing mouse press-move-release sequences,

An example of the workings of the event model is illustrated in Fig-
ure 5.

User Action

1bWindow
System

lWrrdowSysternt3ent

2

a

RenderArea

lToolkitEvent

I

f-g+ ’rack
+I!A ‘ ‘“.........

Figure 5. Event model example. (I) The window system pro-
cesses a user action and produces a window system event. (2)
The RecderArea associated with the window in which the ac-
tion occurred translates the event into a toolkit event and passes
it to a Handle Ever.tAct ~~n which it applies to the rcwt of its
graph. (3) The root node of the graph passes the event to its chil-
dren. (4)-(5) The camera and light nodes are not interested in
events, and therefore they ignore this one. (6) Tire next child, a
separator group, passes the event to its children. (7)-(8) The
transform and cube nodes ignore the event. (9) The trackball
manipulator checks if the event is a left-mouse-down. and, if so,
determines whether the cursor is over the trackball object de-
fined in its subgraph. If the cursor is over the object, the track-
ball grabs future events and indicates that it has handled the
event. Subsequent events are sent immediately to the trackball
manipulator, which processes mouse motion events and edits
the rotation field in the transform node. This process continues
until a left-mouse-up event is processed by the trackball, which
then releases its grdb.

Manipulators

The event model described above is designed to allow manipulators
and other interactive nodes to be integrated easily into graphics ap-
plications. As an illustration, this section explores the implementa-
tion of the trackball manipulator (Figure 10) in more detail.

As mentioned earlier, the trackball manipulator places an invisible

345

SIGGRAPH ’92 Chicaao, July 26-31, 1992

surrogateboundingsphere around the 3D object it is manipulating.
The sphere is used to translate mouse motion into rotational chang-
es to thk object. Thrte cylindrical bands around the sphere make it
easy to specify rotations constrained to the principal axes.

When a trackball is activated, it is given a path to the geometric
transformation node it is to edit to achieve the rotation. The appli-
cation inserts a Trackba 11 node into its scene graph, ensuring that
the trackball is rendered with the rest of the scene and that it is given
an opportunity to handle events. The Trackbal 1 node (derived
from Separator) has as children a scene graph that defines the sur-
rogate sphere and constraint bands.

When a Trackba 11 node is encountered during traversa] by a Han-
dleEventAction, the node checks if the event is a left-mouse-
down. If so, it asks the action for the object under the cursor (com-
puted by picking). If the cursor is over the trackball object, the node
does two things. First, it announces to the action that it has handled
the event, so traversal need not continue. Second, it performs a grab
so that all future events will go directly to the trackball. The grab
will be released when a left-mouse-up event is processed by the
trackball. Each intervening mouse-motion event is processed by the
trackball to compute rotational changes to its target object.

The toolkit includes many simpfe manipulators,each of which per-
forms a single task, such as translation in one dimension or cylin-
drical rotation. Also in the toolkit are compound manipulators (such
as the trackball) that combine several simple manipulators into a
more complex, integrated tool. Figure 11 illustrates several manip-
ulators.

Node Kits

Because the scene graph library is general enough to provide max-
imum performance and flexibility, it can often be confusing to nov-
ice users. There are no strict rules for forming scene graphs, so it is
possible to create bizarre and sometimes meaningless collections of
nodes unless some sort of structuralguidelines are imposed. (This
situation is reminiscent of assembly code and structured program-
ming.) Furthermore, class-specific traversal and inheritance rules
make it difficult to examine a scene graph and determine exactly
how subgraphs of nodes relate to “objects” (chairs, bicycles) in the
3D scene.

Node kits provide one way to make these tasks easier by enforcing
a consistent policy for database construction, editing, and inquiry.
Each node kit effectively contains some structured subgraph of da-
tabase nodes. A template associated with the node kit determines
which nodes can be added when necessary, and where they should
be added. For example, the Sphere Kit node represents a sphere
object; its template allows a material, geometric transformation,
and other properties to be inserted in the correct place when needed
(Figure 6).

Another use of node kits is to define application-specific objects
and semantics. For example, consider a flight simulation package
that includes a variety of objects representing airplanes. Each of
these airplanes consists of the same general scene graph structure
(e.g., fuselage, wings, and landing gear) as well as some airplane-
specific methods (e.g., bank-left, raise-handing-gear). To an appli-
cation writer using this package, each type of airplane can be dealt
with in a similar way. There is no need to know the details of the
structure of the subgraph representing the landing gear to raise it,
since there is a general method for doing so.

SDhereKfi

I

Trans- Material Draw Light Texture Corn- S~ere
form Style Model plexity

F~ure 6. Sphere node kit. When-an application creates an in-
stance of the kit, a template of the above graph is constructed,
opaque to the application. The application makes chmges to the
sphere only though the node kit. Nodes connected by dashed
lines are cteated only when necessary. For example, applying a
transformation to the node klt is implemented internally as a
change to the transform node, which is created first if neces-
sary.

Calibacks

No toolkit can ever be comple~, users will always want to add
something. One way to extend the set of objects provided by the
toolkit is to derive new classes from existing ones. Although the
toolkit is designed to make such extensions as easy as possible,
sometimes an easier mechanism is useful. For this reason, several
objects in the toolklt provide callback mechanisms for quick proto-
typing of new features.

The ca 1 lback node, for example, invokes a user-defined function
whenever it is encountered during traversal for any action; this node
makes it easy to introduce specialized behavior into a scene graph
or to prototype new nodes without subclassing. Similarly, the
Ca 1lbackAct ion allows functions to be called before and after
each node encountered during traversal, giving them access to the
current traversal state.

Other classes provide callbacks during various interactive process-
es, such as direct manipulation and selection of objects.

Conclusions and Future Work

The toolkit presented here is an attempt to make it easier for graph-
ics application developers to design and implement 3D applications
with direct interaction. The flexible and extensible 3D database
makes it possible for applications to use only one representation of
application data. By integrating interactive objects into the data
with a simple event model, the toolkit allows applications to sup-
port direct manipulation of 3D data, which is often more friendly
and intuitive than conventional widget-driven interfaces. Of course,
the 3D toolkit still allows standard widgets to be integrated into ap-
plications in addition to the direct interfaces. Sample applications
showing a variety of interactive techniques are shown in operation
in Figure 12 through Figure 15.

An obvious direction for the future is extending the toolkit to have
more nodes, actions, manipulators, and components. Chief among
these are volumes, more 2D shapes, shape-specific manipulators,
photorealistic rendering, and the ability to generate and return prim-
itives (polygons, lines, etc.) for all shapes. This last feature can be
used to implement radlosity, simulation, and analysis.

Other potential directions for the toolkit include:

Animation. Sensors provide the mechanism upon which to build
more complex animation and constraint schemes. The toolkit could
provide higher-level classes to facilitate the creation and storage of
constrained, timed, and scripted motion.

Shared databases. Running dktinct components or applications as
separate processes requires databases to be stored in shared memo-

346

Computer Graphics, 26, 2, July 1992

ry to avoid duplicating large amounts of data. The challenge is to
design a means for exclusive access into shared memory that does
not greatly compromise performance.

Acknowledgments

The other members of the team that designed, implemented, and
documented the 3D toolkit are Thad Beier, Gavin Bell, Alain
Dumesny, David Immel, Paul Isaacs, Howard Look, David Mott,
Nick Thompson, and Josie Wemecke. Thanks to Derrick Bums for
NURBS support, Paul Haeberli for help with printing algorithms,
and Delle Maxwell for assistance with images and aesthetics.

Thanks to Wei Yen and Silicon Graphics for their support of the Iris
InventorTM 3D toolkit project 141.

III

121

131

IJI

151

lhl

171

1x1

191

1101

References

DorC; Pro,~rammer’s Guide. Release 5.0, Kubota Pacific
Computer. Incorporated, Santa Clara, Calif., 1991.

Grtrphic,.~ Ljhru~.y Programmin,g Guide, Silicon Graphics
Computer Systems. Mountain View, Calif., 199 I.

International Standards Organization, Inrernational Sfan-
r/cm/ Infimialion Processing Sjsfems - Computer
Grrrphicx - Graphiwl Kernel System for Three Dimen-
sions (GKS-3D J Func~tional Description, IS0 Document
Number 880.5: 1988(E), American National Standards In-
stitute. New York, 1988.

Iris Imsentor Programming Guide, Silicon Graphics
Computer Systems, Mountain View, Calif., 1992.

Mark Linton, Paul Caulder, John A. Interrante, Steven
Tang, and J0hn.M. Vlissides. Interviews Reference Man-
uu/. C’ersion 3.0.1.. Stanford University, October 1991.

PHIGS+ Committee, Andries van Dam, chair, “PHIGS+
Functional Description, Revision 3.0,” Computer Graph-
/c’s, 22(3). pp. 125-218 (July 1988).

Sttrrhase Graphics Techniques and Display List Pro-
,qrummer’s Guide. Hewlett-Packard Company, Fort Col-
lins. Colo.. 1991.

Steve Upstill, Tire RenderMan Companion, Addison-
Wesley, Reading, Mass., 1990.

Garry Wiegand and Bob Covey, HOOPS Reference Man-
uu/. l’ersion .{.(I. Ithaca Software, 1991.

Robert C. Zeleznik, D. Brookshire Conner, Matthias M.
Wloka. Daniel G. Aliaga, Nathan T. Huang, Philip M.
Huhhard. Brian Knep, Henry Kaufman, John F. Hughes,
and Andriea van Dam, “An Object-Oriented Framework
for the Integration of Interactive Animation Techniques,”
I‘omprtter Gruphic~.s (SIGGRAPH ‘91 Proceedings) 25(4)
pp. 105-l I I (July, 1991).

Figure 7. Examples of shape nodes provided by the toolkit.

Figure 8. Examples of property nodes provided by the toolkit.

347

SIGGRAPH ‘92 Chicago, July 26-31, 1992

Figure 9. The result of rendering the scene graph in Figure 2.

Figure 10. A trackball manipulator being used to rotate an ob-
ject directly.

Figure 11. Examples of simple and compound manipulators.
Each manipulator is shown in the inactive (left) and active
(right) states. Clockwise, from upper left, the manipulators are:
one-axis scale, jack, handle box, spot light, directional light,
and one-axis translate.

Figure 12. A sample application showing several forms of in-
teraction. The large 3D window is a viewer component. Select-
ed parts of the humanoid figure being viewed are highlighted
with yellow bounding boxes. These parts are also enclosed by
Trackball manipulators, which are used to rotate and scale
objects directly. Other components in the figure are used to edit
materials, light sources, and viewing options.

348

Computer Graphics, 26, 2, July 1992

Figure 13. A three-dimensional morphing application. Geom-
etry and color/texture can be interpolated independently.
(Thanks to Rick Pasetto for letting us morph his face.)

Figure 15. An application for creating objects of revolution.
The same profile manipulator as shown in Figure 14 is used to
edit the revolution profile.

Figure 14. A three-dimensional text editing application. The
small window at the bottom contains a profile curve manipula-
tor hshich is used to extrude the 3D text.

349

