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Animation of Dynamic Legged Locomotion

Marc H. Raibert
MIT Leg Laboratory

1 Abstract

This paper 1s about the use of control algorithms to an-
imate dynamic legged locomotion. Control could free
the animator from specifying the details of joint and
limbh motion while producing hoth physically realistic
and natural-looking results. We implemented computer
anmimations of a biped robot, a quadruped robot, and a
kangaroo. Fach creature was modeled as a linked set. of
rigid hodies with comphliant actuators at its joints. Con-
trol algorithms regulated the running speed. organized
use of the legs. and maintained halance. All motions
were generated by numerically integrating equations of
motion derived from the physical models. The result-
ing bhehavior included running at various speeds. trav-
eling with several gaits (run. trot. bound, gallop, and
hop). jumping. and traversing simple paths. Whereas
the use of control permitted a variety of physically re-
alistic animated behavior to be generated with limited
human intervention. the process of designing the con-
trol algorithms was not automated: the algorithms were
“tweaked” and adjusted for each new creature.

Key Words and Phrases: computer animation,
motion control. legged locomotion. robotics. dynamical
simulation, physically realistic modeling.

2 Introduction

An important goal of computer graphics is to generate
physically realistic animation of actuafed systems. Ac-
tuated systems are those that use muscles, motors, or
some other kind of actuator to convert stored energy
into time-varying forces that act within the system’s
mechantcal structure. Animals, robots, and vehicles are
examples of actuated systems. Actuated systems can
create their own motions when asked to perform a task,
often without help from an outside agent. We distin-
guish actuated systems from passive physical objects:
both can move with physical realism, but only actuated
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systems can power and regulate their own motions.

A key step in animating actuated systems 1s to for-
mulate control algorithms that transform expressions
of desired behavior into detailed actuator control sig-
nals that prodnce the necessary motion. This step can
be quite challenging because the relationship hetween
task and motion is usually indirect. Desired behavior
is typically expressed at a time scale and in a coordi-
nate system associated with the task. whereas actuator
control signals operate in the coordinate system and at
the time scale of the mechanical system. For example.
the desired behavior “Run forward at 2 m/s using a
trotting gait”™ does little to specify how the hip joint
on leg 2 should move at various times throughout the
locomotion cycle. In legged locomotion the transforma-
tion from task specification to actuator specification is
central. in that motions of the legs and feet are only
intermittently related to the bhasic functional goals of
providing support. stability, and propulsion.

A second reason that control of actuated systems
i1s challenging is the presence of significant system
dynamics. In dynamic systems the forces and torques
exerted by the actuators on the mechanism are just one
of the factors that influence the movement. Energy
stored. recovered. and exchanged among the various
mechanical components of the system and external
forces influence the present and future motion of the
system. The control algorithms must anticipate the
response to actuation in the context of the ongoing
activity. In a fast-moving legged system. for example.
kinetic energy stored in the rotation of the leg can
be large compared to the energy immediately available
from the hip actuators. If the control algorithms are
to swing the leg forward soon enough to place the foot
for the next step, they must begin reversing the leg’s
motion early in the cycle. Each mass, moment of inertia,
and compliant element in the system stores energy that
might influence behavior. In most cases it is not correct
to think of the control as providing "commands™ to the
mechanism through the actuators. The control inputs
are more like “suggestions” that must be reconciled with
the dynamic state and structure of the system.

Whereas the difficulty of achieving control of dy-
namic systems poses certamn problems, the system dy-
namics also present opportunities.  For instance, the
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Figure 1: Biped. quadruped. and kangaroo models used to
study control of running.

motions of dynamic systems are not limited by the in-
stantaneous power available from the actuators. Stored
energy can be used to generate motion. The difference
achieved in the standing long jump vs. the running
long jump is an example, (about 3.8 m vs. 8.5 m). The
dynamics of a system can also contribute to energetic
efficiency. Most running animals use some of the energy
from one step to power the next, by temporarily storing
it in stretched tendons and ligaments. The kangaroo
achieves a significant energy savings with this trick [2].

This paper describes efforts to use control for
animation of dynamic legged locomotion. We have
restricted attention to fairly low-level desired behaviors.
such as the speed and path of travel, posture, gait,
and gait transitions. The starting point was our
previous work on the control of one-, two-, and four-leg
laboratory robots. Considered collectively, these robots
ran at specified speeds, ran fast (13 mph), ran with
several gaits, changed gait during running, jumped,
climbed a flight of 3 stairs. and performed rudimentary
gymnastic mancuvers [7, 8. 9, 12, 13].  We have
adapted these robot cont rol algorithms for animation
of a biped that runs, gallops, and follows simple paths,
a quadruped that trots. hounds, gallops. changes gait.
and turns. and a planar one-legged kangaroo that hops
and jumps. The creature models are shown in Figure 1.

Despite several variations, the cont rol algorithms
for the three models share a common set of basic
elements. The common elements include a symmetry
principle used for balance, decomposition of the cont rol
algorithms into separate parts for regulating hopping.
speed, and posture, and the use of elastic energy storage
in the legs. One might characterize these common
elements of the control as a tool box for handeraft ing
control algorithms for new creatures with reasonable
effort. At t he moment, the control algorithms for
each new creature or hehavior require adjustment and
tuning. For instance, the control algorithms that make
the kangaroo run at a range of speeds had to be adjusted
manually before they could maintain balance when the
kangaroo took a hig jump. We look forward to more
automat ion of t he cont rol design process.
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Once the control algorithms are implemented. be-
havior of each model is found by numerically integrat-
ing its equations of motion while t he control algorit hms
monitor progress of the hehavior and apply act uator
forces. The animator specifies input to the control algo-
rithms, but does not manipulate t he model or its output
directly. The resulting behavior was found to be quali-
tatively and quantitatively similar to that of the systems
being modeled.

The next section describes previous work on the
use of cont rol in animation of legged locomotion. Then
we describe the basic elements of the locomotion control
algorithms and the models we used for testing. We close
with results and a discussion.

3 Background

The opportunity to use control in computer animation
has been recognized for about ten years. Progress
has been slow because dynamical systems complex
enough to be of interest are difficult to construct,
computationally expensive to simulate, and difficult to
stabilize and control. Researchers have taken a variety
of approaches to simplifying the models. The trick is to
simplify the model and the control problem sufficiently
that animation is computationally and intellectually
tractable, while retaining the underlying dynamics and
realistic results.

Wilhelms and her colleagues implemented several
systems that allowed the animator to explore various
techniques for control of dynamic systems [16, 17]. The
user selects which links are modeled kinematically and
which have full dynamics. The system provides several
low-level control options ranging from position control
with springs and dampers to a mode which attempts
to respond to gravitational forces with external forces
to maintain balance. Joint limits and ground reaction
forces are modeled with springs and dampers. One re-
sult of this work was the recognition that inverse dy-
namics is limited as a tool for computer graphics. In-
verse dynamics is good for transforming detailed mo-
tion trajectories into force functions, once the detailed
motions are known. However, the difficult part of the
problem is finding the desired motions, and knowledge
of the forces is not of vitalinterest in computer graphics,
once the motion trajectories are known.

Bruderlin and Calvert used a dynamic model and
cont rol system to generate the leg motions for a human
walking figure [3]. They used a telescoping leg with two
degrees of freedom as the leg model for the stance phase
and a compound pendulum model for the swing phase.
They controlled walking using techniques adapted from
biomechanics, which focused on syuergy and a hierarchy
of motor programs. Once the walking motion was cal-
culated. a foot and upper body with arms were added
to the model kinematically. These extra degrees of free-
dom were made to move in an oscillatory pattern similar
to the pattern observed in humans. Bruderlin identi-
fied several key parameters of the walking mot ion and
allowed t he animator to change them. The det ails of
t he complete walking motion were generated automati-
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cally by the control system in concert with the dynamic
model.

McKenna and Zeltzer’s work on an animated cock-
roach fully embraced the idea that numerical integra-
tion of a dynamic model could be used to generate all
motions of an animated creature, and that the control
algorithms could influence behavior only through forces
exerted by the actuators [10]. They implemented a dy-
namical model of the cockroach, and relied on a con-
trol system to pattern its motion. Their cockroach had
springy legs, so the load of the hody was distributed
on the support legs. The walking algorithms they used
were based on motion patterns that have been observed
in insect locomotion. McKenna and Zeltzer's work is
closely related to our own, in that we too rely on be-
havior of the dynamical model for all motion generation
and restrict human intervention to specifying desired
behavior to the control. Qur work differs from theirs
in the sort of locomotion studied and the nature of the
control algorithms: they concentrated on statically sta-
ble multi-legged walking, while we focus on running and
Jumping with a ballistic flight phase, and on the role of
the springy leg in generating the running cycle.

Optimization techniques and modern control the-
ory offer the hope of automatically producing control
systems by specifying task constraints or optimization
functions. Witkin and Kass used their “spacetime™ ap-
proach to produce a remarkable animation of a dynamic
lamp {18]. Panne, Fiume, Vranesic used techniques from
modern control theory to allow the lamp to perform a
flip [15]. The potential generality of these approaches
and their ability to deal with anticipation makes them
among the most interesting new methods for anima-
tion of dynamic systems. The potential hability 1s the
growth of the search spaces when applied to more com-
plex systems.

Girard and Maciejewski do not use numerical in-
tegration of physical models, but rely instead on rules
associated with dynamics [4, 5]. For instance, they pro-
grammed a sinusoidal vertical motion of the body to
approximate the motion of a massful body bouncing on
springy legs. They coordinated the joints of their hu-
man figures to keep the center of mass over the support
feet, as required for balance. These techniques resulted
in some of the best looking animation of legged locomo-
tion that we have seen.

4 Animation, Control, and Modeling

Figure 2 shows the general process we use for animation.
The user provides the control system with information
about the desired animated behavior, such as speed,
gait, path, etc. The user also initializes the legged model
by placing it in a particular state. Once the animation
is started, the control algorithms are responsible for
stabilizing posture, maintaining the locomotion cycle,
controlling speed and direction of travel, and regulating
the behavior of the joints. Because the control is able
to coordinate the lower levels of behavior for a task, the
animator is free from direct involvement in specifying
the joint. torques or the details of the actual movements.

The three legged models are shown in Figure 1.
Two of the models are patterned after physical robots
that we built. and use for laboratory experiments. One
robot model is of a biped with telescoping legs and ball-
Joint hips. The other robot model is of a quadruped with
telescoping legs and gimbal hips. The third model is a
simplified version of a kangaroo. It is simplified in that
it is planar, has one leg and arm instead of two, and it
has fewer links in the tail than the animal. A total of six
gaits were implemented and tested: biped running and
galloping, quadruped trotting, bounding. and galloping.
and kangaroo hopping. All of these gaits are technically
classified as running, because they include at least one
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Figure 2: Block diagram of animation process. The model
consists of equations of motion for the rigid bodies of the
legged system, actunator and sensor models, force equations
for ground-interaction, and a numerical integrator that
produces motion as a function of time. The model calculates
its behavior once every integration interval, 0.0004 s. The
control calculates the force or torque to be exerted by each
actuator based on the current state of the model, X, X and
the user input W. The control calculation is done every
control interval, which is usually a few ms. The human
animator specifies desired behavior W, which consists of
desired running speed, the path along which to travel, and
any event information, such as when and how high to jump.
The animator specifies his or her input before the animation
process begins. In the current implementation, the animator
must also initialize the state of the model.

flight phase per cycle, a period when all feet leave the
ground at the same time.

Control

In this section we describe the control algorithms used
for animation of running. A control system for running
must perform three primary functions

e cause the legs to step, exchanging support,

e provide balance to regulate the running speed, and

e maintain the body in an upright posture.
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These three functions can be called hopping, speed
control, and posture control.

Hopping Control

An idea that developed in biomechanics over the last
fifteen years is that animals use elastic structures in
their limbs to improve the energetic efficiency of their
locomotion. Tendons and ligaments in the legs and
feet stretch during each collision with the ground,
converting some the system’s kinetic energy into elastic
strain energy. The stored energy is returned during
the next step, when the elastic structures rebound. A
significant fraction of the total running energy, perhaps
20% to 40%, recirculates from one step to the next,
without needing resupply from the muscles. Kangaroos
use their substantial Achilles tendons to perform this
energy recovery function whereas Alexander argues that
humans store energy in their Achilles tendons and
the ligaments that support the arch of the foot [1].
Compliant legs and feet also reduce peak loads that
occur in running when the feet strike the ground at the
end of each flight phase [11, 1].

We use compliance in the legs to produce the
vertical oscillations needed in running. The control
algorithms allow the mass of the body to rebound
on the springy leg during ground collisions and to be
drawn back to earth by gravity during the flight phase.
The biped and quadruped legs were made springy
with spring-damper actuator models for the telescoping
joint. The kangaroo leg was made springy by modeling
the ankle actuator as a torsional spring-damper with
adjustable rest length. Both actuator models have the
form

f=k(z—xz,)+bz 1)

where f is the actuator force, k is the spring constant,
b the damping constant, x the spring length, and z, the
spring rest length.

Control of the spring rest length is used to inject or
remove energy from the system in order to initiate the
oscillation, modulate it, or stop it. For vertical hopping
with a massless leg, the altitude of a particular hop is
predicted by the sum of the potential strain energy in
the leg spring, the potential energy of elevation of the
system mass, and the kinetic energy due to motion of
the body

h=(PE, cn+ PEucraton + KE)/Mg (2)

where h is the expected altitude of the hop, M is the
system mass, and g is the acceleration of gravity. The
control system can inject or remove energy to influence
this outcome. This hopping control mechanism takes
advantage of the dynamic interaction between the me-
chanical system and the control to generate the motion.
No trajectory is specified.

Speed Control

Legged systems are like inverted pendulums: they
tip and accelerate whenever the point of support is

352

t

neutral point

Figure 3: When the foot is positioned at the neutral point,
the body travels along a symmetric path that leaves the sys-
tem unaccelerated in the forward direction. Displacement of
the foot from the neutral point accelerates the body by skew-
ing the symmetry of the body’s trajectory. When the foot
is placed closer to the hip than the neutral point, the body
accelerates forward during stance and the forward speed at
liftoff is higher than the forward speed at touchdown (left).
When the foot is placed further from the hip than the neutral
point, the body decelerates during stance and the forward
speed at liftoff is slower than the forward speed at touch-
down (right). Horizontal lines under each figure indicate
the distance the body travels during stance, and the curved
lines indicate the path of the body.

displaced from the projection of the center of mass
[6]. If the average point of support is kept under the
average location of the center of mass, the system may
tip for short periods, without tipping over entirely. One
way to achieve such a balancing relationship between
the feet and the center of mass is to move the body
in a symmetric fashion over the supporting feet during
each support period. When the control system places
the foot to obtain a symmetric sweeping pattern, the
forward speed will remain the same at liftoff as it was
at touchdown. We call this position of the foot the
neutral point. When the control system displaces the
foot from the neutral point, the body accelerates, with
the magnitude and direction of acceleration related to
the magnitude and direction of the displacement, as
shown in figure 3. The control system displaces the
foot from the neutral point by a distance proportional to
the difference between the actual speed and the desired
speed. The control system computes the desired foot
position as:

Tina 2—2-+ki(it—i:,,) (3)

where z,,, i1s the forward displacement of the foot
from the projection of the center of gravity, & is the
forward speed, z, is the desired forward speed, T, is the
predicted duration of the next support period, and k;
is a gain. The first term of equation 3 is an estimate of
the neutral point and the second term is a correction for
any error in forward speed or for a desired acceleration.
The duration of the next support period is predicted to
be the same as the measured duration of the previous
support period. After the control system finds z,, ,,
a kinematic transformation determines the joint angles
that will position the foot as specified.
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Liftoff Liftoff

Touchdown Touchdown

State Actions

FLIGHT
Active leg leaves  Interchange active, idle legs
ground Lengthen active leg for landing
Position active leg for landing

Shorten idle leg

LOADING
Active leg touches  Zero active hip torque
ground Keep idle leg short

COMPRESSION
Active leg spring  Servo pitch with active hip
shortens Keep idle leg short
THRUST
Active leg spring  Extend active leg
Servo pitch with active hip

Keep idle leg short

lengthens

UNLOADING
Active leg spring  Shorten active leg
approaches full Zero hip torques active leg
length Keep idle leg short

Figure 4: Finite state machine that coordinates running.
The state shown in the left column is entered when the
sensory event, listed just below the state name, occurs.
Actions arc listed on the right. The controller advances
through the states in sequence. The diagram is for a two-
legged gait.

Posture Control

Depending on the number of legs. the gait, and whether
there is a tail, the trunk may pitch and roll during
running. The long-term attitude of the trunk must be
stabilized if the system is to remain upright. The control
system we implemented regulates the orientation of
the trunk by applying torques to the body during the
support phase. In the biped and quadruped models,
the hip actuators are used to apply the torques required
for attitude control. In the kangaroo model, the knee
is used to perform this function. Vertical loading on
the feet keeps the leg from slipping when the torque is
applied. The posture control torques are generated by
a hnear servo:

r= —k,(0— 04) — ko(9) (4)

where 7 is the leg torque, ¢ is the angle of the body. ¢,
is the desired angle of the body, ¢ is the angular rate of
the body, and k,, k, are gains.

The control systems for running use separate algo-
rithms for stabilizing hopping, forward speed, and pos-
ture of the trunk. Each of these parts of the control acts
independently, as though it influences just one compo-
nent of the behavior. Interactions due to imperfect de-
coupling are treated as disturbances. This decoupling
simplifies the control implementation.

In addition to the control algorithms described so
far, each implementation uses a finite state machine to
track the ongoing behavior of the model, to synchronize
the control actions to the running behavior, and to do

some bookkeeping. Figure 4 shows a state machine for
the biped.

Gaits

We implemented a total of six gaits: biped running and
galloping; quadruped trotting, bounding, and galloping;
and kangaroo hopping. The running algorithms for all
six gaits are based on control originally developed for
one-legged hopping. For each gait we tailored the state
machine to cycle through the legs in the correct order
and to invoke suitable versions of the algorithms that
distribute the load among the support legs.

Bipedal running is like one-legged hopping, except
there is an extra idle leg, in addition to the active leg.
The idle leg is kept short and out of the way while
the active leg performs the functions described earlier
to control forward speed, hopping height, and balance.
The state machine for bipedal running is shown in
figure 4.

In quadruped trotting and bounding, the legs are
coordinated to work together in pairs. The coordination
we used makes each pair of legs act collectively like a
single leg, called a wirtual leg. The members of each
pair strike the ground in unison and leave the ground in
unison. Diagonal legs form pairs in trotting and front
legs and rear legs form pairs in bounding. One can think
of these quadruped gaits as virtual biped gails. with the
active pair of legs providing support while the idle pair
swings forward in preparation for the next step. The
higher levels of the control system ignore the individual
physical legs, pretending to do biped control on the two
virtual legs as described earlier.

Quadruped galloping is similar to bounding except
that the legs of the front and rear pairs no longer
strike and leave the ground in perfect unison. The
stance phase is composed of a single support phase, a
double support phase, and then a second single support
phase. The legs are positioned on the ground with a
separation both in time and space. The stance phase
1s extended and the legs of each pair share the work
of rebounding the body. Biped galloping is similar to
quadruped galloping in that the two stance legs share
a single support phase. We implemented two styles of
biped galloping. In one style the legs swing forward
together during the flight phase. In the other style
they swing forward independently during the other leg's
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single support phase. The first style produces a motion
that is similar to the front half of a galloping horse while
the second is closer to the pattern used by galloping
humans. Pitching of the body in response to swinging
of the legs is greatly reduced in the second form of
galloping.

Kangaroo control

Control algorithms for the kangaroo were essentially the
same as for the robot models, with additional provisions
for coordinating the joints of the articulated leg and
for moving the tail. Kangaroos have legs with rotary
joints. In the kangaroo model we eliminated the toe
Joint, leaving an ankle, a knee, and a hip, all of which
have axes perpendicular to the sagittal plane. We made
several decisions that constrained the behavior of the leg
and allowed us to program it using methods originally
developed for robot telescoping legs.

We decided to use the ankle joint as the primary
energy storage element in the leg. We assumed that the
ankle actuator consisted of a spring-damper mechanism
with an adjustable zero spring length. This mechanism
models a muscle acting in series with a springy Achilles
tendon. We adjusted the spring and damper character-
istics so that a significant fraction of the energy stored
in the spring during leg compression was returned dur-
ing leg extension.

We decided to configure the leg so the ground re-
action force generated during hopping passes approxi-
mately through the knee. This configuration minimizes
the moment required at the knee to resist support and
thrust forces. In balanced running, the ground reaction
forces act along a line passing from the toe through the
systemn center of mass. The control system servoes the
hip joint to keep the knee on this thrust line during
stance.

Because torque about the knee is not needed to
support the body, we use the knee to maintain the body
in a level posture. The linear servo given in equation
(4) operates at the knee during the stance phase to
eliminate errors in body orientation and orientation
rate.

The tail is made to counteroscillate with the leg,
keeping the angular momentum of the entire system
near zero throughout the running cycle. When the
leg strokes backward during the stance phase, the tail
strokes downward. The tail motion is produced by
making a step change in the spring rest length for the
actuator at the base joint of the tail. The spring damper
characteristics of the joint is tuned to oscillate in period
with the running motion. The two peripheral joints in
the tail are actuated by a spring damper with fixed rest
length. The head was servoed to stay level throughout
the running motion.

Modeling

Each of the legged systems was modeled as a tree of rigid
bodies, each connected to its parent by rotary or sliding
joints. The mass, mass center, and moment of inertia
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system center of mass

Figure 5: Top) Drawing of real kangaroo used as the basis of
the kangaroo model. It was a juvenile red kangaroo weighing
6.6 kg. Drawing is from [2]. Bottom) Diagram of kangaroo
model. Except for the trunk, each link was modeled as the
frustum of a cone, with pivots at the base and tip. The two
legs of the real kangaroo were combined into one model leg.
All dimensions were chosen to match the real kangaroo in
link length and link mass, assuming the kangaroo was the
density of water. Mass centers and moments of inertia were
calculated from the geometric model.

for each body were determined in one of two ways. For
the robot models we used actual measurements of the
mass properties. For the kangaroo model we used the
link length, mass, and mass center data given in [2]. We
calculated the moments of inertia of the links from the
geometry used in the graphics, typically assuming the
density of water.

An actuator capable of exerting forces or torques
was located at each joint. The lowest level of control
used linear servo mechanisms to specify actuator forces:

f=—k(8-6,)—k0 (5)

where f is the force or torque acting on the joint,
6 is the joint angle or length, and k, and &k, are
position and velocity feedback gains. These joint servos
have the same dynamical behavior as a spring-damper
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mechanism with programmable rest length. Depending
on one’s point of view and the design of the control
system, these joint servos can be regarded as part of
the control system or as part of the model.

Environmental interaction was restricted to gravi-
tational forces and ground contact forces. A single point
on each foot could make contact with the ground. The
ground contact model for each foot consisted of four
spring and damper sets: one vertical, two tangent to
the surface. and one torsional about the ground sur-
face normal. The rest length of each spring was reset
when a foot first touched the ground during a support
period. The ground contact compliance represents the
compliance of the "paw pad”. the elastic elements on
the bottom of the feet, plus any compliance provided
by the support surface. The kangaroo model used a
non-linear paw pad spring in the vertical direction:

k

fo=k -

=k for: 6
"kyeo1 ore<? (8)

where f, is the vertical spring force, k,, is the paw
pad stiffness, k, is the paw pad thickness, and : is
the altitude of the foot contact point above the ground.
We chose a non-linear spring for this part of the model
because it is consistent with compression of an elastic
material hetween two surfaces, it reduced the maximum
deflection during the support period. and it allowed
vertical forces to develop more slowly at initial impact.

We assume that once ground contact is made, there
1s no shipping between the foot and the ground. This
s equivalent to an infinite coefficient of friction. To
test this assumption we used data from typical runs
to calculate the coefficient of friction that would have
prevented slipping. For the biped, this value was always
less than 1. With the exception of the very beginning
and end of the support period, a coefficient of friction
of about 0.5 would have prevented slipping for the
quadruped and kangaroo. At the very beginning of the
support. period, when the feet begin to make contact
with the ground, however, there is a period of up to 10
ms during which the coefficient of friction would have
had to be almost 2.0 to prevent slipping. A similar
period occurred at the very end of the stance phase.
On a day without oil leaks, the coefficient of friction
between a rohot foot and the floor of our lahoratory is
about 1.0.

Equations of motion were generated for the struc-
ture with a commercially available program [14]. The
program generates efficient subroutines (O(n) where n
is the number of links) that implement the equations of
motion using a variant of Kane’s method and a symbolic
simplification phase. The equations of motion were nu-
merically integrated using Fuler’s method, with time
steps of about 0.0004 s. Simulations of a single creature
ran between 7 and 10 times slower than real time on a

SUN Sparc2.

Dynamic Scaling

We used the basic principles of allometry to scale

Quantity Units Scale Factor

Basic vanables

length L L
time T L:
force F L®
torque FL L*
Motion variables
displacement L L
velocity LT-! L2
acceleration LT-? 1
angular displacement - 1
angular velocity T Lz
angular acceleration T-2 L'
Mechanical parameters
mass FL'T? L?
stiffness FL-! L?
damping FL='T L*?
moment of inertia FLT? L
torsional stiffness FL L
torsional damping FLT L3

Table 1: Scaling rules that preserve geometric similarity.
If a system is scaled in size by a factor L and its mechanical
parameters are each scaled according to the table, then the
motion of the scaled system can be found from the motion of
the original unscaled system. The table is derived assuming
uniform scaling in all dimensions (geometric similarity), and
that the acceleration of gravity is invariant to scale.

the size of a model, along with its control system and
movements. Adult animals of a single species generally
scale uniformly in all linear dimensions. and thereby
maintain their proportions [11]. For a system scaled in
this fashion, Table 1 gives rules for scaling the control
system and the motions. Suppose we want to animate
a kangaroo that is L times bigger than normal. Using
the table we see that it will hop L times as high. travel
VL as fast, and have a cadence 1/v/L of the original
cadence.

There are two ways to use these scaling rules. One
way is to generate a new model of the creature and
a new control system, based on the scaled mechanical
parameters available from the table. Behavior of the
scaled model can be used directly. An alternative is to
implement a single model and control system at scale 1,
but to scale all input to the animation as a function of
1/L, and all output as a function of L. For example, if
L = 2, initial positions would be scaled by L-' = 1/2,
initial times and the integration time step would be
scaled by L='? = 1/\/2, and desired running speed
would be scaled by L='/* = 1/y/2. The animation could
then be run at scale 1. The outputs are scaled before
displayed: positions and geometry by L = 2 and time
by L2 = /2. We used the latter approach, but hoth

give identical results.
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Figure 6: Data recorded from planar kangaroo model
during three steps of running with a desired speed of 5 m/s.
The vertical dashed lines bracket the stance phase. The leg
joint angles are defined in Figure 5. Key to joints in leg
angle plot: (solid) hip, (dashed) knee, (dot-dashed) ankle.

5 Results

Table 2 compares the behavior of each animated runner
to the physical system it is designed to model. The
data indicate that there are many similarities. For
example, the extended flight phase is shorter than the
gathered flight phase for both the physical and the
animated quadruped during bounding. The kangaroo’s
body and tail oscillate as it runs and the magnitude of
the oscillations are similar. The table also illustrates a
number of differences. For instance, the gathered flight
phase of the animated quadruped is twice that of the
robot quadruped. The animated biped spent a great
deal more time in flight than the robot.

Another difference between the animated and real
kangaroo is in the behavior of the feet at impact. The
real kangaroo accelerates its feet to the speed of the
ground just before they touch, so they do not scuff or
have a tangential impact. We call this ground speed
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Robot/
Quantity Animal  Animation
Quadruped Bound
pitch magnitude (deg) 26.4 25.8
stride length (m) 1.15 1.22
stride duration (s) 0.37 0.43
gathered flight phase duration (s) 0.11 0.22
extended flight phase duration (s) 0.04 0.03
stance duration, front legs (s) 0.10 0.10
stance duration, rear legs (s) 0.12 0.08
change of leg length 0.085 0.092
during support (m)
running speed (m/s) 2.9 2.8
error in running speed (m/s) 1.25 1.2
Quadruped Trot
pitch magnitude (deg) 2.2 6.2
stride length (m) 1.84 1.49
stride duration (s) 0.80 0.54
flight duration (s) 0.27 0.18
stance duration (s) 0.12 0.09
change of leg length 0.04 0.03
during support (m)
desired running speed (m/s) 2.3 2.3
error in running speed (m/s) 0.7 0.2
Biped Run
pitch magnitude (deg) 2.0 34
roll magnitude (deg) 6.7 11.5
stride length (m) 0.57 0.74
stride duration (s) 0.36 0.47
flight duration (s) 0.18 0.29
stance duration (s) 0.18 0.18
change of leg length 0.01 0.04
during support (m)
error in running speed (m/s) -0.3 0.2
Kangaroo Hop
peak vertical acceleration (g) 5 4.6
pitch magnitude (deg) 10 12
magnitude of tail wag 30 31
relative to trunk (deg)
stride length (m) 2.2 1.5
stride duration (s) 0.35 0.35
flight duration (s) 0.25 0.24
stance duration (s) 0.10 0.11
desired running speed (m/s) 6.2 5.0

Table 2: Comparison between behavior of physical robot
and animation, and between real and animated kangaroo.
The runs were selected to match running speed as closely as
possible, so running speed should not be used for compar-
ison. The kangaroo data are from [2], and the quadruped
robot data are from [13].
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matching. 'The animated kangaroo does not do ground
speed matching.

The control algorithms were successful in provid-
ing balanced running, regulating the speed of travel to
within about 10% of the desired value, and in steering
the creatures along specified paths. To get each new
creature or gait working required some adjustment of
the control parameters. For example, to improve the ap-
pearance of the quadruped trotting and bounding mo-
tions, we reduced the standing length of the legs. To
get the kangaroo tail to oscillate in rhythm with the
running motion. we adjusted the spring and damping
constants of the tail joint servo until the natural fre-
gquency was abhout equal to the hopping frequency. To
make the kangaroo jump over an obstacle, a number
of additional states were added to the state machine.
These states allowed stiffer operation of the legs for the
Jump. more dissipation in the legs during landing after
the jump. and a number of cosmetic changes. Once ad-
Justed. the locomotion proceeded without adjustment.

6 Discussion

The motions described in this paper are physically
realistic in that they were generated by applying forces
and torques to physical models of a mechanical system.
The degree of physical realism depends on the degree to
which the system is accurately modeled. For instance
the mass parameters of the links, structural strength of
the links. torque availlable from the actuators, actuator
bandwidth. stiffness of the feet. and external friction are
parameters that help determine the overall appearance
of a motion.

There 1s no guarantee. however. that physically
realistic motion will be “natural looking motion™. It
seems that animals move with a smoothness and coor-
dination that is not required by physical realism alone.
Constraints on smoothness, compliance, or energetic ef-
ficiency could eventually lead to uniformly natural look-
ing behavior. We found that increasing the compliance
of the actuators generally improved the appearance of
the animated motions. We expect that constraints that
lower the overall energy expenditure will also contribute
to more natural looking locomotion.

As mentioned earlier, the methods described in this
paper might be thought of as a tool box for handcrafting
control systems for new creatures and hehaviors. We
expect that further development of control systems for
computer animation will proceed in two steps. First,
we expect control algorithms for individual creatures to
hecome capahle of a wider variety of hehavior with less
manual adjustment. Eventually. it should be possible
to design control algorithms that will make creatures
autonomois enough to “do what they are told”. The
animator should bhe able to direct the behavior at a
relatively high level, and let the control system propel
the system from one place to another at the desired
rate along the specified path. use specified gaits, change
hetween gaits. and maintain balance, all while adhering
to physical realism. For well defined sets of creatures
and behaviors. this goal is within sight.

Second. we think it is possible to automate the pro-
cess of generating control algorithms for new creatures.
Given control algorithms that work correctly for the lo-
comotion of a horse, for example. it should be possible
to automatically generate control algorithms for an an-
telope. dog. cat. or elephant. Initially such automati-
cally generated control might be restricted to a limited
repertoire of behavior. A first cut might aim at bhalanced
running at a range of speeds with several gaits and tran-
sitions between gaits. It is difficult to predict how long
it will take to achieve this level of control automati-
cally. or to go beyond it to automate more complicated
creatures or higher-level function.

One might expect the various workers involved in
the study of control algorithms for legged locomotion
animators. robot engineers. and biological scientists - to
differ in their criteria for successful algorithms. Such
criteria could include precision of control. generality
of control algorithms with respect to diverse behaviors
and diverse creatures, the aesthetic appearance of the
resulting movement, the simplicity and elegance of the
solution, or the degree to which an algorithm explains
the workings of animals. We might find, however,
that the solutions that best explain animal behavior
will be similar to those that produce the best robot
behavior, and that the easiest way to make an animation
look animal-like is to use a control system like the
animal’s. It is also possible that techniques successful
in producing animations that are visually pleasing and
natural will lead to a better understanding of the control
at work in animals and to the construction of more
effective robots.
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9 Appendix: Physical Parameters of

odels

Link Mass Moment of
Link length center Mass Inertia

(m)  (m) (kg) (kg —m?)

Biped

trunk 23.1 [17 .17 .30]
upper leg .20 .095 14 (018 .017 .0014]
lower leg .63 22 .64 [-02 .02 .00018]

Hip location wrt trunk center of mass:

r=0.0y=+0.072, =00

Quadruped
trunk 10.0  [.54 2.35 2.39]
upper leg .41 2 1.5 [-043 .043 0]
lower leg 4 .2 1.0 [.0035 .0035 0]

Hip location wrt trunk center of mass:

r=2039, y=20.12, 2=0.0

Kangaroo

trunk 3.67 034
thigh 13 .064 1.62 .0039
shin .26 105 .60 .0033
foot 174 .082 .14 .00038
taill .166 .079 .24 .00058
tail2 .166 071 .14 .00033
taild .166 076 .069 .00016
head 13 .04, .04 .33 .00046

Hip location wrt trunk mass center: [-.11 0]
Head location wrt trunk mass center: [.21 0]
Tail location wrt trunk mass center: [.2 0]

Table 3: Physical parameters of models used in anima-
tions. Link lengths are from proximal joint to distal joint.
Mass centers are distances from the proximal joint of a link
to the mass center. Moments of inertia are about the mass
center of the link. The diagonal of the moment of inertia
tensor is given.



