
Automatic Viewing Control for 3D Direct Manipulation

Cary B. Phillips+
Norman I. Badler

John Granieri

Computer Graphics Research Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389

Abstract

This paper describes a technique for augmenting the
process of 3D direct manipulation by automaticallyfind-
ing an effective placement for the virtual camera. Many
of the best techniques for direct manipulation of 3D ge-
ometric objects are sensitive to the angle of view, and
can thus require that the user coordinate the placement
of the viewpoint during the manipulation process. In
some cases, this process can be automated. This means
that the system can automatically avoid degenerate sit-
uations in which translations and rotations are difficult
to perform. The system can also select viewpoints and
viewing angles which make the object being manipu-
lated visible, ensuring that it is not obstructed by other
objects.

Introduction

3D direct manipulation is a technique for controlling
positions and orientations of geometric objects in a 3D
environment in a non-numerical, visual way. Although
much research has been devoted to 3D direct manipu-
lation of geometric objects, no existing system has ade-
quately integrated the controls for viewing into the di-
rect manipulation process. Evans, Tanner, and Wein
[3], Nielson and Olson[G], and Chen et al [l] all discuss
techniques for manipulation that are sensitive to the
viewing direction, but they do not address how the view
can be manipulated. Ware and Osborne[lO] discuss the
viewing process in general, in terms of metaphors that
it suggests, and Mackinlay et al [5] discuss an effec-

Permission to copy without fee all or part of this material is
granted provided that the copies ere not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1992 ACM 0-89791-471-6/92/0003/0071 . ..$1.50

tive technique for manipulating the viewpoint, both in
proximity to other objects and through large distances.
Neither of these relate the viewing process to direct ma-
nipulation.

Our direct manipulation system includes a mecha-
nism for automatically placing the virtual camera at
a viewpoint which avoids the problems with degenerate
axes suffered by most direct manipulation schemes. The
basic idea is to rotate the camera through small angles
to achieve a better view. Our system also rotates the
camera to avoid viewing obstructions. This viewing op-
eration is an integral part of the manipulation system,
not a separate viewing facility which the user must ex-
plicitly invoke.

The problem of automatic viewing placement for ma-
nipulation is different from that of automatic camera
control in animation. Karp and Feiner[4] describe a sys-
tem called ESPLANADE that automatically visualizes
simulations. It automatically finds camera placements
which provide a good view of movement during an ani-
mation. This is an adjunct to the process of animation,
not an interactive technique.

3D Direct Manipulation

Several techniques have been developed for describing
three dimensional transformations with a two dimen-
sional input device such as a mouse or tablet. Niel-
son and Olson [6] describe a technique for mapping the
motion of a two dimensional mouse cursor to three di-
mensional translations based on the orientation of the
projection of a world space coordinate triad onto the
screen. This mapping makes it difficult to translate
along an axis parallel to the line of sight, because the

tCary PhiIIips current address: Pacific Data Images, 1111
Karlstad Dr, Sunnyvale, CA 94089

71

axis projects onto a point on the screen instead of a
direction.

Rotations are considerably more complex, but several
techniques have been developed, with varying degrees
of success. The most naive technique is to simply use
horizontal and vertical mouse movements to control the
world space euler angles which define the orientation
of an object. This technique provides little kinesthetic
feedback because there is no natural correspondence be-
tween the movements of the mouse and the rotation of
the object. A better approach, described by Chen et
al [l], is to make the rotation angles either parallel or
perpendicular to the viewing direction. This makes the
object rotate relative to the graphics window, providing
much greater kinesthetic feedback, but it also makes the
available rotation axes highly dependent on the viewing
direction.

3D Manipulation in Jack

Our interactive system is called JackTMt, and it is de-
signed for modeling, manipulating, animating, and an-
alyzing human figures, principally for human factors
analysis. The 3D direct manipulation facility in Jack al-
lows the user to interactively manipulate figure positions
and orientations, and joiut angles subject to limits[l.
Jack also has a sophisticated system of manipulating
postures through inverse kinematics and behavior func-
tions [8, 91. JacR runs on Silicon Graphics IRIS work-
stations, and it uses a three button mouse to control
translation and rotation. Within the direct manipula-
tion process, the user can toggle between rotation and
translation, and between the local and global coordinate
axes, by holding down the CONTROL and SHIFT keys, re-
spectively.

With translation, the user controls the movement by
moving the mouse cursor along the line which the se-
lected axis makes on the screen. This is similar to the
projected triad scheme of Nielson and Olson[G], and it
ensures good kinesthetic correspondence. Pairs of but-
tons select pairs of axes and translate in a plane. A 3D
graphical translation icon located at the origin of the
object being manipulated illustrates the selected axes
and the enabled directions of motion.

The user can control rotation around the 2, y, and
z axes, in either local or global coordinates. Only one
axis can be selected at a time. A graphical wheel icon
illustrates the origin and direction of the axis. The user
controls the rotation by moving the cursor around the
perimeter of the rotation wheel, causing the object to
rotate around the axis. This is analogous to turning
a crank by grabbing the perimeter and dragging it in
circles. This is somewhat similar to Evans, Tanner and

t Jack is a trademark of the University of Pennsylvania.

Wein’s turntable technique[3], but it provides greater
graphical feedback.

Drawbacks

A drawback of the manipulation technique in Jack is the
inability to translate an object along an axis parallel to
the line of sight, or to rotate around an axis perpendic-
ular to the line of sight. In these cases, small differences
in the screen coordinates of the mouse correspond to
large distances in world coordinates, which means that
the object may spin suddenly or zoom off to infinity.
This is an intrinsic problem with viewing through a 2D
projection: kinesthetic correspondence dictates that the
object’s image moves in coordination with the input de-
vice, but if the object’s movement is parallel to the line
of projection, the image doesn’t actually move, it only
shrinks or expands in perspective.

In the past, we adopted the view that the first prereq-
uisite for manipulating a figure is to position the camera
in a convenient view. Although the viewpoint manip-
ulation techniques in Jack are quite easy to use, this
forced the user through additional step in the manipu-
lation process, and the user frequently moved back and
forth between manipulating the object and camera.

3D Viewing

The computer graphics workstation provides a view into
a virtual 3D world. It is natural to think of a graphics
window as the lens of a camera, so the process of ma-
nipulating the viewpoint is analogous to moving a cam-
era through space. Evans, Tanner, and Wein describe
viewing rotation as the single most effective depth cue,
even better than stereoscopy [3]. In order for an inter-
active modeling system to give the user a good sense
of the three-dimensionality of the objects, it is essential
that the system provide a good means of controlling the
viewpoint.

Control over the viewpoint is especially important
during the direct manipulation process, because of the
need to “see what you are doing.” The whole notion of
direct manipulation requires that the user see what is
happening, and feel the relationship to the movement of
the input devices. If the user can’t see the object, then
he or she certainly can’t manipulate it properly.

Jack uses Ware and Osborne’s camera in hand
metaphor[lO] for the view. The geometric environment
in problems in human factors analysis usually involve
models of human figures in a simulated workspace. The
most appropriate cognitive model to promote is one of
looking in on a real person interacting with real, life-size
objects. Therefore, Jack suggests that the controls on
the viewing mechanism more or less match the controls
we have as real observers: move side to side and up and

72

down while staying focused on the same point.
The viewing adjustments in Jack are easy to invoke

from within the direct manipulation process, and this is
a very common thing to do. The typical way of perform-
ing a manipulation is to intersperse translations and ro-
tations with viewing adjustments, in order to achieve a
better view during the process. The context switch be-
tween viewing and manipulation is very easy to make.

Automatic Viewing Adjustments

Much of this viewing adjustment as an aid to manipula-
tion can be automated, in which case the system auto-
matically places the camera in a view which avoids the
problems of degenerate axes. This can usually be done
with a small rotation to move the camera away from
the offending axis. This automatic camera rotation can
even be helpful by itself, because it provides a kind of
depth cue.

To prevent degenerate movement axes from caus-
ing problems during direct manipulation, Jack uses a
threshold between the movement asis and the line of
sight, beyond which it will not allow the user to ma-
nipulate an object. To do so would mean that small
movements of the mouse would result in huge transla-
tions or rotations of the object. This value is usually
20°, implying that if the user tries to translate along
an axis which is closer than 20” to the line of sight,
Jack will respond with a message saying “can% trans-
late along that axis from this view,” and it will not allow
the user to do it. The same applies to rotation around
axes perpendicular to the line of sight. In these cases,
the rotation wheel projects onto a line, so the user has
no leverage to rotate it.

The automatic viewing adjustment invokes itself if the
user selects the same axis again after getting the warn-
ing message. Jack will automatically rotate the camera
so that its line of sight is away from the transforma-
tion axis. To do this, it orients the camera so that it
focuses on the object’s origin, and then rotates the cam-
era around both a horizontal and a vertical axis, both
of which pass through the object’s origin. The angles
of rotation are computed so that the angular distance
away from the offending axis is at least 20°.

This technique maintains the same distance between
the camera and the object being manipulated. In gen-
eral, this “zoom factor” is much more subjective and is
difficult for the system to predict. In practice, we have
found it best to require the user to control this quantity
explicitly.

The reason for the repeated axis selection is to ensure
that the user didn’t select the axis by mistake. It is
common to position the view parallel to a coordinate
axis to get a 2D view of an object. If the user likes this
view, then it would be wrong to disturb it. For example,

if the user positions the view parallel to the z axis to
get a view of the x:y plane, and then accidentally hits
the right mouse button, the view will not automatically
change unless the user confirms that this is what he or
she wants to do.

Automatic view positioning also takes place when the
object is not visible. This may mean that the object is
not visible at all, or only that its origin is not visible.
For example, a human figure may be mostly visible but
with its foot off the bottom of the screen. In this case, a
command to move the foot will automatically reposition
the view so that the foot is visible.

Smooth Viewing Transitions

Both the horizontal and vertical automatic viewing ro-
tations occur simultaneously, and Jack applies them in-
crementally using a number of intermediate views so
the user sees a smooth transition from the original view
to the new. This avoids a disconcerting snap in the
view. Jack applies the angular changes using an ease
in/ease out function which ensures that the transition
is smooth.

The procedure for rotating the camera is sensitive to
the interactive frame rate so that it provides relatively
constant response time. If the camera adjustment were
to use a constant number of intermediate frames, the
response time would be either too short if the rate is fast
or too long if the rate is slow. Jack keeps track of the
frame rate using timing information available from the
operating system in 1/6Oth’s of seconds. We compute
the number of necessary intermediate frames so that the
automatic viewing adjustment takes about 1 second of
real time.

Avoiding Viewing Obstructions

When manipulating an object using solid shaded graph-
ics, it can be especially difficult to see what your are
doing because of the inability to see through other ob-
jects. In some situations, this may be impossible to
avoid, in which case the only alternative is either to
proceed without good visibility or revert to a wireframe
image. Frequently however, it may be possible to au-
tomatically change the view slightly so that the object
is less obstructed. To do this, we borrow an approach
from radiosity, the hemicvbe [2].

The hemicube determines the visibility of an en-
tire geometric environment from a particular reference
point, and we can use this information to find an un-
obstructed location for the camera if one exists. We
perform the hemicube computation centered around the
origin of the object being manipulated, but oriented to-
wards the current camera location. This yields a visibil-
ity map of the entire environment, or what we would see

73

through a fish-eye lens looking from the object’s origin
towards the camera. If the camera is obstructed in the
visibility map, we look in the neighborhood of the direc-
tion of the camera for an empty area in the hemicube
map. This area suggests a location of the camera from
which the object will be visible. From this, we com-
pute the angles through which the camera should be
rotated. We generate the hemicube map using the hard-
ware shading and z-buffer, so its computation is quite
efficient.

This type of hemicube is somewhat different from the
type used radiosity because it is not necessarily centered
around the surface of an object. In fact, it need not
be associated with a surface at all, as when the direct
manipulation operation is applied to a shapeless entity
like a 3D control point or a goal point for an inverse
kinematics operation. Therefore, our hemi-cube is ac-
tually not “hemi” at all, since we use all six sides of the
cube. In cases when the direct manipulation operation
is moving a geometric object, it is convenient to omit
the object from the hemicube visibility computation al-
together. Otherwise, most of the visibility map will be
filled up with the object itself, even though it is usually
quite acceptable to manipulate an object from a view
opposite its coordinate origin.

In our current implementation, the hemicube main-
tains only occlusion information, not depth information.
Therefore, it will fail to find suitable camera locations
in an enclosed environment. In such cases, there are no
holes in the visibility map at all, although there may be
regions only occluded by very distance objects. These
very distant objects don’t matter unless we were con-
sidering placing the camera very far away. A better
approach would be to retain depth information in the
hemicube and search for a camera position which is un-
obstructed only between the camera and the object, al-
lowing the distance between the object and the cam-
era change as necessary, possibly causing the camera to
move in front of other objects.

Conclusion

The control of a virtual camera is vitally important to
many techniques for 3D direct manipulation system, al-
though no one has previously addressed the two issues
in an integrated manner. Our technique for automati-
cally adjusting the view in conjunction with direct ma-
nipulation has been implemented, and it is an effective
addition to the manipulation process. The automatic
viewing rotations are usually very small so they do not
interject large changes to the user’s view of the geomet-
ric environment. Since the viewing adjustments are only
activated on the second attempt at movement along a
degenerate axis, the adjustments are seldomly invoked

accidentally, minimizmg the degree to which the adjust-
ments are inappropriate.

References

PI

PI

[31

PI

[51

PI

[71

PI

PI

PO1

Michael Chen, S’. Joy Mountford, and Abigail
Sellen. A Study in Interactive 3-D Rotation Using
2-D Control Devices. Compu2er Graphics, 22(4),
1988.

Michael F. Cohen and Donald P. Greenberg. The
Hemi-Cube: A Radiosity Solution for Complex En-
vironments. Computer Graphics, 19(3), 1985.

Kenneth B. Evans, Peter Tanner, and Marceli
Wein. Tablet Based Valuators That Provide One,
Two or Three Degrees of Freedom. Compuier
Graphics, 15(3), 1981.

P. Karp and S. Feiner. Issues in the Automated
Generation of Animated Presentations. In Proceed-
ings of Graphics Interface ‘90, 1990.

Jock D. Mackinlay, Stuart K. Card, and George G.
Robinson. Rapid and Controlled Movement
Through a Virtual 3D Workspace. Computer
Graphics, 24(4), 1990.

Gregory Nielson and Dan Olsen Jr. Direct Manipu-
lation Techniques for 3D Objects Using 2D Locator
Devices. In Proceedings of 1986 Workshop on In-
teractive 9D Graphics, Chapel Hill, NC, October
1987. ACM.

Cary B. Phillips and Norman I. Badler. Jack: A
Toolkit for Manipulating Articulated Figures. In
Proceedings of ACM SIGGRAPH Symposium on
User Interface Software, Banff, Alberta, Canada,
1988.

Cary B. Phillips and Norman I. Badler. Interactive
Behaviors for Bipedal Articulated Figures. Com-
puter Graphics, 25(4), 1991.

Cary B. Phillips, Jianmin Zhao, and Norman I.
Badler. Interactive Real-Time Articulated Fig-
ure Manipulation Using Multiple Kinematic Con-
straints. Computer Graphics, 24(2), 1990.

Colin Ware and Steven Osborne. Exploration and
Virtual Camera Control in Virtual Three Dimen-
sional Environments. Computer Graphics, 24(4),
1990.

74

