
A Distributed 3D Graphics Library

Blair MacIntyre and Steven Feiner1

Department of Computer Science
Columbia University

o
d
g
m

c
e

io

e

u

o
h

a

t

t

t

o
t

al
m

red
c-
re.
re
tor
ul
a-
r

ing
on
pose
liq
tely
yn-
on-

ow
ene
ta-
ur

ge,
o
the
ibut-
ne
le

ned
Abstract
We present Repo-3D, a general-purpose, object-oriented library
developing distributed, interactive 3D graphics applications acr
a range of heterogeneous workstations. Repo-3D is designe
make it easy for programmers to rapidly build prototypes usin
familiar multi-threaded, object-oriented programming paradig
All data sharing of both graphical and non-graphical data is do
via general-purpose remote and replicated objects, presenting
illusion of a single distributed shared memory. Graphical obje
are directly distributed, circumventing the “duplicate databas
problem and allowing programmers to focus on the applicat
details.

Repo-3D is embedded in Repo, an interpreted, lexically-scop
distributed programming language, allowing entire applications
be rapidly prototyped. We discuss Repo-3D’s design, and introd
the notion of local variations to the graphical objects, which allow
local changes to be applied to shared graphical structures. L
variations are needed to support transient local changes, suc
highlighting, and responsive local editing operations. Finally, w
discuss how our approach could be applied using other progr
ming languages, such as Java.

CR Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming—Distributed Pro-
gramming; H.4.1 [Information Systems Applications]: Office
Automation—Groupware; I.3.2 [Computer Graphics]: Graphics
Systems—Distributed/network graphics; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Graphics data structures and
data types; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality.

Additional Keywords and Phrases: object-oriented graphics,
distributed shared memory, distributed virtual environmen
shared-data object model.

1 INTRODUCTION
Traditionally, distributed graphics has referred to the architecture
of a single graphical application whose components are distribu
over multiple machines [14, 15, 19, 27] (Figure 1a). By taking
advantage of the combined power of multiple machines, and
particular features of individual machines, otherwise impractic
applications became feasible. However, as machines have gr
more powerful and application domains such as Compu

1. {bm,feiner}@cs.columbia.edu, http://www.cs.columbia.edu/graphics
ional
are
ts
ted
ted
y

for
ss
 to
 a
.

ne
the
ts
”
n

d,
to
ce

cal
 as
e
m-

s,

ed

he
al
wn
er

Supported Cooperative Work (CSCW) and Distributed Virtu
Environments (DVEs) have been making the transition fro
research labs to commercial products, the term distributed graphics
is increasingly used to refer to systems for distributing the sha
graphical state of multi-display/multi-person, distributed, intera
tive applications (Figure 1b). This is the definition that we use he

While many excellent, high-level programming libraries a
available for building stand-alone 3D applications (e.g. Inven
[35], Performer [29], Java 3D [33]), there are no similarly powerf
and general libraries for building distributed 3D graphics applic
tions. All CSCW and DVE systems with which we are familia
(e.g., [1, 7, 11, 12, 16, 28, 30, 31, 32, 34, 37, 41]) use the follow
approach: A mechanism is provided for distributing applicati
state (either a custom solution or one based on a general-pur
distributed programming environment, such as ISIS [4] or Ob
[8]), and the state of the graphical display is maintained separa
in the local graphics library. Keeping these “dual databases” s
chronized is a complex, tedious, and error-prone endeavor. In c
trast, some non-distributed libraries, such as Inventor [35], all
programmers to avoid this problem by using the graphical sc
description to encode application state. Extending this “single da
base” model to a distributed 3D graphics library is the goal of o
work on Repo-3D.

Repo-3D is an object-oriented, high-level graphics packa
derived from Obliq-3D [25]. Its 3D graphics facilities are similar t
those of other modern high-level graphics libraries. However,
objects used to create the graphical scenes are directly distr
able—from the programmer’s viewpoint, the objects reside in o
large distributed shared memory (DSM) instead of in a sing
process. The underlying system replicates any of the fine-grai
objects across as many processes as needed, with no addit
effort on the part of the programmer. Updates to objects
automatically reflected in all replicas, with any required objec
automatically distributed as needed. By integrating the replica
objects into the programming languages we use, distribu
applications may be built using Repo-3D with little more difficult
than building applications in a single process.

Figure 1: Two meanings of distributed graphics: (a) a single logical
graphics system with distributed components, and (b) multiple dis-
tributed logical graphics systems. We use the second definition here.

Supplemental Materials
Supplemental materials for this paper are available in the papers/macintyr directory.

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

d
d,

m-
ver
ing

ot
ly
m-

to
the
],

y,
ire
ess

 be
pri-
ated.
hod
s,
data

cy,
]),
ead-
 we
 the

ing
lel
ry-
.g.,
re
 of

the
f

BM
g.,
te
ver,
ata
hile

more
vel

or
n.
ng
iple
ple
el

s in
e-
 a
s or
ses.
, and
ve a
 are
 of
No matter how simple the construction of a distributed applica-
tion may be, a number of differences between distributed and
monolithic applications must be addressed. These include:
• Distributed control. In a monolithic application, a single com-

ponent can oversee the application and coordinate activities
among the separate components by notifying them of changes
to the application state. This is not possible in a non-trivial dis-
tributed application. Therefore, we must provide mechanisms
for different components to be notified of changes to the
distributed state.

• Interactivity. Updates to distributed state will be slower than
updates to local state, and the amount of data that can be
distributed is limited by network bandwidth. If we do not want
to sacrifice interactive speed, we must be able to perform some
operations locally. For example, an object could be dragged
locally with the mouse, with only a subset of the changes
applied to the replicated state.

• Local variations. There are times when a shared graphical
scene may need to be modified locally. For example, a
programmer may want to highlight the object under one user’s
mouse pointer without affecting the scene graph viewed by
other users.

Repo-3D addresses these problems in two ways. First, a
programmer can associate a notification object with any replicated
object. The notification object’s methods will be invoked when the
replicated object is updated. This allows reactive programs to be
built in a straightforward manner. To deal with the second and third
problems, we introduce the notion of local variations to graphical
objects. That is, we allow the properties of a graphical object to be
modified locally, and parts of the scene graph to be locally added,
removed, or replaced.

In Section 2 we describe how we arrived at the solution presented
here. Section 3 discusses related work, and Section 4 offers a
detailed description of the underlying infrastructure that was used.
The design of Repo-3D is presented in Section 5, followed by
some examples and concluding remarks in Sections 6 and 7.

2 BACKGROUND
Repo-3D was created as part of a project to support rapid prototyp-
ing of distributed, interactive 3D graphical applications, with a
particular focus on DVEs. Our fundamental belief is that by
providing uniform high-level support for distributed programming
in the languages and toolkits we use, prototyping and experiment-
ing with distributed interactive applications can be (almost) as
simple as multi-threaded programming in a single process. While
care must be taken to deal with network delays and bandwidth
limitations at some stage of the program design (the languages and
toolkits ought to facilitate this), it should be possible to ignore such
issues until they become a problem. Our view can be summarized
by a quote attributed to Alan Kay, “Simple things should be
simple; complex things should be possible.”

This is especially true during the exploration and prototyping
phase of application programming. If programmers are forced to
expend significant effort building the data-distribution components
of the application at an early stage, not only will less time be spent
exploring different prototypes, but radical changes in direction will
become difficult, and thus unlikely. For example, the implementa-
tion effort could cause programs to get locked into using a commu-
nication scheme that may eventually prove less than ideal, or even
detrimental, to the program’s final design.

Since we are using object-oriented languages, we also believe
that data distribution should be tightly integrated with the
language’s general-purpose objects. This lets the language’s type
system and programming constructs reduce or eliminate errors in
the use of the data-distribution system. Language-level integration

also allows the system to exhibit a high degree of network data
transparency, or the ability for the programmer to use remote an
local data in a uniform manner. Without pervasive, structure
high-level data-distribution support integrated into our progra
ming languages and libraries, there are applications that will ne
be built or explored, either because there is too much programm
overhead to justify trying simple things (“simple things are n
simple”), or because the added complexity of using relative
primitive tools causes the application to become intractable (“co
plex things are not possible”).

Of the tools available for integrating distributed objects in
programming languages, client-server data sharing is by far
most common approach, as exemplified by CORBA [26
Modula-3 Network Objects [5], and Java RMI [39]. Unfortunatel
interactive graphical applications, such as virtual reality, requ
that the data used to refresh the display be local to the proc
doing the rendering or acceptable frame refresh rates will not
achieved. Therefore, pure client-server approaches are inappro
ate because at least some of the shared data must be replic
Furthermore, since the time delay of synchronous remote met
calls is unsuitable for rapidly changing graphical application
shared data should be updated asynchronously. Finally, when
is replicated, local access must still be fast.

The most widely used protocols for replicated data consisten
and thus many of the toolkits (e.g., ISIS [4] and Visual-Obliq [3
allow data updates to proceed unimpeded, but block threads r
ing local data until necessary updates arrive. The same reason
need replicated data in the first place—fast local read access to
data—makes these protocols unsuitable for direct replication of the
graphical data. Of course, these protocols are fine for replicat
application state that will then be synchronized with a paral
graphical scene description, but that is what we are explicitly t
ing to avoid. Fortunately, there are replicated data systems (e
Orca [2] or COTERIE [24]) that provide replicated objects that a
well suited to interactive applications, and it is upon the second
these systems that Repo-3D is built.

3 RELATED WORK
There has been a significant amount of work that falls under
first, older definition of distributed graphics. A large number o
systems, ranging from established commercial products (e.g., I
Visualization Data Explorer [21]) to research systems (e.
PARADISE [19] and ATLAS [14]), have been created to distribu
interactive graphical applications over a set of machines. Howe
the goal of these systems is to facilitate sharing of application d
between processes, with one process doing the rendering. W
some of these systems can be used to display graphics on
than one display, they were not designed to support high-le
sharing of graphical scenes.

Most high-level graphics libraries, such as UGA [40], Invent
[35] and Java 3D [33], do not provide any support for distributio
Others, such as Performer [29], provide support for distributi
components of the 3D graphics rendering system across mult
processors, but do not support distribution across multi
machines. One notable exception is TBAG [13], a high-lev
constraint-based, declarative 3D graphics framework. Scene
TBAG are defined using constrained relationships between tim
varying functions. TBAG allows a set of processes to share
single, replicated constraint graph. When any process assert
retracts a constraint, it is asserted or retracted in all proces
However, this means that all processes share the same scene
that the system’s scalability is limited because all processes ha
copy of (and must evaluate) all constraints, whether or not they
interested in them. There is also no support for local variations
the scene in different processes.

8].
 the
for
ects
va.
ng
d

 to

ed
es,
he
.1).

D
 a
ject

ata-

ul-
iliar
ject
 a
he
 in
ose
ed
e

ar-

 as
hus
plus

t
rk

f
 of
d
to
Machiraju [22] investigated an approach similar in flavor to ours,
but it was not aimed at the same fine-grained level of interactivity
and was ultimately limited by the constraints of the implementa-
tion platform (CORBA and C++). For example, CORBA objects
are heavyweight and do not support replication, so much of their
effort was spent developing techniques to support object migration
and “fine-grained” object sharing. However, their fine-grained
objects are coarser than ours, and, more importantly, they do not
support the kind of lightweight, transparent replication we desire.
A programmer must explicitly choose whether to replicate, move,
or copy an object between processes when the action is to occur (as
opposed to at object creation time). Replicated objects are indepen-
dent new copies that can be modified and used to replace the origi-
nal—simultaneous editing of objects, or real-time distribution of
changes as they are made is not supported.

Of greater significance is the growing interest for this sort of sys-
tem in the Java and VRML communities. Java, like Modula-3, is
much more suitable as an implementation language than C or C++
because of its cross-platform compatibility and support for threads
and garbage collection: Without the latter two language features,
implementing complex, large-scale distributed applications is
extremely difficult. Most of the current effort has been focused on
using Java as a mechanism to facilitate multi-user VRML worlds
(e.g., Open Communities [38]). Unfortunately, these efforts
concentrate on the particulars of implementing shared virtual
environments and fall short of providing a general-purpose shared
graphics library. For example, the Open Communities work is
being done on top of SPLINE [1], which supports only a single
top-level world in the local scene database.

Most DVEs [11, 12, 16, 31, 32] provide support for creating
shared virtual environments, not general purpose interactive 3D
graphics applications. They implement a higher level of abstrac-
tion, providing support for rooms, objects, avatars, collision detec-
tion, and other things needed in single, shared, immersive virtual
environments. These systems provide neither general-purpose
programming facilities nor the ability to work with 3D scenes at a
level provided by libraries such as Obliq-3D or Inventor. Some use
communication schemes that prevent them from scaling beyond a
relatively small number of distributed processes, but for most the
focus is explicitly on efficient communication. SIMNET [7], and
the later NPSNet [41], are perhaps the best known large-scale
distributed virtual-environment systems. They use a fixed, well-
defined communication protocol designed to support a single,
large-scale, shared, military virtual environment.

The techniques for object sharing implemented in recent CSCW
toolkits [28, 30, 34, 37] provide some of the features we need,
particularly automatic replication of data to ease construction of
distributed applications. However, none of these toolkits has
integrated the distribution of data into its programming language’s
object model as tightly as we desire. As a result, they do not pro-
vide a high enough level of network data transparency or suffi-
ciently strong consistency guarantees. In groupware applications,
inconsistencies tend to arise when multiple users attempt to per-
form conflicting actions: the results are usually obvious to the
users and can be corrected using social protocols. This is not an
acceptable solution for a general-purpose, distributed 3D graphics
toolkit. Furthermore, none of these CSCW systems provides any
support for asynchronous update notification, or is designed to
support the kind of large-scale distribution we have in mind.

Finally, while distributed games, such as Quake, have become
very popular, they only distribute the minimum amount of applica-
tion state necessary. They do not use (or provide) an abstract, high-
level distributed 3D graphics system.

4 UNDERLYING INFRASTRUCTURE
Our work was done in the Modula-3 programming language [1
We decided to use Modula-3 because of the language itself and
availability of a set of packages that provide a solid foundation
our infrastructure. Modula-3 is a descendant of Pascal that corr
many of its deficiencies, and heavily influenced the design of Ja
In particular, Modula-3 retains strong type safety, while addi
facilities for exception handling, concurrency, object-oriente
programming, and automatic garbage collection2. One of its most
important features for our work is that it gives us uniform access
these facilities across all architectures.

Repo-3D relies on a number of Modula-3 libraries, as illustrat
in Figure 2. Distributed data sharing is provided by two packag
the Network Object client-server object package [5], and t
Replicated Object shared object package [24] (see Section 4
DistAnim-3D is derived from Anim-3D [25], a powerful, non-
distributed, general-purpose 3D library originally designed for 3
algorithm animation (see Section 4.2). Finally, Repo itself is
direct descendant of Obliq [8], and uses the Replicated Ob
package to add replicated data to Obliq (see Section 4.3).

4.1 Distributed Shared Memory
Repo-3D’s data sharing mechanism is based on the Shared D
Object Model of Distributed Shared Memory (DSM) [20]. DSM
allows a network of computers to be programmed much like a m
tiprocessor, since the programmer is presented with the fam
paradigm of a common shared memory. The Shared Data-Ob
Model of DSM is particularly well suited to our needs since it is
high-level approach that can be implemented efficiently at t
application level. In this model, shared data is encapsulated
user-defined objects and can only be accessed through th
objects’ method calls. The DSM address space is partition
implicitly by the application programmer, with an object being th
smallest unit of sharing. All shared data is fully network transp

2. The Modula-3 compiler we used is available from Critical Mass, Inc.
part of the Reactor programming environment. The compiler, and t
our system, runs on all the operating systems we have available (
others): Solaris, IRIX, HP-UX, Linux, and Windows NT and 95.

Figure 2: The architecture of Repo-3D. Aside from native graphics
libraries (X, Win32, OpenGL, Renderware) the Modula-3 runtime
shields most of the application from the OS. The Replicated Objec
package uses an Event communication package and the Netwo
Object package. DistAnim-3D is implemented on top of a variety o
native graphics libraries and Replicated Objects. Repo exposes most
the useful Modula-3 packages, as well as using Network Objects an
Replicated Objects to present a distributed shared memory model
the programmer.

Operating System Services

Network Objects

Replicated Objects

Modula-3 Runtime

Events
Native
Graphics

DistAnim-3DRepo

Repo-3D

Network

hat
 to

hods
efore
s-
strib-
nto a
plied
ted

void
ach
ers.)
er to
licas
 pro-
til it
 with

his
ny
ject
ple
 it

va.
es a

n to
ge.

ly
ared
al
ould
l

d
e-
ted

s in

res
ts a
m.

ave

e as
xtra
iers
s to
 to a
the
ds
tance

 to
stent
ne

 by
a

then
 the
e is
al,
than
 be
ent because it is encapsulated within the programming language
objects.

Distribution of new objects between the processes is as simple as
passing them back and forth as parameters to, or return values
from, method calls—the underlying systems take care of the rest.3

Objects are only distributed to new processes as necessary, and (in
our system) are removed by the garbage collector when they are no
longer referenced. Furthermore, distributed garbage collection is
supported, so objects that are no longer referenced in any process
are removed completely.

There are three kinds of distributed object semantics in our DSM:
• Simple objects correspond to normal data objects, and have no

special distributed semantics. When a simple object is copied
between processes, a new copy is created in the destination
process that has no implied relationship to the object in the
source process.

• Remote objects have client-server distribution semantics. When
a remote object is copied between processes, all processes
except the one in which the object was created end up with a
proxy object that forwards method invocations across the
network to the original object.

• Replicated objects have replicated distribution semantics.
When a replicated object is passed between processes, a new
replica is created in the destination process. If any replica is
changed, the change is reflected in all replicas.

The Network Object package provides support for remote
objects. It implements distributed garbage collection, exception
propagation back to the calling site, and automatic marshalling and
unmarshalling of method arguments and return values of virtually
any data type between heterogeneous machine architectures. The
package is similar to other remote method invocation (RMI) pack-
ages developed later, such as the Java RMI library [39]. All method
invocations are forwarded to the original object, where they are
executed in the order they are received.

The Replicated Object package supports replicated objects. Each
process can call any method of an object it shares, just as it can
with a simple or remote object. We will describe the Replicated
Object package in more detail, as Repo-3D relies heavily on its
design, and the design of a replicated object system is less straight-
forward than a remote one. The model supported by the Replicated
Object package follows two principles:
• All operations on an instance of an object are atomic and

serializable. All operations are performed in the same order on
all copies of the object. If two methods are invoked simulta-
neously, the order of invocation is nondeterministic, just as if
two threads attempted to access the same memory location
simultaneously in a single process.

• The above principle applies to operations on single objects.
Making sequences of operations atomic is up to the program-
mer.

The implementation of the Replicated Object package is based
on the approach used in the Orca distributed programming
language [2]. A full replication scheme is used, where a single
object is either fully replicated in a process or not present at all.
Avoiding partial replication significantly simplifies the implemen-
tation and the object model, and satisfies the primary rationale for
replication: fast read-access to shared data. To maintain replication
consistency an update scheme is used, where updates to the object
are applied to all copies.

The method of deciding what is and is not an update is w
makes the Orca approach particularly interesting and easy
implement. All methods are marked as either read or update meth-
ods by the programmer who creates the object type. Read met
are assumed to not change the state of the object and are ther
applied immediately to the local object without violating consi
tency. Update methods are assumed to change the state. To di
ute updates, arguments to the update method are marshalled i
message and sent to all replicas. To ensure all updates are ap
in the same order, the current implementation of the Replica
Object package designates a sequencer process for each object.
There may be more than one sequencer in the system to a
overloading one process with all the objects (in this case, e
object has its updates managed by exactly one of the sequenc
The sequencer is responsible for assigning a sequence numb
each message before it is sent to all object replicas. The rep
then execute the incoming update messages in sequence. The
cess that initiated the update does not execute the update un
receives a message back from the sequencer and all updates
earlier sequence numbers have been executed.

There are three very important reasons for choosing t
approach. First, it is easy to implement on top of virtually a
object-oriented language, using automatically generated ob
subtypes and method wrappers that communicate with a sim
runtime system. We do this in our Modula-3 implementation, and
would be equally applicable to an implementation in C++ or Ja
For example, the JSDT [36] data-sharing package in Java us
similar approach.

Second, the Replicated Object package does not pay attentio
(or even care) when the internal data fields of an object chan
This allows the programmer great flexibility in deciding exact
what constitutes an update or not, and what constitutes the sh
state4. For example, objects could have a combination of glob
and local state, and the methods that change the local state c
be classified as read methods since they do not modify the globa
state. Alternatively, read methods could do some work locally an
then call an update method to propagate the results, allowing tim
consuming computation to be done once and the result distribu
in a clean way. We took advantage of both of these technique
implementing Repo-3D.

Finally, the immediate distribution of update methods ensu
that changes are distributed in a timely fashion, and sugges
straightforward solution to the asynchronous notification proble
The Replicated Object package generates a Notification Object
type for each Replicated Object type. These new objects h
methods corresponding to the update methods of their associated
Replicated Object. The arguments to these methods are the sam
the corresponding Replicated Object methods, plus an e
argument to hold the Replicated Object instance. These notif
can be used by a programmer to receive notification of change
a Replicated Object in a structured fashion. To react to updates
Replicated Object instance, a programmer simply overrides
methods of the corresponding Notification Object with metho
that react appropriately to those updates, and associates an ins

3. An important detail is how the communication is bootstrapped. In the
case of the Network and Replicated Object packages, to pass a first
object between processes, one of them exports the object to a special
network object demon under some known name on some known
machine. The second process then retrieves the object.

4. Of course, it falls squarely on the shoulders of the programmer
ensure that the methods provided always leave the object in a consi
state. This is not significantly different than what needs to be do
when building a complex object that is simultaneously accessed
multiple threads in a non-distributed system. For example, if
programmer reads an array of numbers from inside the object and
uses an update method to write a computed average back into
object, the internal array may have changed before the averag
written, resulting in a classic inconsistency problem. In gener
methods that perform computations based on internal state (rather
on the method arguments) are potentially problematic and need to
considered carefully.

av-
iors

the
n

a-
e

asso-

ctly
 for
es

he
 an

re-
le:

ack
ined
ent

o
at
h as
ps,
ce
e

for
nd
y
lti-
ver a

es,
llec-
on
le
 site,
 a
de

y be

D
nts
 not

pon-
of it with the Replicated Object instance. Each time an update
method of the Replicated Object is invoked, the corresponding
method of the Notifier Object is also invoked. Notification Objects
eliminate the need for object polling and enable a “data-driven”
flow of control.

4.2 Obliq-3D
Obliq-3D is composed of Anim-3D, a 3D animation package
written in Modula-3, and a set of wrappers that expose Anim-3D to
the Obliq programming language (see Section 4.3). Anim-3D is
based on three simple and powerful concepts: graphical objects for
building graphical scenes, properties for specifying the behavior of
the graphical objects, and input event callbacks to support interac-
tive behavior. Anim-3D uses the damage-repair model: whenever a
graphical object or property changes (is damaged), the image is
repaired without programmer intervention.

Graphical objects (GOs) represent all the logical entities in the
graphical scene: geometry (e.g., lines, polygons, spheres, polygon
sets, and text), lights and cameras of various sorts, and groups of
other GOs. One special type of group, the RootGO, represents a
window into which graphics are rendered. GOs can be grouped
together in any valid directed acyclic graph (DAG). The GO class
hierarchy is shown in Figure 3.

A property is a defined by a name and a value. The name deter-
mines which attribute is affected by the property, such as “Texture
Mode” or “Box Corner1”. The value specifies how it is affected
and is determined by its behavior, a time-variant function that
takes the current animation time and returns a value. Properties,
property values, and behaviors are all objects, and their relation-
ships are shown in Figure 4. When a property is created, its name

and value are fixed. However, values are mutable and their beh
ior may be changed at any time. There are four kinds of behav
for each type of properties: constant (do not vary over time),
synchronous (follow a programmed set of requests, such as “move
from A to B starting at time t=1 and taking 2 seconds”), asynchro-
nous (execute an arbitrary time-dependent function to compute
value) and dependent (asynchronous properties that depend o
other properties). Synchronous properties are linked to animation
handles and do not start satisfying their requests until the anim
tion handle is signalled. By linking multiple properties to the sam
handle, a set of property value changes can be synchronized.

Associated with each GO g is a partial mapping of property
names to values determined by the properties that have been
ciated with g. A property associated with g affects not only g but
all the descendants of g that do not override the property. A single
property may be associated with any number of GOs. It is perfe
legal to associate a property with a GO that is not affected by it;
example, attaching a “Surface Color” property to a GroupGO do
not affect the group node itself, but could potentially affect t
surface color of any GO contained in that group. A RootGO sets
initial default value for each named property.

There are three types of input event callbacks in Anim-3D, cor
sponding to the three kinds of interactive events they hand
mouse callbacks (triggered by mouse button events), motion call-
backs (triggered by mouse motion events) and keyboard callbacks
(triggered by key press events). Each object has three callb
stacks, and the interactive behavior of an object can be redef
by pushing a new callback onto the appropriate stack. Any ev
that occurs within a root window associated with a RootGO r will
be delivered to the top handler on r’s callback stack. The handler
could delegate the event to one of r ’s children, or it may handle it
itself, perhaps changing the graphical scene in some way.

DistAnim-3D is a direct descendant of Anim-3D. In addition t
the objects being distributed, it has many additional facilities th
are needed for general-purpose 3D graphical applications, suc
texture mapping, indexed line and polygon sets, choice grou
projection and transformation callbacks, and picking. Sin
DistAnim-3D is embedded in Repo instead of Obliq (se
Section 4.3), the resulting library is called Repo-3D.

4.3 Obliq and Repo
Obliq [8] is a lexically-scoped, untyped, interpreted language
distributed object-oriented computation. It is implemented in, a
tightly integrated with, Modula-3. An Obliq computation ma
involve multiple threads of control within an address space, mu
ple address spaces on a machine, heterogeneous machines o
local network, and multiple networks over the Internet. Obliq us
and supports, the Modula-3 thread, exception, and garbage-co
tion facilities. Its distributed-computation mechanism is based
Network Objects, allowing transparent support for multip
processes on heterogeneous machines. Objects are local to a
while computations can roam over the network. Repo [23] is
descendant of Obliq that extends the Obliq object model to inclu
replicated objects. Therefore, Repo objects have state that ma
local to a site (as in Obliq) or replicated across multiple sites.

5 DESIGN OF REPO-3D
Repo-3D’s design has two logical parts: the basic design and local
variations. The basic design encompasses the changes to Obliq-3
to carry it into a distributed context, and additional enhanceme
that are not particular to distributed graphics (and are therefore
discussed here). Local variations are introduced to handle two
issues mentioned in Section 1: transient local changes and res
sive local editing.

Figure 3: The Repo-3D GO class hierarchy. Most of the classes are
also in Obliq-3D; the italicized ones were added to Repo-3D.

GroupGO

GO

CameraGO

LightGO

NonSurfaceGO

SurfaceGO

RootGO
ChoiceGroupGO

OrthoCameraGO
PerspCameraGO

AmbientLightGO
VectorLightGO
PointLightGO
SpotLightGO

LineGO
MarkerGO
TextGO

PolygonGO
BoxGO
SphereGO
CylinderGO
DiskGO
TorusGO
QuadMeshGO
IndexedPolygonSetGO

Text2DGO

IndexedLineSetGO

Figure 4: The relationship between properties, names, values, and
behaviors. Each oval represents an object and arrows show contain-
ment.

Value Behavior

Property

Name

Request

Request

. . .

 be
wo
 to
per-
gle
s of

 A
g a
is

i-
y, a
 the

ted
rac-
ne
 it
lock
 not
he
ate
that
use
rela-
rly.
 it is
e is

ot

rty
syn-
een

ore

e
ble
rs,

they
ica-
rt

cal
 and

al
 the
by
ts
-
 of
as

en
ted

sed
of a
put
er,
 the
r of

 its
aph
 the
5.1 Basic Repo-3D Design
The Anim-3D scene-graph model is well suited for adaptation to a
distributed environment. First, in Anim-3D, properties are attached
to nodes, not inserted into the graph, and the property and child
lists are unordered (i.e., the order in which properties are assigned
to a node, or children are added to a group, does not affect the final
result). In libraries that insert properties and nodes in the graph and
execute the graph in a well-defined order (such as Inventor), the
siblings of a node (or subtree) can affect the attributes of that node
(or subtree). In Anim-3D, and similar libraries (such as Java 3D),
properties are only inherited down the graph, so a node’s properties
are a function of the node itself and its ancestors—its siblings do
not affect it. Therefore, subtrees can be added to different scene
graphs, perhaps in different processes, with predictable results.

Second, the interface (both compiled Anim-3D and interpreted
Obliq-3D) is programmatical and declarative. There is no “graphi-
cal scene” file format per se: graphical scenes are created as the
side effect of executing programs that explicitly create objects and
manipulate them via the object methods. Thus, all graphical
objects are stored as the Repo-3D programs that are executed to
create them. This is significant, because by using the Replicated
Object library described in Section 4.1 to make the graphical
objects distributed, the “file format” (i.e., a Repo-3D program) is
updated for free.

Converting Anim-3D objects to Replicated Objects involved
three choices: what objects to replicate, what methods update the
object state, and what the global, replicated state of each object is.
Since replicated objects have more overhead (e.g., method execu-
tion time, memory usage, and latency when passed between
processes), not every category of object in Repo-3D is replicated.
We will consider each of the object categories described in
Figure 4.2 in turn: graphical objects (GOs), properties (values,
names, behaviors, animation handles) and callbacks. For each of
these objects, the obvious methods are designated as update meth-
ods, and, as discussed in Section 4.1, the global state of each object
is implicitly determined by those update methods. Therefore, we
will not go into excessive detail about either the methods or the
state. Finally, Repo-3D’s support for change notification will be
discussed.

5.1.1 Graphical Objects

GOs are the most straightforward. There are currently twenty-one
different types of GOs, and all but the RootGOs are replicated.
Since RootGOs are associated with an onscreen window, they are
not replicated—window creation remains an active decision of the
local process. Furthermore, if replicated windows are needed, the
general-purpose programming facilities of Repo can be used to
support this in a relatively straightforward manner, outside the
scope of Repo-3D. A GO’s state is comprised of the properties
attached to the object, its name, and some other non-inherited
property attributes.5 The methods that modify the property list are
update methods. Group GOs also contain a set of child nodes, and
have update methods that modify that set.

5.1.2 Properties

Properties are more complex. There are far more properties in a
graphical scene than there are graphical objects, they change much
more rapidly, and each property is constructed from a set of
Modula-3 objects. There are currently 101 different properties of

seventeen different types in Repo-3D, and any of them can
attached to any GO. A typical GO would have anywhere from t
or three (e.g., a BoxGO would have at least two properties
define its corners) to a dozen or more. And, each of these pro
ties could be complex: in the example in Section 6, a sin
synchronous property for a long animation could have hundred
requests enqueued within it.

Consider again the object structure illustrated in Figure 4.
property is defined by a name and a value, with the value bein
container for a behavior. Only one of the Modula-3 objects
replicated, the property value. Property values serve as the repl
cated containers for property behaviors. To change a propert
new behavior is assigned to its value. The state of the value is
current behavior.

Animation handles are also replicated. They tie groups of rela
synchronous properties together, and are the basis for the inte
tion in the example in Section 6. In Anim-3D, handles have o
animate method, which starts an animation and blocks until
finishes. Since update methods are executed everywhere, and b
access to the object while they are being executed, they should
take an extended period of time. In creating Repo-3D, t
animate method was changed to call two new methods: an upd
method that starts the animation, and a non-update method
waits for the animation to finish. We also added methods to pa
and resume an animation, to retrieve and change the current
tive time of an animation handle, and to stop an animation ea
The state of an Animation handle is a boolean value that says if
active or not, plus the start, end, and current time (if the handl
paused).

Most of the Modula-3 objects that comprise a property are n
replicated, for a variety of reasons:
• Properties represent a permanent binding between a prope

value and a name. Since they are immutable, they have no
chronization requirements and can simply be copied betw
processes.

• Names represent simple constant identifiers, and are theref
not replicated either.

• Behaviors and requests are not replicated. While they can b
modified after being created, they are treated as immuta
data types for two reasons. First, the vast majority of behavio
even complex synchronous ones, are not changed once
have been created and initialized. Thus, there is some justif
tion for classifying the method calls that modify them as pa
of their initialization process. The second reason is practi
and much more significant. Once a scene has been created
is being “used” by the application, the bulk of the time-critic
changes to it tend to be assignments of new behaviors to
existing property values. For example, an object is moved
assigning a new (often constant) behavior to i
GO_Transform property value. Therefore, the overall perfor
mance of the system depends heavily on the performance
property value behavior changes. By treating behaviors
immutable objects, they can simply be copied betwe
processes without incurring the overhead of the replica
object system.

5.1.3 Input Callbacks

In Repo-3D, input event callbacks are not replicated. As discus
in Section 4.2, input events are delivered to the callback stacks
RootGO. Callbacks attached to any other object receive in
events only if they are delivered to that object by the programm
perhaps recursively from another input event callback (such as
one attached to the RootGO). Therefore, the interactive behavio
a root window is defined not only by the callbacks attached to
RootGO, but also by the set of callbacks associated with the gr
rooted at that RootGO. Since the RootGOs are not replicated,

5. Some attributes of a GO, such as the arrays of Point3D properties that
define the vertices of a polygon set, are not attached to the object, but
are manipulated through method calls.

w

e
v-
.
tly
 by
on
 all

ing
tely,
 be
d of
uld

(a) (b)

(c) (d)

Figure 5: Simultaneous images from a session with the distributed CATHI animation viewer, running on four machines, showing an anima-
tion of an engine. (a) Plain animation viewer, running on Windows NT. (b) Overview window, running on Windows 95. (c) Animation viewer
with local animation meter, running on IRIX. (d) Animation viewer with local transparency to expose hidden parts, running on Solaris.
callbacks that they delegate event handling to are not replicated
either. If a programmer wants to associate callbacks with objects as
they travel between processes, Repo’s general-purpose program-
ming facilities can be used to accomplish this in a straightforward
manner.

5.1.4 Change Notification

The final component of the basic design is support for notification
of changes to distributed objects. For example, when an object’s
position changes or a new child is added to a group, some of the
processes containing replicas may wish to react in some way. For-
tunately, as discussed in Section 4.1, the Replicated Object
package automatically generates Notification Object types for all
replicated object types, which provide exactly the required
behavior. The Notification Objects for property values allow a
programmer to be notified of changes to the behavior of a property,

and the Notification Objects for the various GOs likewise allo
notification of updates to them.

5.2 Local Variations
Repo-3D’s local variations solve a set of problems particular to th
distributed context in which Repo-3D lives: maintaining interacti
ity and supporting local modifications to the shared scene graph

If the graphical objects and their properties were always stric
replicated, programmers would have to create local variations
copying the objects to be modified, creating a set of Notificati
Objects on the original objects, the copies of those objects, and
their properties (to be notified when either change), and reflect
the appropriate changes between the instances. Unfortuna
while this process could be automated somewhat, it would still
extremely tedious and error prone. More seriously, the overhea
creating this vast array of objects and links between them wo

tep
tes
orts

s of
n
es

 to
 of

 and

the
 by
med
uar-
 the

stant
e
ma-
era

e
the
d
a-
ra
ion

and
 the

es,
ing
ect)
 the

ot
r of
that
r a
as
iew
lly,

mera
ode

ser
lor

, a
ed,
ge-

the
ject
dly
iar
nd
o-3D
trib-

h-
nd
n-
make this approach impractical for short transient changes, such as
highlighting an object under the mouse.

To overcome this problem, Repo-3D allows the two major
elements of the shared state of the graphical object scene—the
properties attached to a GO and the children of a group—to have
local variations applied to them. (Local variations on property
values or animation handles are not supported, although we are
considering adding support for the latter.)

Conceptually, local state is the state added to each object (the
additions, deletions, and replacements to the properties or
children) that is only accessible to the local copies and is not
passed to remote processes when the object is copied to create a
new replica. The existence of local state is possible because, as
discussed in Section 4.1, the shared state of a replicated object is
implicitly defined by the methods that update it6. Therefore, the
new methods that manipulate the local variations are added to the
GOs as non-update methods. Repo-3D combines both the global
and local state when creating the graphical scene using the under-
lying graphics package.

As mentioned above, local variations come in two flavors:
• Property variations. There are three methods to set, unset, and

get the global property list attached to a GO. We added the
following methods to manipulate local variations: add or
remove local properties (overriding the value normally used for
the object), hide or reveal properties (causing the property
value of the parent node to be inherited), and flush the set of
local variations (removing them in one step) or atomically
apply them to the global state of the object.

• Child variations. There are five methods to add, remove,
replace, retrieve, and flush the set of children contained in a
group node. We added the following ones: add a local node,
remove a global node locally, replace a global node with some
other node locally, remove each of these local variations, flush
the local variations (remove them all in one step), and atomi-
cally apply the local variations to the global state.

This set of local operations supports the problems local variations
were designed to solve, although some possible enhancements are
discussed in Section 7.

6 EXAMPLE: AN ANIMATION EXAMINER
As an example of the ease of prototyping distributed applications
with Repo-3D, we created a distributed animation examiner for the
CATHI [6] animation generation system. CATHI generates short
informational animation clips to explain the operation of technical
devices. It generates full-featured animation scripts, including
camera and object motion, color and opacity effects, and lighting
setup.

It was reasonably straightforward to modify CATHI to generate
Repo-3D program files, in addition to the GeomView and Render-
Man script files it already generated. The resulting output is a
Repo-3D program that creates two scene DAGs: a camera graph
and a scene graph. The objects in these DAGs have synchronous
behaviors specified for their surface and transformation properties.
An entire animation is enqueued in the requests of these behaviors,
lasting anywhere from a few seconds to a few minutes.

We built a distributed, multi-user examiner over the course of a
weekend. The examiner allows multiple users to view the same
animation while discussing it (e.g., via electronic chat or on the
phone). Figure 5 shows images of the examiner running on four

machines, each with a different view of the scene. The first s
was to build a simple “loader” that reads the animation file, crea
a window, adds the animation scene and camera to it, and exp
the animation on the network, requiring less than a dozen line
Repo-3D code. A “network” version, that imports the animatio
from the network instead of reading it from disk, replaced the lin
of code to read and export the animation with a single line
import it. Figure 5(a) shows an animation being viewed by one
these clients.

The examiner program is loaded by both these simple clients,
is about 450 lines long. The examiner supports:
• Pausing and continuing the animation, and changing

current animation time using the mouse. Since this is done
operating on the shared animation handle, changes perfor
by any viewer are seen by all. Because of the consistency g
antees, all users can freely attempt to change the time, and
system will maintain all views consistently.

• A second “overview” window (Figure 5(b)), where a new
camera watches the animation scene and camera from a di
view. A local graphical child (representing a portion of th
animation camera’s frustum) was added to the shared ani
tion camera group to let the attributes of the animation cam
be seen in the overview window.

• A local animation meter (bottom of Figure 5(c)), that can b
added to any window by pressing a key, and which shows
current time offset into the animation both graphically an
numerically. It was added in front of the camera in the anim
tion viewer window, as a local child of a GO in the came
graph, so that it would be fixed to the screen in the animat
viewer.

• Local editing (Figure 5(d)), so that users can select objects
make them transparent (to better see what was happening in
animation) or hide them completely (useful on slow machin
to speed up rendering). Assorted local feedback (highlight
the object under the mouse and flashing the selected obj
was done with local property changes to the shared GOs in
scene graph.

Given the attention paid to the design of Repo-3D, it was n
necessary to be overly concerned with the distributed behavio
the application (we spent no more than an hour or so). Most of
time was spent deciding if a given operation should be global o
local variation. The bulk of programming and debugging time w
spent implementing application code. For example, in the overv
window, the representation of the camera moves dynamica
based on the bounding values of the animation’s scene and ca
graphs. In editing mode, the property that flashes the selected n
bases its local color on the current global color (allowing a u
who is editing while an animation is in progress to see any co
changes to the selected node.)

7 CONCLUSIONS AND FUTURE WORK
We have presented the rationale for, and design of, Repo-3D
general-purpose, object-oriented library for developing distribut
interactive 3D graphics applications across a range of hetero
neous workstations. By presenting the programmer with
illusion of a large shared memory, using the Shared Data-Ob
model of DSM, Repo-3D makes it easy for programmers to rapi
prototype distributed 3D graphics applications using a famil
object-oriented programming paradigm. Both graphical a
general-purpose, non-graphical data can be shared, since Rep
is embedded in Repo, a general-purpose, lexically-scoped, dis
uted programming language.

Repo-3D is designed to directly support the distribution of grap
ical objects, circumventing the “duplicate database” problem a
allowing programmers to concentrate on the application functio

6. The local state is not copied when a replicated object is first passed to a
new process because the Repo-3D objects have custom serialization
routines (or Picklers, in Modula-3 parlance). These routines only pass
the global state, and initialize the local state on the receiving side to
reasonable default values corresponding to the empty local state.

g to
m as
h as
gh-
lso
 on
o
 of
 the
ce
om-
 be
 in

ts,
this
ed
 in
ith
nd
shi
ent
C
nd
been

rch
er-
d

nd
-
it-

or

ed

.

d

al.

y

r

ality of a system, rather than its communication or synchronization
components. We have introduced a number of issues that must be
considered when building a distributed 3D graphics library, espe-
cially concerning efficient and clean support for data distribution
and local variations of shared graphical scenes, and discussed how
Repo-3D addresses them.

There are a number of ways in which Repo-3D could be
improved. The most important is the way the library deals with
time. By default, the library assumes all machines are running a
time-synchronization protocol, such as NTP, and uses an internal
animation time offset7 (instead of the system-specific time offset)
because different OSs (e.g., NT vs. UNIX) start counting time at
different dates. Hooks have been provided to allow a programmer
to specify their own function to compute the “current” animation
time offset within a process. Using this facility, it is possible to
build inter-process time synchronization protocols (which we do),
but this approach is not entirely satisfactory given our stated goal
of relieving the programmer of such tedious chores. Future
systems should integrate more advanced solutions, such as adjust-
ing time values as they travel between machines, so that users of
computers with unsynchronized clocks can collaborate8. This will
become more important as mobile computers increase in popular-
ity, as it may not be practical to keep their clocks synchronized.

The specification of local variations in Repo-3D could benefit
from adopting the notion of paths (as used in Java 3D and Inventor,
for example). A path is an array of objects leading from the root of
the graph to an object; when an object occurs in multiple places in
one or more scene graphs, paths allow these instances to be differ-
entiated. By specifying local variations using paths, nodes in the
shared scene graphs could have variations within a process as well
as between processes. One other limitation of Repo-3D, arising
from our use of the Replicated Object package, is that there is no
way to be notified when local variations are applied to an object.
Recall that the methods of an automatically generated Notification
Object correspond to the update methods of the corresponding
Replicated Object. Since the methods that manipulate the local
variations are non-update methods (i.e., they do not modify the
replicated state), there are no corresponding methods for them in
the Notification Objects. Of course, it would be relatively straight-
forward to modify the Replicated Object package to support this,
but we have not yet found a need for these notifiers.

A more advanced replicated object system would also improve
the library. Most importantly, support for different consistency
semantics would be extremely useful. If we could specify
semantics such as “all updates completely define the state of an
object, and only the last update is of interest,” the efficiency of the
distribution of property values would improve significantly; in this
case, updates could be applied (or discarded) when they arrive,
without waiting for all previous updates to be applied, and could be
applied locally without waiting for the round trip to the sequencer.
There are also times when it would be useful to have support for
consistency across multiple objects, either using causal ordering
(as provided by systems such as ISIS and Visual-Obliq), or some
kind of transaction protocol to allow large groups of changes to be
applied either as a unit, or not at all. It is not clear how one would
provide these features with a replicated object system such as the
one used here.

While a library such as Repo-3D could be built using a variety of
underlying platforms, the most likely one for future work is Java.
Java shares many of the advantages of Modula-3 (e.g., threads and
garbage collection are common across all architectures) and the

packages needed to create a Repo-3D-like toolkit are beginnin
appear. While Java does not yet have a replicated object syste
powerful as the Replicated Object package, a package suc
JSDT [36] (which focuses more on data communication than hi
level object semantics) may be a good starting point. Work is a
being done on interpreted, distributed programming languages
top of Java (e.g., Ambit [9]). Finally, Java 3D is very similar t
Anim-3D, even though its design leans toward efficiency instead
generality when there are trade-offs to be made. For example,
designers chose to forgo Anim-3D’s general property inheritan
mechanism because it imposes computational overhead. By c
bining packages such as Java 3D, JSDT, and Ambit, it should
possible to build a distributed graphics library such as Repo-3D
Java.

Acknowledgments
We would like to thank the reviewers for their helpful commen
as well as the many other people who have contributed to
project. Andreas Butz ported CATHI to use Repo-3D and help
with the examples and the video. Clifford Beshers participated
many lively discussions about the gamut of issues dealing w
language-level support for 3D graphics. Tobias Höllerer a
Steven Dossick took part in many other lively discussions. Xin
Sha implemented many of the extensions to Obliq-3D that w
into Repo-3D. Luca Cardelli and Marc Najork of DEC SR
created Obliq and Obliq-3D, and provided ongoing help a
encouragement over the years that Repo and Repo-3D have
evolving.

This research was funded in part by the Office of Naval Resea
under Contract N00014-97-1-0838 and the National Tele-Imm
sion Initiative, and by gifts of software from Critical Mass an
Microsoft.

References
[1] D. B. Anderson, J. W. Barrus, J. H. Howard, C. Rich, C. Shen, a

R. C. Waters. Building Multi-User Interactive Multimedia Environ
ments at MERL. Technical Report Research Report TR95-17, M
subishi Electric Research Laboratory, November 1995.

[2] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A Language f
Parallel Programming of Distributed Systems. IEEE Transactions on
Software Engineering, 18(3):190–205, March 1992.

[3] K. Bharat and L. Cardelli. Migratory Applications. In ACM UIST '95,
pages 133-142, November 1995.

[4] K. P. Birman. The Process Group Approach to Reliable Distribut
Computing. CACM, 36(12):36–53, Dec 1993.

[5] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network Objects
In Proc. 14th ACM Symp. on Operating Systems Principles, 1993.

[6] A Butz, Animation with CATHI, In Proceedings of AAAI/IAAI '97,
pages 957–962, 1997.

[7] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, an
D. Owen. The SIMNET Virtual World Architecture. In Proc. IEEE
VRAIS ’93, pages 450–455, Sept 1993.

[8] L. Cardelli. A Language with Distributed Scope. Computing Sys-
tems, 8(1):27–59, Jan 1995.

[9] L. Cardelli and A. Gordon. Mobile Ambients. In Foundations of
Software Science and Computational Structures, Maurice Nivat
(Ed.), LNCE 1378, Springer, 140–155. 1998.

[10] R. Carey and G. Bell. The Annotated VRML 2.0 Reference Manu
Addison-Wesley, Reading, MA, 1997.

[11] C. Carlsson and O. Hagsand. DIVE—A Multi-User Virtual Realit
System. In Proc. IEEE VRAIS ’93, pages 394–400, Sept 1993.

[12] C. F. Codella, R. Jalili, L. Koved, and J. B. Lewis. A Toolkit fo
Developing Multi-User, Distributed Virtual Environments. In Proc.
IEEE VRAIS ’93, pages 401–407, Sept 1993.

7. Computed as an offset from January 1, 1997.
8. Implementation details of the combination of Network and Replicated

Objects made it difficult for us to adopt a more advanced solution.

t

e

ith

nd

g

I

d
or

lkit,

g

0.9

r

,
An
e

T:
[13] C. Elliott, G. Schechter, R. Yeung and S. Abi-Ezzi. TBAG: A High
Level Framework for Interactive, Animated 3D Graphics
Applications, In Proc. ACM SIGGRAPH 94, pages 421–434, August,
1994.

[14] M. Fairen and A. Vinacua, ATLAS, A Platform for Distributed
Graphics Applications, In Proc. VI Eurographics Workshop on Pro-
gramming Paradigms in Graphics, pages 91–102, September, 1997.

[15] S. Feiner, B. MacIntyre, M. Haupt, and E. Solomon. Windows on the
World: 2D Windows for 3D Augmented Reality. In Proc. ACM UIST
’93, pages 145–155, 1993.

[16] T. A. Funkhouser. RING: A Client-Server System for Multi-User
Virtual Environments. In Proc. 1995 ACM Symp. on Interactive 3D
Graphics, pages 85–92, March 1995.

[17] G. Grimsdale. dVS—Distributed Virtual Environment System. In
Proc. Computer Graphics ’91 Conference, 1991.

[18] S. P. Harbison. Modula-3. Prentice-Hall, 1992.

[19] H.W. Holbrook, S.K. Singhal and D.R. Cheriton, Log-Based
Receiver-Reliable Multicast for Distributed Interactive Simulation,
Proc. ACM SIGCOMM ’95, pages 328–341, 1995.

[20] W. Levelt, M. Kaashoek, H. Bal, and A. Tanenbaum. A Comparison
of Two Paradigms for Distributed Shared Memory. Software
Practice and Experience, 22(11):985–1010, Nov 1992.

[21] B. Lucas. A Scientific Visualization Renderer. In Proc. IEEE
Visualization '92, pp. 227-233, October 1992.

[22] V. Machiraju, A Framework for Migrating Objects in Distributed
Graphics Applications, Masters Thesis, University of Utah, Depart-
ment of Computer Science, Salt Lake City, UT, June, 1997.

[23] B. MacIntyre. Repo: Obliq with Replicated Objects. Programmers
Guide and Reference Manual. Columbia University Computer
Science Department Research Report CUCS-023-97, 1997.}

[24] B. MacIntyre, and S. Feiner. Language-level Support for Exploratory
Programming of Distributed Virtual Environments. In Proc. ACM
UIST ’96, pages 83–94, Seattle, WA, November 6–8, 1996.

[25] M. A. Najork and M. H. Brown. Obliq-3D: A High-level, Fast-turn-
around 3D Animation System. IEEE Transactions on Visualization
and Computer Graphics, 1(2):175–145, June 1995.

[26] R. Ben-Natan. CORBA: A Guide to the Common Object Request
Broker Architecture, McGraw Hill, 1995.

[27] D. Phillips, M. Pique, C. Moler, J. Torborg, D. Greenberg. Distribut-
ed Graphics: Where to Draw the Lines? Panel Transcript,
SIGGRAPH 89, available at:
http://www.siggraph.org:443/publications/panels/siggraphi89/

[28] A. Prakash and H. S. Shim. DistView: Support for Building Efficien
Collaborative Applications Using Replicated Objects. In Proc. ACM
CSCW ’94, pages 153–162, October 1994.

[29] J. Rohlf and J. Helman, IRIS Performer: A High Performanc
Multiprocessing Toolkit for Real-Time {3D} Graphics, In Proc.
ACM SIGGRAPH 94, pages 381–394, 1994.

[30] M. Roseman and S. Greenberg. Building Real-Time Groupware w
GroupKit, a Groupware Toolkit. ACM Transactions on Computer-
Human Interaction, 3(1):66–106, March 1996.

[31] C. Shaw and M. Green. The MR Toolkit Peers Package a
Experiment. In Proc. IEEE VRAIS ’93, pages 18–22, Sept 1993.

[32] G. Singh, L. Serra, W. Png, A. Wong, and H. Ng. BrickNet: Sharin
Object Behaviors on the Net. In Proc. IEEE VRAIS ’95, pages 19–25,
1995.

[33] H. Sowizral, K. Rushforth, and M. Deering. The Java 3D AP
Specification, Addison-Wesley, Reading, MA, 1998.

[34] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, an
L. Suchman. Beyond The Chalkboard: Computer Support f
Collaboration and Problem Solving in Meetings. CACM, 30(1):32–
47, January 1987.

[35] P. S. Strauss and R. Carey, An Object-Oriented 3D Graphics Too
In Computer Graphics (Proc. ACM SIGGRAPH 92), pages 341–349,
Aug, 1992.

[36] Sun Microsystems, Inc. The Java Shared Data Toolkit, 1998.
Unsupported software, available at:
http://developer.javasoft.com/developer/earlyAccess/jsdt/

[37] I. Tou, S. Berson, G. Estrin, Y. Eterovic, and E. Wu. Prototypin
Synchronous Group Applications. IEEE Computer, 27(5):48–56,
May 1994.

[38] R. Waters and D. Anderson. The Java Open Community Version
Application Program Interface. Feb, 1997. Available online at:
http://www.merl.com/opencom/opencom-java-api.html

[39] A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object Model fo
the Java System, In Proc. USENIX COOTS ’96, pages 219–231, July
1996.

[40] R. Zeleznik, D. Conner, M. Wloka, D. Aliaga, N. Huang
P. Hubbard, B. Knep, H. Kaufman, J. Hughes, and A. van Dam.
Object-oriented Framework for the Integration of Interactiv
Animation Techniques. In Computer Graphics (SIGGRAPH '91
Proceedings), pages 105–112, July, 1991.

[41] M. J. Zyda, D. R. Pratt, J. G. Monahan, and K. P. Wilson. NPSNE
Constructing a 3D Virtual World. In Proc. 1992 ACM Symp. on
Interactive 3D Graphics, pages 147–156, Mar. 1992.

	Figure 5: Simultaneous images from a session with the distributed CATHI animation viewer, running...
	A Distributed 3D Graphics Library
	Abstract
	CR Categories and Subject Descriptors:
	Additional Keywords and Phrases:

	1 INTRODUCTION
	Figure 1: Two meanings of distributed graphics: (a) a single logical graphics system with distrib...

	2 BACKGROUND
	3 RELATED WORK
	4 UNDERLYING INFRASTRUCTURE
	Figure 2: The architecture of Repo-3D. Aside from native graphics libraries (X, Win32, OpenGL, Re...
	4.1 Distributed Shared Memory
	4.2 Obliq-3D
	Figure 3: The Repo-3D GO class hierarchy. Most of the classes are also in Obliq-3D; the italicize...
	Figure 4: The relationship between properties, names, values, and behaviors. Each oval represents...

	4.3 Obliq and Repo

	5 DESIGN OF REPO-3D
	5.1 Basic Repo-3D Design
	5.1.1 Graphical Objects
	5.1.2 Properties
	5.1.3 Input Callbacks
	5.1.4 Change Notification

	5.2 Local Variations

	6 EXAMPLE: AN ANIMATION EXAMINER
	7 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References

