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Abstract 
In this paper, a method of encapsulating camera tasks into well 
defined units called “camera modules” is described. Through this 
encapsulation, camera modules can be programmed and 
sequenced, and thus can be used as the underlying framework for 
controlling the virtual camera in widely disparate types of graphi- 
cal environments. Two examples of the camera framework are 
shown: an agent which can film a conversation between two virtual 
actors and a visual programming language for filming a virtual 
football game. 
Keywords: Virtual Environments, Camera Control, Task Level 
Interfaces. 

1. Introduction 
Manipulating the viewpoint, or a synthetic camera, is fundamental 
to any interface which must deal with a three dimensional graphi- 
cal environment, and a number of articles have discussed various 
aspects of the camera control problem in detail [3,4,5, 191. Much 
of this work, however, has focused on techniques for directly 
manipulating the camera. 

In our view, this is the source of much of the difficulty. Direct con- 
trol of the six degrees of freedom (DOFs) of the camera (or more, 
if field of view is included) is often problematic and forces the 
human VE participant to attend to the interface and its “control 
knobs” in addition to - or instead of - the goals and constraints 
of the task at hand. In order to achieve task level interaction with a 
computer-mediated graphical environment, these low-level, direct 
controls. must be abstracted into higher level camera primitives, 
and in turn, combined into even higher level interfaces. By clearly 
specifying what specific tasks need to be accomplished at a partic- 
ular unit of time, a wide variety of interfaces can be easily con- 
structed. This technique has already been successfully applied to 
interactions within avirtual Museum [8]. 
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2. Related Work 

Ware and Osborne [19] described several different metaphors for 
exploring 3D environments including “scene in hand,” “eyeball in 
hand,” and “flying vehicle control” metaphors. All of these use a 6 
DOF input device to control the camera position in the virtual envi- 
ronment. They discovered that flying vehicle control was more use- 
ful when dealing with enclosed spaces, and the “scene in hand” 
metaphor was useful in looking at a single object. Any of these 
metaphors can be easily implemented in our system. 

Mackinlay et al [ 161 describe techniques for scaling camera motion 
when moving through virtual spaces, so that, for example, users 
can always maintain precise control of the camera when approach- 
ing objects of interest. Again, it is possible to implement these 
techniques using our camera modules. 

Brooks [3,4] discusses several methods for using instrumented 
mechanical devices such as stationary bicycles and treadmills to 
enable human VE participants to move through virtual worlds 
using natural body motions and gestures. Work at Chapel Hill, has, 
of course, focused for some time on the architectural “walk- 
through,” and one can argue that such direct manipulation devices 
make good sense for this application. While the same may be said 
for the virtual museum, it is easy to think of circumstances - such 
as reviewing a list of paintings - in which it is not appropriate to 
require the human participant to physically walk or ride a bicycle. 
At times, one may wish to interact with topological or temporal 
abstractions, rather than the spatial. Nevertheless, our camera mod- 
ules will accept data from arbitrary input devices as appropriate. 

Blinn [2] suggested several modes of camera specification based 
on a description of what should be placed in the frame rather than 
just describing where the camera should be and where it should be 
aimed. 

Phillips et al suggest some methods for automatic viewing control 
[ 181. They primarily use the “camera in hand” metaphor for view- 
ing human figures in the JackTM system, and provide automatic fea- 
tures for maintaining smooth visual transitions and avoiding 
viewing obstructions. They do not deal with the problems of navi- 
gation, exploration or presentation. 
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Karp and Feiner describe a system for generating automatic pre- 
sentations, but they do not consider interactive control of the cam- 
era [12]. 

Gleicher and Witkin [lo] describe a system for controlling the 
movement of a camera based on the screen-space projection of an 
object, but their system works primarily for manipulation tasks. 

Our own prior work attempted to establish a procedural framework 
for controlling cameras [7]. Problems in constructing generalizable 
procedures led to the current. constraint-based framework 
described here. Although this paper does not concentrate on meth- 
ods for satisfying multiple constraints on the camera position, this 
is an important part of the overall camera framework we outline 
here. For a more complete reference, see [9]. An earlier form of the 
current system was applied to the domain of a Virtual Museum [8]. 

3. CamDroid System Design 
This framework is a formal specification for many different types 
of camera control. The central notion of this framework is that 
camera placement and movement is usually done for particular rea- 
sons, and that those reasons can be expressed formally as a number 
of primitives or constraints on the camera parameters. We can iden- 
tity these constraints based on analyses of the tasks required in the 
specific job at hand. By analyzing a wide enough variety of tasks, a 
large base of primitives can be easily drawn upon to be incorpo- 
rated into a particular task-specific interface. 

3.1 Camera Modules 
A camera module represents an encapsulation of the constraints 
and a transformation of specific user controls over the duration that 
a specific module is active. A complete network of camera modules 
with branching conditions between modules incorporates user con- 
trol, constraints, and response to changing conditions in the envi- 
ronment over time. 

Our concept of a camera module is similar to the concept of ashot 
in cinematography. A shot represents the portion of time between 
the starting and stopping of filming a particular scene. Therefore a 
shot represents continuity of all the camera parameters over that 
period of time. The unit of a single camera module requires an 
additional level of continuity, that of continuity of control of the 
camera. This requirement is added because of the ability in com- 
puter graphics to identically match the camera parameters on either 
side of a cut, blurring the distinction of what makes up two sepa- 
rate shots. Imagine that the camera is initially pointing at character 
A and following him as he moves around the environment. The 
camera then pans to character B and follows her for a period of 
time. Finally the camera pans back to character A. In cinematic 
terms, this would be a single shot since there was continuity in the 
camera parameters over the entire period. In our terms, this would 
be broken down into four separate modules. The first module’s task 
is to follow character A. The second module’s task would be to pan 
from A to IB in a specified amount of time. The third module’s task 
would be to follow B. And finally the last module’s task would be 
to pan back from B to A. The notion of breaking this cinematic shot 
into 4 modules does not specify implementation, but rather a for- 

mal description of the goals or constraints on the camera for each 
period of time:. 

As shown in figure 1. the generic module contains the following 
components: 

Figure 1: Generic camera module containing a controller, 
an initializer, a constraint list, and local state 

l the local state vector. This must always contain the camera 
position, camera view normal, camera “up” vector, and field 
of view. State can also contain values for the camera parame- 
ter derivatives, a value for time, or other local information 
specific to the operation of that module. While the module is 
active, the state’s camera parameters are output to the ren- 
derer. 

l initializer. This is a routine that is run upon activation of a 
module. Typical initial conditions are to set up the camera 
state based on a previous module’s state. 

l controher. This component translates user inputs either 
directly :into the camera state or into constraints. There can be 
at most one controller per module. 

l constraints to be satisfied during the time period that the mod- 
ule is active. Some examples of constraints are as follows: 

l maintain the camera’s up vector to align with world up. 
l maintain height relative to the ground 
l maintain the camera’s gaze (i.e. view normal) toward a 

spe,cified object 
l make sure a certain object appears on the screen. 
l make sure that several objects appear on the screen 
l zoom in as much as possible 

In this system, the constraint list can be viewed simply as a black 
box that produces values for some DOFs of the camera. The con- 
straint solver combines these constraints using a constrained opti- 
mizing solver to come up with the final camera parameters for a 
particular module. The camera optimizer is discussed extensively 
in [9]. Some constraints directly produce values for a degree of 
freedom, for example, specifying the up vector for the camera or 
the height of rhe camera. Some involve calculations that might pro- 
duce multiple DOFs, such as adjusting the view normal of the cam- 
era to look at a particular object. Some, like a path planning 
constraint discussed in [8] are quite complicated, and gene:rate a 
series of DOPs over time through the environment based on an ini- 
tial and final position. 
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Figure 2: Overall CamDroid System 

3.2 The CamDroid System 

The overall system for the examples given in this paper is shown in 
figure 2. 

The CamDroid System is an extension to the 3D virtual environ- 
ment software testbed developed at MIT [6]. The system is struc- 
tured this way to emphasize the division between the virtual 
environment database, the camera framework, and the interface 
that provides access to both. The CamDroid system contains the 
following elements. 

l A general interpreter that can run pre-specified scripts or man- 
age user input. The interpreter is an important part in develop- 
ing the entire runtime system. Currently the interpreter used is 
TCL with the interface widgets created with TK [ 171. Many 
commands have been embedded in the system including the 
ability to do dynamic simulation, visibility calculations, finite 
element simulation, matrix computations, and various data- 
base inquiries. By using an embedded interpreter we can do 
rapid prototyping of a virtual environment without sacrificing 
too much performance since a great deal of the system can 
still be written in a low level language like C. The addition of 
TK provides convenient creation of interface widgets and 
interprocess communication. This is especially important 
because some processes might need to perform computation 
intensive parts of the algorithms; they can be offloaded onto 
separate machines. 

l A built-in renderer. This subsystem can use either the hard- 
ware of a graphics workstation (currently SGIs and HPs are 
supported), or software to create a high quality antialiased 
image. 

l An object database for a particular environment. 
l Camera modules. Described in the previous section. Essen- 

tially, they encapsulate the behavior of the camera for differ- 
ent styles of interaction. They are prespecified by the user and 
associated with various interface widgets. Several widgets can 
be connected to several camera modules. The currently active 
camera module handles all user inputs and attempts to satisfy 
all the constraints contained within the module, in order to 
compute camera parameters which will be passed to the ren- 
derer when creating the final image. Currently, only one cam- 
era module is active at any one time, though if there were 
multiple viewports, each of them could be assigned a unique 

camera. 

4. Example: Filming a conversation 
The interface for the conversation filming example is based on the 
construction of a software agent which perceives changes in lim- 
ited aspects of the environments and uses a number of primitives to 
implement agent behaviors. The sensors detect movements of 
objects within the environment and can perceive which character is 
designated to be talking at any moment. 

In general, the position of the camera should be based on conven- 
tional techniques that have been established in filming a conversa- 
tion. Several books have dissected conversations and come up with 
simplified rules for an effective presentation [ 1, 141. The conversa- 
tion filmer encapsulates these rules into camera modules which the 
software agent calls upon to construct (or assist a director in the 
construction of) a film sequence. 

4.1 Implementation 

The placement of the camera is based on the position of the two 
people having the conversation (see figure 3). However, more 
important than placing the camera in the approximate geometric 
relationship shown in figure 3 is the positioning of the camera 
based on what is being framed within the image. 

Figure 3: Filming a conversation [Katz88]. 

Constraints for an over-the-shoulder shot: 
l The height of the character facing the view should be approx- 

imately l/2 the size of the frame. 
l The person facing the view should be at about the 2/3 line on 

the screen. 
l The person facing away should be at about the l/3 line on the 

screen. 
l The camera should be aligned with the world up. 
l The field of view should be between 20 and 60 degrees. 
l The camera view should be as close to facing directly on to 

the character facing the viewer as possible. 
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Figure 4: Two interconnected camera modules for filming a conversation 

Constraints for a corresponding over-the-shoulder shot: 
l The same constraints as described above but the people 

should not switch sides of the screen; therefore the person fac- 
ing towards the screen should be placed at the l/3 line and the 
person facing away should be placed at the 2/3 line. 

Figure 3 can be used to find the initial positions of the cameras if 
necessary, but the constraint solver contained within each camera 
module makes sure that the composition of the screen is as desired. 

Figure 4 shows how two camera modules can be connected to auto- 
matically film a conversation. 

A more complicated combination of camea modules can be incor- 
porated as the behaviors of a simple software agent. The agent con- 
tains a rudimentary reactive planner which pairs camera behaviors 
(combination of camera primitives) in response to sensed data. The 
agent has two primary sets of camera behaviors: one for when 
character 1 is speaking; and one for when character 2 is speaking. 
The agent needs to have sensors which can “detect” who is speak- 
ing and direct a camera module from the desired set of behaviors to 
become active. Since the modules necessarily keep track of the 
positions of the characters in the environment, the simulated actors 
can move about while the proper screen composition is maintained. 

Figure 5: Conversation filming agent and its behaviors. 

Figure 6 shows an over-the-shoulder shot automatically generated 
by the conversation filming agent. 

t geners 

5. Example: the Virtual Football Game 

The virtual football game was chosen as an example because there 
already exists a methodology for filming football games that can be 
called upon :as a reference for comparing the controls and resultant 
output of the virtual football game. Also, the temporal flow of the 
football game is convenient since it contains starting and stopping 
points, specific kinds of choreographed movements, and easily 
identifiable participants. A visual programming language for com- 
bining camera primitives into camera behaviors was explored. 
Finally, an interface, on top of the visual programming language, 
based directly on the way that a conventional football game is 
filmed, was developed. 

It is important to note that there are significant differences between 
the virtual football game and filming a real football game. 
Although attempts were made to make the virtual football game 
realistic- three-dimensional video images of players were incor- 
porated and football plays were based on real plays [ 151 -this vir- 
tual football game is intended to be a testbed for intelligent camera 
control rather than a portrayal of a real football game. 

5.1 Implementation 

Figure 7 shows the visual programming environment for the cam- 
era modules. Similar in spirit to Haeberli’s ConMan [ 1 l] or Kass’s 
GO [13], the system allows the user to connect camera modules, 
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and drag and drop initial conditions and constraints, in order to 
control the output of the CamDroid system. The currently active 
camera module’s camera state is used to render the view of the 
graphical environment. Modules can be connected together by 
drawing a line from one module to the next. A boolean expression 
can then be added to the connector to indicate when control should 
be shifted from one module to the connected module. It is possible 
to set up multiple branches from a single module. At each frame, 
the branching conditions are evaluated and control is passed to the 
first module whose branching condition evaluates to TRUE. 

Constraints can be instanced from existing constraints, or new ones 
can be created and the constraint functions can be entered via a text 
editor. Information for individual constraints can be entered via the 
keyboard or mouse clicks on the screen. When constraints are 
dragged into a module, all the constraints in the module are 
included during optimization. Constraints may also be grouped so 
that slightly higher level behaviors composed of a group of low 
level primitives may be dragged directly into a camera module. 

Initial conditions can be dragged into the modules to force the min- 
imization to start from those conditions. Initial conditions can be 
retrieved at any time from the current state of the camera. Camera 
modules can also be indicated to use the current state to begin opti- 
mization when control is passed to them from other modules. 

Controllers can also be instanced from a palette of existing control- 
lers, or new ones created and their functions entered via a text edi- 
tor. If a controller is dragged into the module, it will translate the 
actions of the user subject to the constraints within the module. For 
example, a controller that will orbit about an object may be added 
to a module which constrains the camera’s up vector to align with 
the world up vector. 

Figure 7: Visual Programming Environment for camera 
modules 

The end-user does not necessarily wish to be concerned with the 
visual programming language for camera control. An interface that 
can be connected to the representation used for the visual program- 
ming language is shown in Figure 7. The interface provides a 
mechanism for setting the positions and movements of the players 
within the environment, as well as a way to control the virtual cam- 
eras. Players can be selected and new paths drawn for them at any 
time. The players will move along their paths in response to click- 

ing on the appropriate buttons of the football play controller. 
Passes can be indicated by selecting the appropriate players at the 
appropriate time step and pressing the pass button on the play con- 
troller. 

I I 

Figure 8: The virtual football game interface 

The user can also select or move any of the camera icons and the 
viewpoint is immediately shifted to that of the camera. Essentially, 
pressing one of the camera icons activates a camera module that 
has already been set up with initial conditions and constraints for 
that camera. Cameras can be made to track individual characters or 
the ball by selecting the players with the middle mouse button. 
This automatically adds a tracking constraint to the currently active 
module. If multiple players are selected, then the camera attempts 
to keep both players within the frame at the same time by adding 
multiple tracking constraints. The image can currently be fine- 
tuned by adjusting the constraints within the visual programming 
environment. A more complete interface would provide more 
bridges between the actions of the user on the end-user interface 
and the visual programming language.. 

Figure 9: View from “game camera” of virtual football 
game. 
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6. Results 

We have implemented a variety of applications from a disparate set 
of visual domains, including the virtual museum [8], a mission 
planner [21]. and the conversation and football game described in 
this paper. While formal evaluations are notoriously difficult, we 
did enlist Ihe help of domain experts who could each observe and 
comment Ion the applications we have implemented. For the con- 
versation agent, our domain expert was MIT Prof.essor Glorianna 
Davenport, in her capacity as an accomplished documentary film- 
maker. For the virtual football game, we consulted with Eric Eisen- 
dratt. a sports director for WBZ-TV, Boston. In addition, MIT 
Professor Tom Sheridan was an invaluable source of expertise on 
teleoperation and supervisory control. A thorough discussion of the 
applications, including comments of the domain experts, can be 
found in [9]. 

7. Summary 

A method of encapsulating camera tasks into well defined units 
called “camera modules” has been described. Through this encap- 
sulation, camera modules can be designed which can aid a user in a 
wide range of interaction with 3D graphical environments. The 
CamDroid system uses this encapsulation, gong with constrained 
optimization techniques and visual programming to greatly ease 
the development of 3D interfaces. Two interfaces to distinctly dif- 
ferent environments have been demonstrated in this paper. 
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