
CamDroid: A System for Implementing
Intelligent Camera Control

Steven M. Drucker David Zeltzer
MIT Media Lab MIT Research Laboratory for Electronics

Massachusetts Institute of Technology
Cambridge, MA. 02 139, USA

smd@media.mit.edu
dz@vetrec.mit.edu

Abstract
In this paper, a method of encapsulating camera tasks into well
defined units called “camera modules” is described. Through this
encapsulation, camera modules can be programmed and
sequenced, and thus can be used as the underlying framework for
controlling the virtual camera in widely disparate types of graphi-
cal environments. Two examples of the camera framework are
shown: an agent which can film a conversation between two virtual
actors and a visual programming language for filming a virtual
football game.
Keywords: Virtual Environments, Camera Control, Task Level
Interfaces.

1. Introduction
Manipulating the viewpoint, or a synthetic camera, is fundamental
to any interface which must deal with a three dimensional graphi-
cal environment, and a number of articles have discussed various
aspects of the camera control problem in detail [3,4,5, 191. Much
of this work, however, has focused on techniques for directly
manipulating the camera.

In our view, this is the source of much of the difficulty. Direct con-
trol of the six degrees of freedom (DOFs) of the camera (or more,
if field of view is included) is often problematic and forces the
human VE participant to attend to the interface and its “control
knobs” in addition to - or instead of - the goals and constraints
of the task at hand. In order to achieve task level interaction with a
computer-mediated graphical environment, these low-level, direct
controls. must be abstracted into higher level camera primitives,
and in turn, combined into even higher level interfaces. By clearly
specifying what specific tasks need to be accomplished at a partic-
ular unit of time, a wide variety of interfaces can be easily con-
structed. This technique has already been successfully applied to
interactions within avirtual Museum [8].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
@ 1995 ACM O-89791 -736-7/95/0004...$3.50

2. Related Work

Ware and Osborne [19] described several different metaphors for
exploring 3D environments including “scene in hand,” “eyeball in
hand,” and “flying vehicle control” metaphors. All of these use a 6
DOF input device to control the camera position in the virtual envi-
ronment. They discovered that flying vehicle control was more use-
ful when dealing with enclosed spaces, and the “scene in hand”
metaphor was useful in looking at a single object. Any of these
metaphors can be easily implemented in our system.

Mackinlay et al [161 describe techniques for scaling camera motion
when moving through virtual spaces, so that, for example, users
can always maintain precise control of the camera when approach-
ing objects of interest. Again, it is possible to implement these
techniques using our camera modules.

Brooks [3,4] discusses several methods for using instrumented
mechanical devices such as stationary bicycles and treadmills to
enable human VE participants to move through virtual worlds
using natural body motions and gestures. Work at Chapel Hill, has,
of course, focused for some time on the architectural “walk-
through,” and one can argue that such direct manipulation devices
make good sense for this application. While the same may be said
for the virtual museum, it is easy to think of circumstances - such
as reviewing a list of paintings - in which it is not appropriate to
require the human participant to physically walk or ride a bicycle.
At times, one may wish to interact with topological or temporal
abstractions, rather than the spatial. Nevertheless, our camera mod-
ules will accept data from arbitrary input devices as appropriate.

Blinn [2] suggested several modes of camera specification based
on a description of what should be placed in the frame rather than
just describing where the camera should be and where it should be
aimed.

Phillips et al suggest some methods for automatic viewing control
[181. They primarily use the “camera in hand” metaphor for view-
ing human figures in the JackTM system, and provide automatic fea-
tures for maintaining smooth visual transitions and avoiding
viewing obstructions. They do not deal with the problems of navi-
gation, exploration or presentation.

139

Karp and Feiner describe a system for generating automatic pre-
sentations, but they do not consider interactive control of the cam-
era [12].

Gleicher and Witkin [lo] describe a system for controlling the
movement of a camera based on the screen-space projection of an
object, but their system works primarily for manipulation tasks.

Our own prior work attempted to establish a procedural framework
for controlling cameras [7]. Problems in constructing generalizable
procedures led to the current. constraint-based framework
described here. Although this paper does not concentrate on meth-
ods for satisfying multiple constraints on the camera position, this
is an important part of the overall camera framework we outline
here. For a more complete reference, see [9]. An earlier form of the
current system was applied to the domain of a Virtual Museum [8].

3. CamDroid System Design
This framework is a formal specification for many different types
of camera control. The central notion of this framework is that
camera placement and movement is usually done for particular rea-
sons, and that those reasons can be expressed formally as a number
of primitives or constraints on the camera parameters. We can iden-
tity these constraints based on analyses of the tasks required in the
specific job at hand. By analyzing a wide enough variety of tasks, a
large base of primitives can be easily drawn upon to be incorpo-
rated into a particular task-specific interface.

3.1 Camera Modules
A camera module represents an encapsulation of the constraints
and a transformation of specific user controls over the duration that
a specific module is active. A complete network of camera modules
with branching conditions between modules incorporates user con-
trol, constraints, and response to changing conditions in the envi-
ronment over time.

Our concept of a camera module is similar to the concept of ashot
in cinematography. A shot represents the portion of time between
the starting and stopping of filming a particular scene. Therefore a
shot represents continuity of all the camera parameters over that
period of time. The unit of a single camera module requires an
additional level of continuity, that of continuity of control of the
camera. This requirement is added because of the ability in com-
puter graphics to identically match the camera parameters on either
side of a cut, blurring the distinction of what makes up two sepa-
rate shots. Imagine that the camera is initially pointing at character
A and following him as he moves around the environment. The
camera then pans to character B and follows her for a period of
time. Finally the camera pans back to character A. In cinematic
terms, this would be a single shot since there was continuity in the
camera parameters over the entire period. In our terms, this would
be broken down into four separate modules. The first module’s task
is to follow character A. The second module’s task would be to pan
from A to IB in a specified amount of time. The third module’s task
would be to follow B. And finally the last module’s task would be
to pan back from B to A. The notion of breaking this cinematic shot
into 4 modules does not specify implementation, but rather a for-

mal description of the goals or constraints on the camera for each
period of time:.

As shown in figure 1. the generic module contains the following
components:

Figure 1: Generic camera module containing a controller,
an initializer, a constraint list, and local state

l the local state vector. This must always contain the camera
position, camera view normal, camera “up” vector, and field
of view. State can also contain values for the camera parame-
ter derivatives, a value for time, or other local information
specific to the operation of that module. While the module is
active, the state’s camera parameters are output to the ren-
derer.

l initializer. This is a routine that is run upon activation of a
module. Typical initial conditions are to set up the camera
state based on a previous module’s state.

l controher. This component translates user inputs either
directly :into the camera state or into constraints. There can be
at most one controller per module.

l constraints to be satisfied during the time period that the mod-
ule is active. Some examples of constraints are as follows:

l maintain the camera’s up vector to align with world up.
l maintain height relative to the ground
l maintain the camera’s gaze (i.e. view normal) toward a

spe,cified object
l make sure a certain object appears on the screen.
l make sure that several objects appear on the screen
l zoom in as much as possible

In this system, the constraint list can be viewed simply as a black
box that produces values for some DOFs of the camera. The con-
straint solver combines these constraints using a constrained opti-
mizing solver to come up with the final camera parameters for a
particular module. The camera optimizer is discussed extensively
in [9]. Some constraints directly produce values for a degree of
freedom, for example, specifying the up vector for the camera or
the height of rhe camera. Some involve calculations that might pro-
duce multiple DOFs, such as adjusting the view normal of the cam-
era to look at a particular object. Some, like a path planning
constraint discussed in [8] are quite complicated, and gene:rate a
series of DOPs over time through the environment based on an ini-
tial and final position.

140

Figure 2: Overall CamDroid System

3.2 The CamDroid System

The overall system for the examples given in this paper is shown in
figure 2.

The CamDroid System is an extension to the 3D virtual environ-
ment software testbed developed at MIT [6]. The system is struc-
tured this way to emphasize the division between the virtual
environment database, the camera framework, and the interface
that provides access to both. The CamDroid system contains the
following elements.

l A general interpreter that can run pre-specified scripts or man-
age user input. The interpreter is an important part in develop-
ing the entire runtime system. Currently the interpreter used is
TCL with the interface widgets created with TK [171. Many
commands have been embedded in the system including the
ability to do dynamic simulation, visibility calculations, finite
element simulation, matrix computations, and various data-
base inquiries. By using an embedded interpreter we can do
rapid prototyping of a virtual environment without sacrificing
too much performance since a great deal of the system can
still be written in a low level language like C. The addition of
TK provides convenient creation of interface widgets and
interprocess communication. This is especially important
because some processes might need to perform computation
intensive parts of the algorithms; they can be offloaded onto
separate machines.

l A built-in renderer. This subsystem can use either the hard-
ware of a graphics workstation (currently SGIs and HPs are
supported), or software to create a high quality antialiased
image.

l An object database for a particular environment.
l Camera modules. Described in the previous section. Essen-

tially, they encapsulate the behavior of the camera for differ-
ent styles of interaction. They are prespecified by the user and
associated with various interface widgets. Several widgets can
be connected to several camera modules. The currently active
camera module handles all user inputs and attempts to satisfy
all the constraints contained within the module, in order to
compute camera parameters which will be passed to the ren-
derer when creating the final image. Currently, only one cam-
era module is active at any one time, though if there were
multiple viewports, each of them could be assigned a unique

camera.

4. Example: Filming a conversation
The interface for the conversation filming example is based on the
construction of a software agent which perceives changes in lim-
ited aspects of the environments and uses a number of primitives to
implement agent behaviors. The sensors detect movements of
objects within the environment and can perceive which character is
designated to be talking at any moment.

In general, the position of the camera should be based on conven-
tional techniques that have been established in filming a conversa-
tion. Several books have dissected conversations and come up with
simplified rules for an effective presentation [1, 141. The conversa-
tion filmer encapsulates these rules into camera modules which the
software agent calls upon to construct (or assist a director in the
construction of) a film sequence.

4.1 Implementation

The placement of the camera is based on the position of the two
people having the conversation (see figure 3). However, more
important than placing the camera in the approximate geometric
relationship shown in figure 3 is the positioning of the camera
based on what is being framed within the image.

Figure 3: Filming a conversation [Katz88].

Constraints for an over-the-shoulder shot:
l The height of the character facing the view should be approx-

imately l/2 the size of the frame.
l The person facing the view should be at about the 2/3 line on

the screen.
l The person facing away should be at about the l/3 line on the

screen.
l The camera should be aligned with the world up.
l The field of view should be between 20 and 60 degrees.
l The camera view should be as close to facing directly on to

the character facing the viewer as possible.

141

Figure 4: Two interconnected camera modules for filming a conversation

Constraints for a corresponding over-the-shoulder shot:
l The same constraints as described above but the people

should not switch sides of the screen; therefore the person fac-
ing towards the screen should be placed at the l/3 line and the
person facing away should be placed at the 2/3 line.

Figure 3 can be used to find the initial positions of the cameras if
necessary, but the constraint solver contained within each camera
module makes sure that the composition of the screen is as desired.

Figure 4 shows how two camera modules can be connected to auto-
matically film a conversation.

A more complicated combination of camea modules can be incor-
porated as the behaviors of a simple software agent. The agent con-
tains a rudimentary reactive planner which pairs camera behaviors
(combination of camera primitives) in response to sensed data. The
agent has two primary sets of camera behaviors: one for when
character 1 is speaking; and one for when character 2 is speaking.
The agent needs to have sensors which can “detect” who is speak-
ing and direct a camera module from the desired set of behaviors to
become active. Since the modules necessarily keep track of the
positions of the characters in the environment, the simulated actors
can move about while the proper screen composition is maintained.

Figure 5: Conversation filming agent and its behaviors.

Figure 6 shows an over-the-shoulder shot automatically generated
by the conversation filming agent.

t geners

5. Example: the Virtual Football Game

The virtual football game was chosen as an example because there
already exists a methodology for filming football games that can be
called upon :as a reference for comparing the controls and resultant
output of the virtual football game. Also, the temporal flow of the
football game is convenient since it contains starting and stopping
points, specific kinds of choreographed movements, and easily
identifiable participants. A visual programming language for com-
bining camera primitives into camera behaviors was explored.
Finally, an interface, on top of the visual programming language,
based directly on the way that a conventional football game is
filmed, was developed.

It is important to note that there are significant differences between
the virtual football game and filming a real football game.
Although attempts were made to make the virtual football game
realistic- three-dimensional video images of players were incor-
porated and football plays were based on real plays [151 -this vir-
tual football game is intended to be a testbed for intelligent camera
control rather than a portrayal of a real football game.

5.1 Implementation

Figure 7 shows the visual programming environment for the cam-
era modules. Similar in spirit to Haeberli’s ConMan [1 l] or Kass’s
GO [13], the system allows the user to connect camera modules,

142

and drag and drop initial conditions and constraints, in order to
control the output of the CamDroid system. The currently active
camera module’s camera state is used to render the view of the
graphical environment. Modules can be connected together by
drawing a line from one module to the next. A boolean expression
can then be added to the connector to indicate when control should
be shifted from one module to the connected module. It is possible
to set up multiple branches from a single module. At each frame,
the branching conditions are evaluated and control is passed to the
first module whose branching condition evaluates to TRUE.

Constraints can be instanced from existing constraints, or new ones
can be created and the constraint functions can be entered via a text
editor. Information for individual constraints can be entered via the
keyboard or mouse clicks on the screen. When constraints are
dragged into a module, all the constraints in the module are
included during optimization. Constraints may also be grouped so
that slightly higher level behaviors composed of a group of low
level primitives may be dragged directly into a camera module.

Initial conditions can be dragged into the modules to force the min-
imization to start from those conditions. Initial conditions can be
retrieved at any time from the current state of the camera. Camera
modules can also be indicated to use the current state to begin opti-
mization when control is passed to them from other modules.

Controllers can also be instanced from a palette of existing control-
lers, or new ones created and their functions entered via a text edi-
tor. If a controller is dragged into the module, it will translate the
actions of the user subject to the constraints within the module. For
example, a controller that will orbit about an object may be added
to a module which constrains the camera’s up vector to align with
the world up vector.

Figure 7: Visual Programming Environment for camera
modules

The end-user does not necessarily wish to be concerned with the
visual programming language for camera control. An interface that
can be connected to the representation used for the visual program-
ming language is shown in Figure 7. The interface provides a
mechanism for setting the positions and movements of the players
within the environment, as well as a way to control the virtual cam-
eras. Players can be selected and new paths drawn for them at any
time. The players will move along their paths in response to click-

ing on the appropriate buttons of the football play controller.
Passes can be indicated by selecting the appropriate players at the
appropriate time step and pressing the pass button on the play con-
troller.

I I

Figure 8: The virtual football game interface

The user can also select or move any of the camera icons and the
viewpoint is immediately shifted to that of the camera. Essentially,
pressing one of the camera icons activates a camera module that
has already been set up with initial conditions and constraints for
that camera. Cameras can be made to track individual characters or
the ball by selecting the players with the middle mouse button.
This automatically adds a tracking constraint to the currently active
module. If multiple players are selected, then the camera attempts
to keep both players within the frame at the same time by adding
multiple tracking constraints. The image can currently be fine-
tuned by adjusting the constraints within the visual programming
environment. A more complete interface would provide more
bridges between the actions of the user on the end-user interface
and the visual programming language..

Figure 9: View from “game camera” of virtual football
game.

143

6. Results

We have implemented a variety of applications from a disparate set
of visual domains, including the virtual museum [8], a mission
planner [21]. and the conversation and football game described in
this paper. While formal evaluations are notoriously difficult, we
did enlist Ihe help of domain experts who could each observe and
comment Ion the applications we have implemented. For the con-
versation agent, our domain expert was MIT Prof.essor Glorianna
Davenport, in her capacity as an accomplished documentary film-
maker. For the virtual football game, we consulted with Eric Eisen-
dratt. a sports director for WBZ-TV, Boston. In addition, MIT
Professor Tom Sheridan was an invaluable source of expertise on
teleoperation and supervisory control. A thorough discussion of the
applications, including comments of the domain experts, can be
found in [9].

7. Summary

A method of encapsulating camera tasks into well defined units
called “camera modules” has been described. Through this encap-
sulation, camera modules can be designed which can aid a user in a
wide range of interaction with 3D graphical environments. The
CamDroid system uses this encapsulation, gong with constrained
optimization techniques and visual programming to greatly ease
the development of 3D interfaces. Two interfaces to distinctly dif-
ferent environments have been demonstrated in this paper.

8. Acknowledgements

This work was supported in part by ARPA/Rome Laborato-
ries, NHK (Japan Broadcasting Co.), the Office of Naval
Research, and equipment gifts from Apple Computer,
Hewlett-Packard, and Silicon Graphics.

9. References
1. Arijon, ID., Grammar of the Film Language. 1976, Los Angeles:
Silman-James Press.

2. Blinn, J., Where am I? What am I looking at? IEEE Computer
Graphics and Applications, July 1988.

3. Brooks, F.P., Jr. Grasping Reality Through Illusion -- Interactive
Graphics Serving Science. Proc. CHI ‘88. May 15-19, 1988.

4. Brooks, F.P., Jr. Walkthrough -- A Dynamic Graphics System for
Simulating: Virtual Buildings. Proc. 1986ACM Workshop on Inter-
active 3D Graphics. October 23-24, 1986.

5. Chapman, D. and C. Ware. Manipulating the Future: Predictor
Based Feedback for Velocity Control in Virtual Environment Navi-
gation . Proc. 1992 Symposium on Interactive 30 Graphics. 1992.
Cambridge MA: ACM Press.

7 Drucker, S., T. Galyean, and D. Zeltzer. CINEMA: A System for
Procedural Camera Movements. Proc. 1992 Symposium on Inter-
active 30 Graphics. 1992. Cambridge MA: ACM Press.

8. Drucker, S. M. and D. Zeltzer. Intelligent Camera Control for
Virtual Envioanments. Graphics Integace ‘94. 1994.

9. Drucker, S.M Intelligent Camera Control for Graphical Envi-
ronments. PhD. Thesis. MIT Media Lab. 1994.

IO. Gleicher, M..A.W. Through-the-Lens Camera Control. Com-
puter Graphics. 26(2): pp. 331-340. 1992

11. Haeberli. P.E., ConMan: A Visual Programming Language for
Interactive Graphics. Computer Graphics. 22t.4): pp. 103-I II.
1988

12. Karp, l? and S.K. Feiner. Issues in the automated generation of
animated pre.jentations. Graphics Interface ‘90. 1990.

13. Kass, M. GO: A Graphical Optimizer. in ACM SIGGRAPH 91
Course Notes,, Introduction to Physically Based Modeling. July 28-
August 2, 19!)1. Las Vegas NM.

14. Katz, S.D., Film Directing Shot by Shot: Wsualising from Con-
cept to Screen. 1991, Studio City, CA: Michael Weise Productions.

IS. Korch, R. The Oficial Pro Football Hall of Fame. New York,
Simon & Schuster, Inc. 1990.

16. Ma&inlay, J. S., S. Card, et al. Rapid Controlled Movement
Through a Virtual 3d Workspace. Computer Graphics 24(4): 171-
176. 1990.

17. Ousterhout, J. K. Tel: An Embeddable Command Language.
Proc. 1990 Winter USENIX Conference. 1990.

18. Philips, C.B.N.I.B., John Granieri. Automatic Viewing Control
for 3D Direct: Manipulation. Proc. 1992 Symposium on Interactive
30 Graphics. 1992. Cambridge, MA.: ACM Press.

19. Ware, C. and S. Osbom. Exploration and Virtual Camera Con-
trol in Virtual Three Dimensional Environments. Proc. I990 Sym-
posium on Interactive 30 Graphics, Snowbird, Utah, 1990. ACM
Press.

20. Zeltzer, D. Autonomy, Interaction and Presence. Presence:
Teleoperators and Virtual Environments I(1): 127- 132. h4arch.
1992.

21. Zeltzer, D. and S. Drucker . A Virtual Environment System for
Mission Planning. Proc. I992 IMAGE VI Conference, Phoenix
AZ.July, 1992.

6. Chen, I). T. and D. Zeltzer. The 3d Virtual Environment and
Dynamic !jimulation System. Cambridge MA, Technical Memo.
MIT Media La.b. August, 1992.

144

