
Multi-Pass Pipeline Rendering: Realism For Dynamic Environments

Paul J. Diefenbach”and Norman I. Badlert

Center for Human Modeling and Simulation, University of Pennsylvania, Philadelphia PA 19104-6389

Abstract

A coordinated use of hardwareprovided bltplanes and ren-
dering pipelines can create fast ray traced quality illumina-
tion effects for dynamic environments by using Multi-pass
Pipeline Rendering (MPR) techniques. We provide recttr-
sive reflections and refractions through the use of secondary
viewpoints and projective image mapping. We extend the
traditional use of shadow volumes to provide global direct
illumination effects which fit into our recursive viewpoint
paradiim. Hardware surface shading is fit to a physically-
baaed BRDF to provide a better local model, and the frame-
work permits incorporation of indirect illumination as well.
Furthermore, material transmittance is approximated using
an extension to projective textures. Together, these tech-
niques provide a platform for producing realistic images in
highly dynamic environments. While most appropriate for
scenes which specular components contribute largely to the
secondary illumination, the integration of MPR with indi-
rect racliosity solutions also provides a dynamic solution for
highly diffuse environments. These techniques are immedi-
ately applicable to areas such as walkthroughs, animation,
and interactive dynamic environments to produce more re-
alistic images in near real-time.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation - Bitmap and
framebuffer operations; 1.3.6 [Computer Graphics]: Method-
ology and Techniques - Interaction techniques; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism
- Color, shading, shadowing, and texture.

“ Currently at DRaW Computing Associates Inc., 3508 Market St.,
Philadelphia, PA 19104. Email: pjdief@drawcomp .com

tBmail: badler@graphics. cis.upenn.edu

Permission to make digitalhard copks of all or partof this material for
personalorcl.asxonmuseisgrrrntedwithoutf- providedthatthecopies
arenotmadeordistributedfor profit or commercial advantttge, the copy-
right notice, the title of the publicaticm and its date appear, aud notice is
given that copyright is by permission of the ACM, k To copy otherwise,
to republish, to post on servers or to redistribute to list-s,requires specific
permission andlor fee.
1997 Symposium on Interactive 3D Graphics, Providence RI USA
Copyright 1997 ACM O-8979 1-884-3/97/04 ..$3.50

1 INTRODUCTION

With large investments in sophisticated (and costly) graph-
ics hardware, why is so much rendering performed off-line?
While hardware-based rendering pipeline systems such as
the SGI architecture do permit real-time interaction, the
quality of the images they produce has been limited. In
cent rast, ray tracing systems produce very accurate scenes
of specular environments, but each image requires signifi-
cant computation time. Radiosity systems provide accurate
object-space diffuse lighting representations, but only with
a large precomputation overhead and for relatively static
environments. Traditionally, to produce an image such as
Fig. 1, one of these two methodologies has been nsed. This
image, however, was produced using only hardware-provided
graphics and pipeline rendering techniques.

Figure 1: Multi-pass Pipeline Rendered Image (1 overhead
and 4 vanity lights)

Multi-pass Pipeline Rendering (MPR) extends a series
of related multi-pass techniques analogous to Heckbert and
Hanrahan’s beam tracing [19] to provide added image qual-
ity for interactive, dynamic environments. Because it relies

59

on multiple rendering passes to add additional levels of de- Shadow volumes are volumes bounded bv silhouette faces.
tail in each pass, it can easily be tailored to suit the user’s

desired performance-quality needs. Graphically, the rela-
tionship between performance, dynamics, and quality for
traditional svstems is seen in Fimrre 2(a). MPR movides a
broad spectr~m of image quality”and r~~ism whi~h fits into
our performance model in Fig. l(b).

Current hardware rendering has been limited in the ef-
fects it provides. High polygonal rendering rates and tex-
ture mapping provide added detail, but scene illumination
has gone relatively unchanged. Shadows have been some-
what supported through shadow volumes [8] and shadow
buffers[30], and some specular reflective surfaces have been
modeled using texturing[32] [4] and secondary viewpoints[2 3].
There has been, however, almost no concerted effort to use
the hardware graphics to achieve physics-based rendering.
Multi-pass Pipeline Rendering begins to address this issue.

(a) Traditional (a) MPR

Figure 2: Traditional vs MPR Relationship

In MPR, reflective and refractive images are provided
through secondary renderings from virtual viewpoints. In
addition, all facets of the illumination of the scene for the
primary and secondary images are also accomplished through
multiple hardware-baaed renderings. We extend the tradi-
tional use of shadow volumes to provide global duect illumi-
nation effects which fit into our recursive viewpoint partilgm.
Hardware surface shading is fit to a physically-based BRDF
to provide a better local model, and the framework permits
incorporation of indirect illumination as well. Furthermore,
material transmit tante is approximated using an extension
to projective textures. Together, these techniques provide
a platform for producing realistic images in highly dynamic
environments. In addition, the multi-pass architecture pre-
sented readily extends to a progressive refinement approach
for interactive rendering. These techniques are immediately
applicable to areas such as walkthroughs, animation, and
interactive dynamic environments to produce more realistic
images in near real-time.

2 DEFINITIONS

For the purposes of this paper, we shall introduce terms
common to users in the GL environment. Stencii pianes are
an enhanced Z-buffer mentioned in [5]. In its simplest form,
pixels are written only if the current stencil value (analogous
to the current Z value) of the destination pixel passes the
defined stencil test. Depending on the result, the pixel is
written and the stencil value is changed.

A silhouette face is a face created for each ~dge of an object
by extending that edge away from the light source along the
light-ray direction.

An accumulation twfler is a secondary image buffer to
which the current image can be added. The resulting image
can also be divided by a constant. This enables a blending
of images or image features.

In-out refractions are refractions which occur when light
passes from one medium to another and back to the first,
such as light traversing through a piece of glass. There is an
entry refraction and an exit refraction, producing a refracted
ray parallel to the incident ray.

3 SPECULAR IMAGES

Reflections and refractive transparency are important for
lending realism to many scenes, in particular, interior envi-
ronments. A specular image corresponds to au image from
a secondary viewpoint mapped onto the specular surface.
We term a specular surface to include both specular reflec-
tive and specular transmissive (refractive) surfaces u used
in Wallace et. al.’s definition of light transport[33]. For
example, a specular reflected image is the flipped image
from a viewpoint on the “other” side of the mirror. This
analogy provides the basis for mirror reflection in several
systems[23][l 9].

In the MPR method, specular images are implemented
bv renderine the entire environment. exclusive of the sDecu-
l~r surface. ‘The specular surface is drawn with Z-buff&ing,
creating a stencil mask on pixela where the mirror is visible.
A second rendering of the environment is then performed
from the virtual reflected or refracted viewDoint. drawina.,
only over the previously masked pixels. This virtual view-
point can be determined using the beam-tracing specular
transformations[19]. For specular refractive surfaces, the re-
fractive image must be further transformed to “fit” onto the
refractive surface. Recursion is provided through maintain-
ing the depth information within the stencil mask values.
This method is fully described in [IO]. For curved surfaces,
tessellation or environment mapping[4] can be used. An-
other promising area is the use of field-of-view adjustment
for certain classes of curved surfaces.

In addition, translucent sad other light dispersing ma-
terials can be simulated using the hardware fog feature and
the stencil planes. Translucent objects act as a filter with
closer objects more clearly visible than farther objects due
to the random refractions which take place[22]. This ef-
fect can be approximated using hardware fog features with
the minimum fog set at the refractive plane distance and the
maximum at the desired distance depending on the material
property. Although fog is linear with respect to the view, the
approximation is fairly accurate due to the limited angular
displacement of the refracting plane because of the critical
angle. A more versatile fog function supporting a general
linear transform would provide much more accurate translu-
cency and light scattering for reflective surfaces. By incor-
porating multisampled stochastic (X, Y) shearing about the
specular surfaces normal axis, light scattering through the
translucent material can also be simulated. This is accom-
plished by accumulating- using an accumulation buffer[l6]-
intermediate stochastically-sheared specular images to pro-
duce the final scattered effect.

A 4x4 transform is created which includes a stocha.sti-

60

tally generated (X, Y) shear. This transform is premulti-
plied by the global inverse transform of the specular face
normal and postmultiplied by the global transform of the
normal, with the resulting transform pushed onto the view
matrix stack. This creates a shear linear with respect to the
perpendicular distance from the specular surface.

An overview of the entire rendering process is seen in the
following code.

mask.face (spec.f ace); //set stencil area for face
reclassify -camera(Csmera); //move to virtual viewpoint
enable-clip-plane (spec_f ace) ; //clip away geometry
for (i=O; i++; i<nrmaamples){ //loop over all samples

// -shear view atochastically around specular normal
shear-vieu(Camera ,spec-face, sample[i]);
draw-window(Camera); // -recursively draw
accbnf {ACCUMULATE);II -add intermediate images

}
disable-clip_plane (spec-face); //turn off clipping plane
accbnf(RETWU) ; //display composite image

By adjusting the jitter amount and the fog parameters,
this method can provide a range of effects similar to those
produced by ardytic methods[2], although at a much lower
cost. Figure 3 compares analytically-generated imagesl (a)
and (b) with our multi-pass images (c) and (d). Our frosted
glass images were each generated in less than 0.1 seconds, as
compared to 6.5 seconds in the analytic approach. Figure
4 compares the two approaches for a scattering reflective
surface. Here, analytically-computed image (a) required 1-2
minutes of rendering time, as compared to under 0.5 seconds
for multi-pass images (b) and (c).

(a)I Low-Scatter (Anahtic)

(a) Table (Analytic)

(b) Table (MPR) (C) Wood (MPR)

Figure 4: Glossy Table

hardware-based rendering, image size has minimal effect on
timings in contrast to ray tracing. In systems where rasteri-
zation is independent of polygon size (i.e. Pixel-Planes[15]),
image size is not a consideration.

(c) Low-Scatter (MPR) (d) High-Scatter (MPR)

Figure 3: Frosted Glass

tic)

(c) m=.5, fmax=300 (d) m=.9, fmax=150
Figure 3. Frosted Glass

Figure 3 demonstrates the dispersing nature of a translu-
cent scattering surface under varying shear multipliers (m)
and fog parameters (finax). Note how the elongated blue
beam is clearer the closer it is to the glass. Figure 4 again
demonstrates this effect in conjunction with texture map
ping to simulate a shiny marble surface. As this method uses

1Butterflydesign by Elsa Schmid[29].

4 GLOBAL DIRECT ILLUMINATION

Whereas the original implementation of multiple-pass tech-
niques presented in [10] demonstrated how shadow and light
volume generation can work with specular image stenciling
to produce global direct illumination effects, it suffered from
several shortcomings. These included low performance due
to costly intersection checks and unneeded shadow volume
recomputation, as well as incorrect multi-source blending.

61

Light volumermfractd by RI k R2

Figure 4. Glossy Marble Wall

These issues are addressed in the MPR implementation de-
scribed here.

4.1 Shadows

In MPR, shadows are implemented based on Brotman and
Badler’s [5] extension of Crow’s shadow volume method[8].
This technique uses the plus-minus principle of silhouette
faces to mask regions inside the shadow volume.

The use of shadow volumes is more suitable to our ap-
plication than the shadow buffer[28] method due to several
factors. These include the limited “field of view” of shadow
buffers as well as limited resolution. Finally, the most se-
rious drawback for a dynamic environment is that move-
ment of one object requires recalculation of all of the shadow
buffer images.

Where the shadow buffer method suffers from the above
limitations, the shadow volume method obviates them. The
shadow volume is an omni-directional method casting shad-
ows in every direction from alight source. Shadow resolution
is at view-space resolution resulting in pixel (or subpixel)
accuracy. Object shadows are (mostly) independent which
permits recalculation of shadows from only objects which
have moved.

4.2 Light Volumes

Light volumes from secondary sources are generated in the
same manner as the shadow volumes. Just as shadow vol-
umes stencil the area in shadow, light volumes stencil the
area in which light from secondary sources can be added.
The light volume is generated using the same plus-minus
shadow volume method, however the stencil values are in
essence inverted to permit rendering only in the “shadowed”
area. The zero value therefore determines the valid render
area within a light volume; recursive support uses the meth-
ods described in [10].

With each specular-specular transport [33], the light vol-
ume is bent by each specular face with which it interacts,
and therefore the corresponding virtual light position is trans-
formed as well. Furthermore, the light volume is reduced by
each of the specular faces.

As demonstrated in Fig. 5, a light volume from a tertiary
source should be clipped by both refractive faces through
which it passes. This can be accomplished by either direct

Figure 5: Light volume clipped by both refracting planes.

reduction of the light volume through intersection checks,
or by multiple renderings of the light volume through each
face to determine the valid overlapping region.

The second method is based on additional passes of the
current implementation. As the correct light volume is the
light which passes through each specular face along its path,
this volume is SJSOthe intersection of the light volumes gen-
erated through each specular face. Therefore, the correct
light volume can be created by stenciling each of the con-
stituent light volumes to determine the overlapping area.
While this method is exact for reflective surfaces, it is a
close approximation for refractive surfaces based on parax-
ird rays [19].

4.3 Specular Shadow Volumes

Whereas the method described in [10] traced shadow rays to
specular objects, our MPR method computes shadow rays
for all specular virtual light sources. This eliminates the
need for cost ly surface intersection checks, thereby rendering
images significantly f~ter.

A reflected shadow ray traces the same path as a shadow
ray produced from the associated light source’s reflected p~
sition. For refractive surfaces, this virtual light source po-
sition approximates the refracted shadow ray direction for
paraxial rays. Therefore, instead of recursively performing
intersection checks for each shadow ray, an approximate so-
lution can be achieved by generating shadow rays for all
virtual reflected/refracted light positions. In addition, since
each ray is associated with a light source and a specular face,
these rays can be stored with the generating object and be
regenerated only when either the object, the specular face,
or the light source has moved. These rays are stored as
shadow volume faces generated for each silhouette edge of
the object.

During each image paas, which includes the camera view
as well as any reflected or refracted views, shadow volumes
are stenciled for the entire environment. In addition, this
process is recursively called for each specular face in the en-
vironment. This generates shadows and incrementally adds
lighting from secondary sources.

While storing shadow volumes significantly reduces ren-
dering times, it can require significant amounts of memory.
To reduce this, intelligent creation and re-use of shadow vol-
umes is performed. For our bathroom environment with
four light sources at one level of recursion and two specular

62

faces, 53 megabytes of shadow storage would have normally
be needed if volumes were generated for every polygon. In-
stead, this is reduced in MPR by an order of magnitude
through use of intelligent silhouette edge volume generation
and re-use of volumes.

In order to understand the need for shadow volume re-
use, examine the exponential nature of shadow generation
when specular transport is involved. Consider Fig. 6 in
which two specular reflective surfaces are involved. To ac-
curately render the lighting effects emitting from mirror Rz
at two levels of recursion, it can be seen that object O pro-
duces two shadow volumes involving specular transport from
mirror RI only, and three shadow volumes involving specu-
lartransport from mirror RI tomirror R2. Each additional
specular surface or level of recursion requires an exponential
increase because it introduces additional shadows at each
level of recursion.

Virtu.1 Light.

Figure 6: Shadow volumes generated involving RI.

Whale it first seems that each of these shadow volumes
must be independently stored, this is not necessary and in-
deed proved too costly. Instead, it can be noted that shad-
ows which pass through a specular surface are simply a
transformed version of the original shadow, and therefore a
transformed version of the original shadow volume is vrdid.
Again referring to Fig. 6, it can be seen that shadow volumes
5’012 and S’l~z are reflected versions of SO1 and S1o respec-
tively, the former itself a reflected version of the shadow
directly from the light SO.

4.4 Light Accumulation

To produce the penumbra effects for areas only in partial
shadow, an accumulation of the hghting effects from the pri-
marv as wefl u reflected/refracted lkhts must occur. There. ,
are two methods for performing this accumulation of lighting
effects. The first method is to treat each shadow calculation
as being independent and to sum each resulting image. The
second method uses an extension of shadow volumes for soft
shadows[5].

Soft Shadows

Whereas antialiasing is performed by jittering the camera
position, soft shadows are created by jittering the light source.

This in effect approximates an area light source with a stochast-
ic set of Doint light sources.

The a&ual i~plementation of this source jittering is an
approximation to an actual movement of the source point.
Recall that shadow volumes are computed once and stored
with the corresponding object. Therefore, modification of
the light position would require recomputing every shadow
volume face for each silhouette edge at each jitter iteration
or initiaf storage of the entire set of jittered faces. Neither of
these options is an attractive proposition for an interactive
system.

The alternative solution notes that with a iittered source.
only two oft he shadow volume face’s four vertices are moved,
and that their movement is a linear transformation of the
stochastic jittering of the source. As the distribution is cen-
tered around the Doint source Dosition. any rotation of this
distribution also ~roduces a v&d stochastic sample.

SilhouetteEdse

Light Positicm

Figure 7: Jitter Approximation Shadow Volumes

As can be seen in Fig. 7, a movement of the light pr~
duces a linearly scaled movement of the end of the shadow
volume. Fig. 7 demonstrates the above approximation, along
with the error introduced by this method. As the segment
acts as a pivot, the ratios b2/bl; u2/a 1 relate the displace-
ment of the two generated nodes of the shadow face to the
two nodes bordering on the generating silhouette edge itself.
In practice, the jitter size as compared to the distances in-
volved is relatively minute, and a constant multiplier ususJly
suffices.

The above jitter approximation therefore provides a sim-
ple way to jitter the shadow volume without its recompu-
tation. A scsJar multiplier can be used to control the light
source area, and the shape can be directed by the jitter sam-
ple distribution itself.

4.5 Specular Projection

The previously described light volumes created for light pazs-
ing through transparent materials or reflecting off mirrored
surfaces have relied on specular surfaces of uniform col-
oration, density, and transparency. There are, however,
many common materials which do not fall into this category,
including beveled glass, prisms, and stained glass. Light in-
teraction with these materials can, however, be simulated
using projective texture mapping.

Projective textures have been previously used for a va-
riety of purposes. This includes use as a slide projector
onto a surface [11] and as an a shadow caster based on a
depth texture map [40]. Dorsey[l 1] used this principle to
produce the perspectively distorted image itself. Segal et.

63

al. [30] demonstrated how projective coordinate transforma-

tions permit texture coordinate assignment based on the

depth maps described in [28]. With this facility available,
we can simulate light interaction with many of the above
mentioned materials.

As seen in Fig. 8(a), the texture transformation is depen-
dent on local axial-aligned 2-D coordinate frames. Unfortu-
nately, this is seldom the case with arbitrary environments
where the texture plane (i.e. the specular surface) is not
axial aligned with the light view. This is demonstrated in
Fig. 8(b).

#.EK’.
$-j!ll&$jjiij*.,—, ,—...... .

(a) Axial aligned (b) Non-axial aligned

Figure 8: Light and view coordinate systems.

There is however a corresponding projection M33 of the
texture plane onto the axial aligned texture coordinates. As
with the image mapping of a refractive image onto a specular
plane[lO], this transformation is a 2-D projection of quadri-
lateral to quadrilateral. In fact, this instance is the simpler
mapping of rectangle to quadrilateral, described in [18].

(a) Axial aligned (b) Non-axial aligned

Figure 9: Projected Textures

The application of this transformation is seen in Fig. 9,
where the first image shows normal hardware-based texture
proj=tion and the second shows the same projection with a
non-axial aligned texture plane.

By applying the texture only during the light volume il-
lumination stage, the light volume is thereby modulated by
the texture. A detail of these effects is seen in Fig. 10, where
four real lights and four virtuaf sources shining through a
“beveled” glass door produce eight partially overlapping tex-
ture patterns which are occluded by the door handle shad-
ows .

Figure 10: Projected Texture Light Pattern

5 LOCAL DIRECT ILLUMINATION

In the previous section we demonstrated techniques for over-
laying and blending multiple renderings to create more re-
alistic images. We have not yet mentioned an equally im-
portant consideration, namely the local illumination model.
The local model represents the surface shading from direct
illumination from real and virtual light sources. These fight-
ing contributions are generated using the available graphics
hardware shading model. This generally is Gouraud shading
using the Phong lighting model[26]2, which is widely known
for its inaccuracies.

There has been much study devoted to both realistic
and physically accurate lighting models. This work is gen-
erally centered around the rendering equation introduced by
Kajiya[20]. This equation, expressed in terms of reflectance

2U

H

7r/2
Lr(Or, d.)= Ll(@l,d:) ~b~(8,,#’,;~r,dr)

o 0
cos (81) Sin(ei) dOi ddl (1)

states the relationship between incident light and reflected
fight from a surface based on a biditwctional rejfectance dis-
tribution function (BRDF)[25]. Many BRDF formulations
have been developed to try to represent this complex, high-
order function. This includes creation of theoretical physics-
based models [17] [7] and the use of spherical harmonics [6]
[21]. More recently, these methods have been extended for
anisotropic surfaces [35] [39].

Whale these advances have continued to improve ray-
traced and radiosity images, hardware rendering quality has
been relatively static with its basis on the Phong model.
The hardware Phong model is not a true BRDF:

Cp= cm,+ Csa cm.+

2 Although we (and the hardware designem themselves) refer to the
various implementations of exponent-based models as Phong’s model,
many are actually Blinn’s[3] model. Usuallymistakenlythoughof as
equivalent,the two models aredifferentalbeit closely related[13]

64

E c1

Ksdaj -k Ksdav D{P
1

(2)

where the C values are the scene, material, and light colors,
the N vectors represent the normal, bwector vector, and
direction to light as seen in Figure 11, the K values are fixed
and variable attenuation factors, and ~mss is the glosskess
exponent. In fact, the Phong model does not guarantee
conservation of energy ss the specular term actually acts
like a second diiluse term for low glossiness terms.

i
i
!
1

I

I
1

Figure 11: Phong BRDF Notation

While the traditional Phong representation is not founded
in the physicaJ transport of light, it can be made more accu-
rate if fit to a physically-based model. Isotropic models pro-
vide a good reference scattering function close to the range of
the Phong model. In particular we used the isotropic Gaus-
sian model presented by Ward [36] as the bssis to perform
a Chi-Square fit of the Phong lighting model. This model
provides a metric against real-world illumination in that it
incorporates actual measured material parameters and has
itself been tested against gathered data. The specular com-
ponent of the Gaussian BRDF is

and the corresponding Phong specular term rewritten from
Equation 2 is

p, Cos(6)-- (4)

where 6 is the polar angle between the half-vector and the
surface normal aa seen in Figure 11.

While the Phong model can be fit to the Gaussian BRDF,
this fit model is not applicable to the hardware lighting
model. If we examine the full diffuse and specular, com-
ponents of the hardware model, we note that co9(6i) is used

‘*.-, J,.’

(a) Gaussian (b) Phong

Figure 12: Gaussian vs. Phong Specular Term

to modulate the light received by the angle incident to the
surface normal by the source. The rendering equation (eq.
1) similarly uses a differential solid angle to represent the
projected solid angle subtended by the source. This intro-
duces an additional 9in(Oi) term not included in the hard-
ware equation. While this term integrates out for a true
point light source, it is present in Monte Carlo sampling sys-
tems such as Radiance [37] where there are only physically
realizable sources. Therefore, to provide some consistency
between the diffuse and specular computations as related to
a physically-based system, the ~in(ei) term is dropped from
the rendering equation and the Phong model ia fit to the

rendering equation. The specular term therefore becomes

e(-w)
COS(@i)p.

<ICOS (@i) COS(Or)l 4~ a’
(5)

A Chi-Square two-parameter fit of this model produces the
following Phong term:

03’8(1’”+)p,~os(~)(1’9995) (6)

with a corresponding X2 value of 0.00008003.
The exactness of this fit is seen graphically for several 81

in Figure 13.

Figure 13: Partial Gaussian vs. Fit Phong

While this Phong model is founded in a more physical
basis, it does not include the grazing effects of the original
Gaussian. It tends to overstate specular highlights for acute
8s, and conversely understates obtuse grazing angles, as de-
tailed in [9]. Even with these limitations, the benefits of
the fit model are further magnified by the ability to now in-
corporate measured material parameters ss in [35], thereby
providing physics-based material properties.

65

6 INDIRECT ILLUMINATION 7 TOTAL SCENE ILLUMINATION

Multi-pass Pipeline Rendering is best-suited for specular
environments. As mentioned previously, radiosity is well-
-suited for calculation of global illumination effects for dif-
fuse environments. It does not, however, capture the spec-
ular illumination which ray tracing and MPR are capable
of. In addition, it does not readily support having dynamic
environments[33]. The combination of MP R with a radios-
ity solution provides a solution for dynamic environments,
both specular and diffuse.

While a radiosity solution does include the direct diffuse
illumination of the environment, this is simply the first iter-
ation or “bounce” of the total radiosity solution. If this first
iteration is discarded from the final solution, the rsdiosity
renderer produces the global indirect illumination of the en-
vironment. If no ambient term is included, this provides
a linearly independent lighting calculation which can be
simply added to the lighting calculations as defined above.
This method is better suited for dynamic environments than
other tw~pass methods [33][27] in that the global direct
component is not incorporated in the first pass (direct il-
lumination) solution and the indirect component is not as
affected by moving geometry.

The addition of the radiositv contribution readilv occurs
in imagespace as demonstrate~ by Dorsey et. aL[l”2]. This
method, however, can prove more complicated if specular
surfaces are present. The radiosity image typically will not
contain secondary images as in a mirrored image, and there-
fore the entire image cannot be added to the pipeline render-
ing image. ThB region needs to be first masked to prevent
blending of one image containing the specular image (the
pipeline rendering one) with one image without specular re-
flections (the radiosity one).

(a) Indirect (b) Direct

Figure 14: Calculating Indirect Illumination Image

A more flexible solution is to incorporate the indirect ra-
diosity solution into the hardware rendering process instead
of adding it to the final image. The indmect radiosity vertex
coloring is rendered usimr the hardware shadine in the first
paas of-the pipeline proc&s. ThH replaces the &bient-only
rendering stage. This obviates the specular image problem
described above since specular images are generated also
during the ambient-only stage which the indirect solution
replaces. The direct solutions then use the original attribute
information for all subsequent calculations, ignoring the ra-
diosity vertex colorings. The hardware blending functions
detailed previously perform the composition of the individ-
ual illumination effects, as seen in Fig. 14.

The previous sections detailed the individual components
of the scene illumination model. It is the combination of
these techniques which produce a final image. While we
have briefly discussed the individual errors which result from
hardware limitations, physical approximations, and perfor-
mance tradeoffs, it is only through evaluation of the images
produced by these methods that we can gauge the effective-
ness of these techniques as a system.

In the previous sections, the individual components of a
multi-pass rendering system were introduced. This includes
shadow generation for real and virtual light sources and
specular image generation from a virtual viewpoint. Both
features rely on manipulating the hardware matrix stack to
create these virturd positions. Both features require multi-
ple passes to render for these virtual positions. Additionally,
both features use stenciling to mask to appropriate screen
regions for each rendering pass. This section examines the
interaction of these two similar rendering processes.

7.1 Recursion

The coordination of the separate processes is seen in the
following pseudo-code.

drav.~indow(tiera)
{

if (SPEC-01) //if specular enabled
draw-spec-objects (Camera); // -draw npeculer view

if (SEADOWS-01){ //if shadows are ●nabled then. .
turn-lights-off (); II -turn all lights off
draw-objectso; // ‘draw diffuse objects nnlit
for (each light) // -loop over each light end. .

make-shadows() ; // -draw in light volume
}else //else

dram-objectso; // ‘draw diffuse objects lit
}

drau-spec-objects ((%nera)
{

for (each spec.face){ //loop over all specular facem
mask-face(spec-f ace); //-set stencil area for face
reclassify-camera(Camera); //-move to new vieupo int
draw-window(Camera); //-recursively draw nes view

}
}

make.shadows(light)
{

env-st en(AF-LSPEC); //objects inside light volume
if (shadou-level>O) //if shadowing a light volome

env-e.t en (PSW-SPEC); //objects outside light volume
turn-light -on(light);
drav-objectso; //add light (except ehadous)
turn_light -off (light);
make-epec-shadous (shadow-level++); //add virtual light

}

make-spec-shadows(light)
{

for (each specular-f ace) { //loop over specular faces
spec-light (light, apec-f ace) ; //-more to new position
~eJight-vOl= (light); /1-maak light volume area
make-shadowe; // -creato in light volume

}
}

66

7.2 Light Accumulation

To provide correct accumulation, individual light contribu-
tions are added in RGB space at every iteration based on
the linearity of light transport[l I]. The first-pass rendering
is performed with ambient light only; successive iterations
are performed with no ambient light. By performing all il-
luminated renderings with a Z-buffer comparison function
checking for equsl values, only those visible object pixels
are re-rendered and blended with the final image. While our
practical experience with the system has not demonstrated
many dynamic range problems due to the RGB-space limi-
tations, the authors note that an extended color space repre-
sentation such as presented by Ward[34] could greatly con-
tribute to more physically-realistic images.

7.3 Stenciling

Both the rendering of shadows and the rendering of specular
images require use of the stencil planes. For specular image
generation, the stencil plane not only masks the valid ren-
dering area, but also acts as a recursive counter to enable
depth-first traversal in the recursive rendering process. At
each level of recursion, shadows must be drawn in the valid
area. This area may include previously rendered specular
surfaces so that shadows may be cast on partially specular
objects. These surfaces are rendered first as purely specular
and then blended with their respective material properties.
As described above, specular surfaces have their stencil val-
ues reset to zero after their specular image has been ren-
dered. The valid rendering area is therefore popped back to
zero, with lower recursive depths maintaining higher stencil
values.

While it might seem that the zero specular stencil mask
value would be a logical choice for the zero value in the
plus-minus shadow algorithm, this is not the case. In or-
der to have recursive reflections and refractions, we instead
choose a value which is three-fourths of the maximum sten-
cil value for our “zero” shadow value (SHAD-ZERO), and
one-half of the maximum for our minimum shadow stencil
value (SHAD-MIN). ThE provides half of the stencil buffer
for shadow calculation and half for recursive specular lev-
els. These values can be adjusted according to the recursion
level needed or the shadow object complexity.

7.4 Comparisons Wkh Ray Tracing

Fig. 15 demonstrates a comparison between an image pro-
duced through the Radiance[38] system and one produced
through the pipeline rendering process. The pipeline im-
age uses the described techniques with a constant ambient
lighting of 0.10 replacing the inclusion of a radiosity solution
indirect component. The first image slIows the reference Ra-
diance image which required 22o sec., and the second shows
the pipeline image generated in 8.5 sec.

The RMS error between the two images is under 5%
over the range of luminance vrdues versus over 10% error
for traditional single-pass rendering. Further accuracy can
be gained using the radiosity-generated indirect component
sa described above, however the pre-processing computation
cost often out weighs the increaaed realism benefit. The in-
direct component required 2224 patch shootings for a total
of 2343 CPU seconds. This high computation cost, as with
any radiosity-based system, prevents incorporation into a
fully-dynamic interactive system. For a low ambient scene

(a) Radiance Image (b) Pipeline Image

Figure 15: Gaussian (Radiance) vs. Phong (MPR) Illumi-
nation

which is dominated by specular reflections, a constant am-
bient term should suffice.

8 PERFORMANCE

The preceding section detailed the coordination between the
MPR techniques including shadow generation and specular
surfaces. As both of these features proceed recursively, per-
formance is primarily determined by the number of render-
ing passes (including both scene and shadow volume ren-
dering); image size has minimal effect as compared to ray
tracing. For Fig. 16 consisting of 40,463 polygons, the scene
required 96 shadow generation passes and 49 scene ren-
dering passes which together represent 92~o of the total
rendering time of 16.6 seconds for the 623x942 image. A
1270x995 image required 24.8 seconds. The correspond-
ing radiance images without textures required 236 and 486
seconds, respectively. All renderings were performed on a
single-processor 200MHz R4400 Onyx Reality Engine. Mini-
mal shadow volume culling and poorly-modeled objects were
used to demonstrate ~pplication on a non- “hand-crafted”
environment. An environment of equal quality with ‘cleaner”
models (i.e. interior, non-visible polygons removed) was ren-
dered four times as fsst.

A breakdown of the rendering process is seen in Table 1.
As can be seen by this data, specular image generation and
shadow generation can become very costly for highly specu-
lar environments for large depths of recursion. While much
of this rendering overhead could be eliminated by more ac-
curate viewpoint culling (i.e. [24][1]) for both specular image
and shadow generation, some is inherent in the nature of the
process. Yet even this cost can be reduced if some sacrifice
of image quality or accuracy is permitted. The following
sections discuss this quality/performance tradeoff.

8.1 Shadows Recursion

Shadows have been shown to be an important visual cue for
producing realistic and understandable images. For an envi-
ronment with n specular surfaces each visible to the others,
shadows are highly dependent on the depth d of the recur-
sive light reflections and refractions. As shadow generation

67

(a) 3.1 sec. [b) 2.7 Sec. (c) 2.1 sec.

Figure 16: Pipeline Image

Psm I # Iterations Time
Shadow volume Rendering 109,662 6.89
Object Rendermg 1,982,736 6.34
View-m-volume Check 6428 0.62
MMC c hecks 3836 0.26

Total stored shadows) I N/A 16.61

Shad ow Volume Generation 21,009 I 6.95

Total (Cak shadows) II N/A 23.63

Table 1: Frame rendering statistics for bathroom environ-
ment.

is required for all virtual light sources resulting from the
specular bounces as well as shadows which occur fkom the
original light source but are then bent,

[1~(n ff2 + 3d
— +1)

2
(7)

shadow generations are required per image per light.
Often, however, shadows are desired to simply provide

visual cues and some level of realism, and are not required
to be completely accurate. In these situations, the number of
rendering passes can be greatly reduced as can the memory
overhead.

Fig. 17(a) shows the Iighting passes for a single light
source with one reflective and one refractive surface. In
Fig. 17(b), shadow volumes which encounter more than one
specular surface are eliminated. This effect is apparent in
the shadow pattern on the tub. Fig. 17(c) shows the original
situation without reflected and refracted shadows. Note the
light volume is larger because the frame no longer blocks

Fw. d Spec 2+ # Passes” Tot al
17 Shad Bounces (scene/shad) (see)

a 2 YES YES 17/32 3,1

(b) 2 YES NO 17/ 28 2.7
c 2 NO NO 17/16 2.1

(d) 1 N/A N/A 9/12 1.8
e 1 YES N/A 13/20 2.6

Table 2: Varying Shadow Settings

“Represents actual number reduced through visibility testing

(d) 1.8 sec. (e) 2.6 sec.

Figure 17: Varying Shadow Settings

light from reaching the mirror, and the shower door handle
no longer casts a shadow through the door. Fig. 17(d) re-
places the refractive shower door with a purely transparent,
non-refracting surface. Finally, Fig. 17(e) demonstrates the
original scene with a shadow recursion depth of one instead
of two. A summary of the required number of rendering
passes is seen in Table 2.

8.2 Specular Image Recursion

Like shadows, specular images also provide a measure of
depth perception as well as added realism. In a complex
specular environment, the interaction of specular surfaces
can require many rendering iterations. Yet, like shadows,
this interaction is often not required to have physical re-
alism. Because shadows are generated within each specu-
lar image as well ss recursively for each specular surface,
the number of specular surfaces and recursion depth proves
doubly important. For complete shadow rendering, shadow
volume passes are required for shadows generated both be-
fore and after each specular surface encountered for the light
source at that recursive level. For n specular faces at a re-
cursive image depth of d,

O(nd + 1) (8)

images are generated. Again, viewpoint culling can grwatly
reduce the actual number of passes required.

The images in Fig. 18 and corresponding Table 3 demon-
strate the relationship between image quality and the perfor-
mance for varying specular environments. Fig. 18(a) shows
three specular surfaces (mirror, shower door, and floor) at
a specular depth of two, and Fig. 18(b) a specular depth
of one. In Fig. 18(c), the partial specular floor image has
been excluded at a depth of two. This is then repeated at
a depth of one in Fig. 18(d). In Fig. 18(e), the refractive
shower door is replaced with a non-refractive transparent
surface at a depth of two.

As can be seen, the rendering times range greatly yet
many of the images are similar. In an interactive environ-
ment, complete rendering may not be needed until motion

68

stops. This method is ideal for a progressive refinement sit-
uation, which could substitute from (e) to (c) to (a) as the
necessary frame-rate drops (i.e. the camera slows). The
switching criteria and ordering are an open issue.

8.3 Scene Dynamics

As mentioned previously, shadows maintain object aasocia-
tivity information. Therefore, unlike in aradioaity solution,
moving scene geometry has little effect on rendering times.
For the sequence of images in Fig. 19 from an animated
sequence, the movement of the mirror required the most
recomputation (6.1 see/frame) as it affected virtual light
source shadows. The movement of ‘Bob” required less re-
computation (4.9 see/frame). The entire animated sequence
of 450 frames required less than 6 hours of rendering time.

9 CONCLUSION

With Multi-pass Pipeline Rendering (MPR), we have pre-
sented a platform for bridging the gap between static off-
line rendering systems and dynamic hardware-based graph-
ics. We demonstrated a practical implementation of shadow
and light volumes and incorporated this into a recursive
paradigm permitting interaction with specular surfaces. This
includes the specular direct light-volume component sim-
ilar to Radiance’s[38] light source reclasstication for pla-
nar specular surfaces. We showed an extension to projected
textures to approximate complex material transmission, as
well as a method to render light-scattering materials them-
selves. We have tried to wrestle ss much physical realism
out of the lighting model itself without compromising perfor-
mance. Consistent with the broad spectrum of achievable
quality, we also presented a method to even include indi-
rect lighting effects. While some of the components we use
are based on existing techniques, we have provided a cohe-
sive framework for extending and combining them with new
rendering methodologies to produce ray trac~quality ren-
derings. Even with minimal viewpoint culling, this pipeline
rendering method demonstrated performance rates 5 to 50
times that of ray tracing for our test environments. Future
work will focus on taking full advantage of available culling
strategies for dynamic environments.

This paper intends not only to demonstrate the qual-
ity of effects achievable through pipeline rendering, but also
to serve as a call for more focus on the use of the graphics
hardware to perform realistic rendering. Indeed, many more
extensions of this methodology are possible with current
hardware, from achieving a better lighting model through
individual vertex normal modulation to use of multiple pr~
cessors. With other hardware platforms (i.e.[14]) and future
hardware systems, parallel rendering pipelines may be able
to exploit the independent nature of our multi-pass process.
In this vein, this paper also calls for more open, accessible
hardware pipelines which provide access in ways which the
developers may never had imagined or intended.

References

[1]

[2]

J. Airey. Increasing Updote Rates in the Building Walkthrough
System with Automatic A40deLSpace Subdivision and Poten-
tially Visible Set Calculations. PhD thesis, UNC Chapel Hill,
1990.

J. Arvo. Applications of irradiance tensors to the simulation of
non-lambertian phenomena. In Robert Cook, editor, Computer
Graphics (SIGGRA PH ’95 Pr-meedings), pages 335–342, 1995.

69

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J. Blinn. Models of light reflection for computer synthesized
pictures. Computer Graphtcs (SIGGRAPH ’77 Proceedings),
11(2):192–198, July 1977.

J. Blinn and M. Newell. Texture and reflection in computer
generated images. Communacat;ons of the ACM, 19:542-546,
1976.

L. Brotman and N. Badler. Generating soft shadows with a depth
buffer algorithm. IEEE Computer Graphics and Applzcat%ons,
4(10):71–81, October 1984.

B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflec-
tion functions from mmface bump maps. In Computer Graphacs
(SIGGRAPH ’87 Proceedings), volume 21, pages 273-281, July
1987.

R. Cook and K. Torrance. A reflectance model for computer
graphics. ACM Transactions on Graphics, 1(1):7–24, January
1982.

F. Crow. Shadow algorithms for computer graphics. volume 11,
pages 242–248, July 1977.

P. Diefenbach. Pipeline Rendering: Interaction and Realism
through Hardware-Based Multi-Pass Rendering. PhD thesis,
Dept. of CIS, U. of Penn,, 1996.

P. Diefenbach and N. Badler. Pipeline rendering: Interactive
refractions, reflections, and shadows. Dispiays (special issue on
Interactive Computer Graph:cs), 15(3):173–180, 1994.

J. Dorsey. Computer Graphics Techniques for Opera Lighting
Design and Sirnuiatiom PhD thesis, Cornell University, 1993.

[121 J. Dorsey. J. Arvo, and D. GreenberR. Interactive design of com-. .

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

plex tim~ depend&t lighting. IEE> Computer Gra>hics and
Applications, 15(2):26-36, March 1995.

F. Fisher and A. Woo. R.E versus N.H specular highlights. In
Paul Heckbert, editor, Graphics Gems IV, pages 388–400. Aca-
demic Press, Boston, 1994.

H. Fuchs, J. Goldfeather, J. Hultquist, S. Spach, J. Austin,
F. Brooks, Jr., J. Eyles, and J. Poulton. Fast spheres, shad-
ows, textures, transparencies, and image enhancements in Pixel-
Planes. In Computer Graphics, volume 19, pages 111–120, July
1985.

H, Fuchs and J. Poulton. Pixel-planes: a VLSI-oriented de-
sign for 3-D raster graphics. Proc. of the 7th Canadian Man-
Computer Communications Conf., pages 343–847, 1981.

P. Haeberli and K. Akeley. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (SIG-
GRAPH ’90 Proceedings), 24(4):309–318, August 1990.

X. He, K. Torrence, F. Sillion, and D. Greenberg. A comprehen-
sive model for light reflection. Computer Graphics (SIGGRAPH
’91 Proceedings), 25(4):175–186, July 1991.

P. Heckbert. Fundamentals of texture mapping and image warp-
ing. Master’s thesis, U. of California, Berkley, 1989.

P. Heckbert and P. Hanrahan. Beam tracing polygonal objects.
Computer Graphics, 18(3):119-127, 1984.

J. Kajiya. The rendering equation. In Computer Graphics, vol-
ume 20, pages 143–150, August 1986.

J. Kajiya and B. Von Herzen. Ray tracing volume densities. In
Computer Graphics (SIG GRAPH ’84 Proceedings), volume 18,
pages 165-174, July 1984.

D. Kay and D. Greenberg. ‘IYansparency for computer synthe-
sized images. Computer Grophics (SIG GRAPH ’79 Proceed-
ings), 13(2):158–164, August 1979.

E. Kingsley, N, Schofield, and K. Case. Sammie, Computer
Graphics, 15(3), 1981.

D. Meagher. The Octree Encoding Method for Eflcaent Solid
Modeling. PhD thesis, Electrical Engineering Dept., Rensselaer
Polytechnic Institute, 1982.

[25]

[26]

[2q

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[3q

[38]

[39]

[40]

F. Nicodemus, J. Richmond, J. Hsla, 1, Ginsberg, and
T. L1mperis. Geometrical considerations and nomenclature for
reflectance. NBS Monograph 160, National Bureau of St andacds,
U.S. Dept. of Commerce, October 1977.

B. Phong. Illumination for computer-generated pictures. Com-
munications of the ACM, 18(6):31 1–317, 1975.

C, Puech, F. Sillion, and C. Vedel. Imprnving interaction
with radiosity-based lighting simulation programs. In Computer
Graph:cs (1990 Symposium on Interactive 3D Graphics), vol-
ume 24, pages 51–57, March 1990.

W, Reeves, D. %fesin, and R. Cook. Rendering an’tialiased shad-
ows with depth maps. In Computer Graphics, volume 21, pages
283-291, July 1987.

E. Schmid. Beholding as in a Glass. Herder and Herder, New
York, 1969.

M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Hae-
berli. ht shadows and lighting effects using texutre mapping.
Computer Graphics, 26(2):249–252, 1992.

K. Torrance and E. Sparrow. Theory for off-specular reflection
from roughened surfaces. Journa? of OpticaJ Society of America,
57(9), 1967.

D. Voorhies and J. Foran. Reflection vector shading hardware.
In Proceedings of SIGGRAPH ’94, pages 163–166, July 1994.

J. Wallace, M. Cohen, and D. Greenberg. A two-paas solution to
the rendering equation: A synthesis of ray tracing and radiosity
methods. In Computer Graphics, volume 21, pages 311–320,
July 1987.

G. Ward. Real pixels. In J. Arvo, editor, Graphics Gems II,
pages 80–83. Academic Press, San Diego, CA, 1991.

G. Ward. Measuring and modeling anisotropic reflection. Com-
puter Graphics (SIGGRAPH ’92 Proceedings), 26(4):265–272,
July 1992.

G. Wacd. Measuring and modeling anisotropic reflection. In
Computer Graphics, volume 26, pages 265-272, July 1992.

G. Ward. The radiance lighting simulation and rendering system.
Computer Graphics (SIGGRAPH ’94 Proceedings), 28(4):459–
472, July 1994.

G. Ward. The RADIANCE lighting simulation and rendering
system. In Proceedings of SIGGRA PH ’94,pages459-472. ACM
Press,July 1994.

S. West in, J. Acvo, and K. Torrance. Predicting reflectance func-
tions for complex surfaces. Computer Graphics (SIG GRAPH
’92 Proceedings), 26(4):255–264, July 1992.

L. Williams. Caating curved shadows on curved surfaces. In
Computer Graphics, volume 12, pages 270-274, August 1978.

70

