
Abstract

Real-Time Occlusion Culling for Models with Large Occluders

SATYAN COORG SETH TELLER

Computer Graphics Group

MIT Laboratory for Computer Science

Efficiently identifying polygons that are visible from a
dynamic synthetic viewpoint is an important problem
in computer graphics. Typically, visibility determi-
nation is performed using the z-buffer algorithm. As
this algorithm must examine every triangle in the in-
put scene, z-buffering can consume a significant frac-
tion of graphics processing, especially on architectures
that have a low performance or software z-buffer.

One way to avoid needlessly processing invisible
portions of the scene is to use an occlusion culling
algorithm to discard invisible polygons early in the
graphics pipeline. In this paper, we exploit the pres-
ence of large occluders in urban and architectural
models to design a real-time occlusion culling algo-
rithm. Our algorithm has the following features: it
is conservative, i.e., it overestimates the set of visi-
ble polygons; it exploits spatial coherence by using a
hierarchical data structure; and it exploits temporal
coherence by reusing visibility information computed
for previous viewpoints. The new algorithm signif-
icantly accelerates rendering of several complex test
models.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Three-Dimensional Graphics and
Realism - visible line/surface algorithms; 1.3.7 [Com-
puter Graphics]: Computational Geometry and Ob-
ject Modeling – object hierarchies.

Additional Keywords: Conservative visibility, temporal
coherence, spatial coherence, kD-trees.

1 Introduction

Identifying visible polygons or eliminating hidden
polygons is an important component of efficient scene
rendering algorithms. Despite the availability of high
performance z-buffer hardware, a significant fraction
of graphics machines have lesser or no hardware z-

Address: 545 Technology Square, Cambridge, MA 02139
Email: {satyan, seth}Ographics. lcs nit .edu

Permission to make digidilmrd copies of all or part of this material for
personrd or Assroom use is gmnkd without fee provided that the copies
are not made or distributed for profit or commercial adv,antiigeithe copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is hy pem]ixsion of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, rquires specific
pem)issioo md/Or k
1997 Symposium on Interactive 31) Graphics. Providence R] LISA

Copyright 1997 ACM 0-89791 -884-3/97/04 .,.$3,50

buffering capabilities. Software z-buffering (e.g., on
personal- computers), can be a rendering ~ottl&eck.
Moreover, on many architectures, the z-test occurs
after other graphics processing (e.g., shading, texture
mapping), wasting computation on invisible portions
of the model.

One way to address this problem is to develop
occlusion culling algorithms that efficiently identify,
then render, only the visible portions of the model
or a tightly-bounded superset thereof. In this paper,
we exploit the presence of large occluders in typical
architectural or urban models to design a real-time
occlusion culling algorithm.

Our algorithm is based on several ideas. First,
we propose a simple (and fast) visibility test that
identifies whether some region of the model is com-
pletely/partially occluded by a set of occluders. Sec-
ond, we describe a cheap preprocessing step that iden-
tifies nearby large occluders for all viewpoints. Fi-
nally, a hierarchical visibility algorithm repeatedly
applies the visibility test to determine the status of
tree nodes in a spatial hierarchy.

1.1 Related Work

Given a 3D model and a viewpoint, exact visibility
algorithms [12, 14] compute a description of the im-
age in terms of visible polygon fragments. Once such
a description is available, further processing cm be
restricted to involve only the visible portions of the
scene. However, these techniques tend to be complex
and hence difficult to use in interactive applications.
Instead, the z-buffer algorithm [4], typically imple-
mented in hardware [2], is widely used.

Given the availability of hardware z-buffers, it
seems promising to overestimate the set of visible
polygons, then use a z-buffer to render the final im-
age. This idea of overestimated or conservative visi-
bility has been exploited to design fast architectural
walkthrough systems [1, 6, 10, 15], The idea in [15]
is to subdivide the input model into cells, roughly
corresponding to rooms in a building, and use cell-
to-cell/erje-to-cell visibility to bound exact visibility
from above, Though this method eliminates most
invisible polygons in architectural models, its gener-
alization to models with less apparent cell structure
(e.g., city models) appears difficult.

83

An approach using octree-based spatial subdivi-
sion is used in [7] to render only those polygons that
lie within the viewing frustum. However, this algo-
rithm does not exploit any occlusion properties of the
model.

The hierarchical z-buffer algorithm [9] culls nodes
of an octree hierarchy by using a z-pyramid to re-
solve visibility queries. While this is a promising ap-
proach for implementing occlusion culling with hard-
ware support, it is difficult to realize this algorithm
on current graphics architectures, as visibility queries
are not supported in hardware, and simulating the z-
pyramid in software entails significant overhead. Be-
cause of its reliance on image space queries, this al-
gorithm is also susceptible to aliasing artifacts (al-
though, with an accompanying incre~e in complex-
ity, it is possible to avoid aliaaing [8]).

A dynamic temporally coherent conservative vis-
ibility algorithm, described in [5], identifies relevant
visibility events, i.e., changes in visibility that will
occur in the near future. One drawback of this algo-
rithm is that it must reconstruct visibility informa-
tion for the continuous sequence of points between
each discrete pair of subsequent viewpoints assumed
by the moving observer.

Finally, recent algorithms proposed in [11, 13, 16]
accelerate rendering by approximating sets of poly-
gons with texture maps. Visibility is resolved only
when computing the texture approximation corre-
sponding to a set of polygons. These textures are
used to render many frames, thereby reducing fur-
ther visibility processing. Texture approximation is
usually most effective for faraway polygons, as there
is little change in their image from one viewpoint to
the next. In contrast, occlusion culling can eliminate
even (invisible) nearby polygons.

1.2 Algorithm Overview

We assume that the input model is a static set of con-
vex polygons and that the number of vertices in each
polygon is bounded by some constant. Our system
uses a preprocessing step to merge identical input ver-
tices. This is useful in identifying polygons that share
edges. We assume no a priori knowledge of observer
motion.

Our algorithm chooses a small set of occluders
which will be later used for culling. This strategy
is motivated by the observation that, in many in-
teresting models, most of the occlusion is caused by
a few polygons (from any instantaneous viewpoint).
Crucially, occluders are chosen dynamically, as the
viewpoint changes, so that polygons typically act as
occluders for nearby viewpoints, but as occludees
(culled objects) for remote or oblique viewpoints (Fig-
ure 1). Usually, the occludee is not just a single poly-
gon, but a convex region of space (e.g., a hierarchical
bounding box) containing many polygons.

Viewpoint

Figure 1: Occluder polygons and occludee objects for
an instantaneous viewpoint.

The rest of the paper is organized as follows. Sec-
tion 2 describes an algorithm to determine the con-
servative visibility status of an occludee with respect
to a set of occluders. This test is the basis of a vis-
ibility oracle in the dynamic algorithm presented in
Section 3. Section 4 presents the performance char-
acteristics of our algorithm, and Section 5 concludes.

2 Conservative Vkiihiiity Testing

This section addresses the following problem: given
a viewpoint, a set of convex occluders and a convex
occludee, is the occludee visible? That is, does there
exists a line segment from the viewpoint to some point
on the occludee that meets no occluder? Our method
of answering this query uses the notion of supporting
and sepamting planes (Figure 2). Separating planes
of two convex polyhedral objects are planes formed by
an edge of one object and a vertex of the other such
that the objects lie on opposite sides of the plane.
Supporting planes are analogous, except that both
objects lie on the same side of the plane.

,...
.-’

....’....
.....

Figure 2: This figure shows occlusion in two dimen-
sions (a planar cross section of 3D). Separating and
supporting planes of an occluder A and an occludee
T we shown, as is a synthetic viewpoint.

Conaider the interaction between a single occluder
A and an occludee T (typically a bounding box). This
can be completely described in terms of the plane
of the occluder and the supporting and separating

84

planes of the occluder and occludee. First, A can oc-
clude T only if the viewpoint lies in that half-space
of A which does not contain T. This region can
be divided into three qualitatively distinct regions as
shown in the figure. In region 1, T is not occluded by
A; in region 2, T is partially occluded by A; and in
region 3, T is completely occluded by A.

The supporting and separating planes of A and
T can be used to detect which of these cases holds.
First, the planes are oriented toward the occluder to
form half-spaces. We say that a viewpoint satisfies a
plane iff it is inside the plane’s positive half-space; this
relation can be checked by performing an inner prod-
uct of the viewpoint with the plane equation. Full
occlusion occurs when all of the supporting planes
are satisfied; that is, when the viewpoint is in the
intersection of the supporting half-spaces (region 3).
Partial occlusion occurs when all the oriented sepa-
rating planes are satisfied, but some supporting plane
is not (region 2). Otherwise, there is no occlusion (re-
gion 1).

Figure 3 shows occlusion caused by two connected
occluders, i.e., two occludsrs that share an edge. If
the viewpoint is in the shaded region, T is occluded by
the combined effect of A and B, even though neither
occludes it alone. This case is handled by ignoring

the supporting planes through non-silhouette shared
edges (e.g., edge E), if both polygons adjacent to E
partially occlude T.

...--’O””...-
..~

I

&f@@”“~.,,::;#”””’””””:_-_T -------------------
+ ‘B

Figure 3: Occlusion by connected occluders A, B.

Note that occlusion occurs only if A and B lie on
opposite sides of E, as seen from the viewpoint – intu-
itively, E is relevant only when it is a silhouette edge
of the occluder as seen from the viewpoint. Figure 4
shows a case in which ignoring the supporting plane
(dashed) through E would cause T to be classified,
incorrectly, as fully occluded.

In general, a set of occluders AI,..., A~ jointly
occludes T if

●

●

Al,... , Ak partially occlude T, and none fully
occludes T;

If two occluders Al and Aj share an edge E,
they lie on opposite sides of E as seen from the
viewpoint; and

*

Figure 4: This figure shows that supporting planes
through shared silhouette edges cannot be ignored.

. The signed distances of the viewpoint from all
planeB, other than those supporting common
edges, are positive.

The above algorithm is simple to implement given
the supporting and separating planes corresponding
to a single occluder and occludee. An efficient way to
compute these is described in Section 2.1.

I
i

/’

(a)

@

A

A,
...” ..

...”” “
.....

d .
..O ‘“ c.““.. /“

B

/
(b)

(c)

Figure 5: This figure shows occlusion in 3D, as seen
from the viewpoint. Part (a) shows occlusion caused
by connected occluders whose silhouette is convex in
the image. Part (b) shows occlusion by connected
occluders having a non-convex silhouette. Part (c)
shows occlusion by a set of disconnected occluders.

Consider Figure 5, which depicts three different
occlusion cases. The test described above detects
occlusion in Figure 5-(a), as the supporting planes
through the “internal” edges are ignored, and the oc-
cludee lies entirely within the convex silhouette in the
image. The conservative visibility test may not detect

85

occlusion if the silhouette edges form a non-convex
polygon (Figure 5-(b)). In this case, the test fails as
the occludee appears to “cross” the line supporting
edge e in the image. Finally, the test does not detect

occlusion caused by a set of disconnected occluders

(Figure 5-(c)). In practice, we have found this to

be a reasonable tradeoff for architectural and urban

models, where most occlusion is due to large occlud-
ers acting alone or as part of a connected set. Note
that our visibility test is conservative, i.e., it never
misclassifies a visible entity as occluded.

2.1 Computing Supporting and Separating Planes

In principle, it is possible to precompute all planes

formed by occluderloccludee pairs. However, this

would be wasteful, as only a smafl fraction of such

planes would ever be used. Instead, we use a hy-

brid method that combines preprocessing and run-

time table lookups to compute supporting and sepa-

rating plimes formed by an (arbitrary) occluder and

an axial bounding box (an occludee).

Figure 6: Tangent planes through a polygon edge E.

We restrict the sep=ating and supporting planes
of an occluder/occludee pair to the set of tangent
planes formed by occluder edges and occludee ver-
tices (Figure 6), and ignore those formed by occluder
vertices and occludee edges. Assembling only these
planes provides an exact test for full occlusion, and a
conservative test for partial occlusion. Tangent ver-
tices (and consequently, tangent planes) for each oc-
cluder edge are computed using the following steps:

1.

2.

3.

Translate the occludes bounding box so that the
origin is one vertex of the edge.

Determine the silhouette of the bounding box as
seen from the origin, using a table lookup based
on the box’s vertices (Figure 7).

In the 2D projection with respect to the ori-
gin (along a direction toward the box), the oc-
cluder edge projects to a single point. Deter-
mine tangents from this point to the box’s sil-
houette (Figure 8). As the property of tangency

origin -

\ x

Figure 7: Silhouette edges of an axial bounding box
when viewed from the origin.

is retained by projection, the tangent vertices
determined in 2D are the tangent vertices in 3D.

Computing tangent vertices in 2D is a table
lookup based on the location of the edge projec-
tion with respect to the silhouette edges. Due
to the special properties of the silhouette edges
(i.e., projection of axial edges with respect to
the origin), this computation can be easily per-
formed.

Figure 8: The projection of a box with respect to the
origin (shown in 2D). Regions induced by extended
silhouette edges are numbered using 6-bit codes con-
sisting of the signs of dot products with (directed)
silhouette lines. Tangent vertices are determined by
the location of the occluder edge’s projection.

This method speeds up computation of supporting
and separating planes, a key component of the visi-
bility test, by an order of magnitude over the naive
method of computing and checking planes through
each vertex of the bounding box.

86

Vwible(OccluderSet S, kD-Tree Node T, Viewpoint P, PolygonSet OS)
TestOcclusion(S, T, P);
if (S does not occlude T) then // all of subtree T is visible; report

Gather(T, OS);
else if (T is occluded) then // all of subtree T is invisible; omit

return;
else if (T is a leaf) then

Gather(T,OS); // conservative; report T as visible
else

s’ = {};
for (Ai~S) do lj determine occluder set S’

if (Ai partially occludes T) then
S’ = S’lJ{Ai}

for each child T’ of T do // apply S’ to subtrees of T
Visible(S’, T’, P, OS)

Figure9: The visibility algorithm.

3 The Visibility Algorithm

Applying the visibility test to every possible visual
interaction (which could conaume 0(n2)resources, for
n polygons) is expensive. Instead, we use two tech-
niques to reduce the number of v~lbility tests per-
formed. First, thealgorithm operates onahierarchi-
cal data-structure: akD-tree [3] organizing all model
polygons. Second, only a smaIl, dynamically main-
tained set of occluders near the viewpoint is used to
determine occlusion (Section 3.1).

Given a kD-tree, the visibility algorithm (Fig-
ure 9) reports those polygons in the kD-tree that are
not occluded by the specified occludera. In the al-
gorithm, Gather (T, OS) simply collects all polygons
reachable from a kD-tree node T and unions them
to the set OS. TestOcclusion(S, T, P) determines the
visibility status of T with respect to occluders in the
set S when viewed from P, using the algorithm de-
scribed in Section 2.

The visibility algorithm recursively applies the
conservative visibility test to determine the visibil-
ity stat us of each kD-tree node. First, the conser-
vative visibility test ia applied to determine whether
the current node is invisible. If so, the algorithm re-
turns without performing any further work – the en-
tire subtree rooted at the current node is occluded.
If it fails, the algorithm recurses with those occluders
that partially occlnde the kD-tree node, since only
these occluders can occlude any descendant kD-tree
node.

Complexity

The complexity of th~ algorithm is O(ku), where v
is the number of kD-tree nodes visited aud k is the

number of occluders. In the worst-case, this complex-
ity could be O(kn) if the algorithm tests all kD-tree
nodea againat all occluders. In practice, the complex-
ity is lower, ss only a fraction of the kD-tree nodes are
tested against each occluder (see Section 4 for further
details).

Figure 10: kD-tree nodes classified with respect to a
single occluder (0) and two consecutive viewpoints.
For clarity, subdivision in the kD-tree is assumed to
occur at the center of each kD-tree node.

Spatial Coherence

Figure 10 shows kD-tree nodee visited during visi-
bility classification of a hierarchy with respect to a

87

single occluder and two consecutive viewpoints. Note

that using the hierarchy exploits spatial coherence by

avoiding further testing of nodes that are completely

occluded (e.g., node 1) or that are completely visible

(e.g., node 2).

Temporal Coherence

For a moving observer, the algorithm caches the oc-
clusion relations – a list of supporting and separating
planes – at each visited kD-tree node. When the view-
point changes, the algorithm need only check existing
occlusion relations, and update those kD-tree nodes
whose visibility stat us has changed. For example, in
Figure 10, nodes in the dark region (e.g., node 3) are
checked against the occluder in both the traversals.
For such nodes, the separating and supporting planes
that are needed to determine their visibility status
are computed only at the first viewpoint and reused
later. The cache entries corresponding to a node are
maintained until the node is no longer involved in the
visibility calculation (i.e., until an ancestor node be-
comes fully occluded or fully visible).

Frustum Culling

View frustum culling can be incorporated into the al-
gorithm in a straightforward way, by first checking
whether the kD-tree node is inside the viewing frus-
tum before invoking the visibility algorithm. How-
ever, any supporting and separating planes computed
for nodes outside the viewing frustum are still re-
tained in the cache so that they can be reused later.

3.1 Dynamic Occluder Selection

The algorithm as described maintains the state of
each kD-tree node with respect to a fhcl set of oc-
eluders. As the viewpoint moves, it is crucial to up-
date this occluder set to contain those polygons that
are “large” in the image, and therefore likely to oc-
clude substantial portions of the model. Likewise,
polygons that become small in apparent size should
be ejected from the set.

A simple metric for the occlusion potential of a
polygon from a given position is the solid angle it
subtends at that position. A reasonable estimate of
solid-angle is the quantity

–A(fi . ?)

lld12

where A represents the area of the occluder, N repre-
sents the normal, V represents the viewing direction,
and D represents the vector from the viewpoint to the
center of the occluder (Figure 11). This “area-angle”
metric captures several properties of the subtended

solid angle of the polygon, making it a useful approx-
imation. First, larger polygons have larger area-angle.
Second, the area-angle falls as the square of the dis-
tance from the viewpoint, as does subtended angle.
Third, maximum area-angle occurs when the view-
ing direction D is “head-on” with the occluder, and
falls with the dot product as the occluder is viewed
obliquely. While this metric differs from the solid-
angle in that it does not consider the actual shape
of the occluder, it is much simpler to compute, and
serves as a useful heuristic to identify large occluders
near the viewpoint.

v D

Figure 11: Parameters in the area-angle metric.

Given a diacretization of all possible viewing di-
rections, the occluder preprocessing algorithm uses
the area-angle metric to associate each kD-tree leaf
and viewing direction with those k occluders likely to
be most effective from viewpoints in that leaf The
number of occluders k is a pamuneter supplied to the
preprocessing stage.

When interactive model viewing begins, the al-
gorithm locates the kD-tree leaf which contains the
initial viewpoint. The algorithm then uses the set
of k occluders associated with the kD-tree leaf and
discrete viewing direction closest to the current view-
ing direction. When the viewpoint moves outside the
kD-tree cell or the viewing direction changes substan-
tially, the set of occluders is modified to correspond
to the current viewing position and direction. Note
that if the observer is moving smoothly, the set of oc-
cluders effective from the current viewpoint is likely
to be similar to the set of occluders effective from the
next viewpoint, and little or no changes need be made
to the occluder set.

3.2 Detail Objects

Much of the polygon complexity in urban and archi-
tectural models arises due to the presence of small
“detail” objects (e.g., furniture in a building, foliage
in a city). As they are also part of the kD-tree hi-
erarchy, these objects may be culled by the hierar-
chical culling algorithm. Objects that are not culled
axe subjected to additional tests. Each such object
is tested against occluders that are “near” the object
(Figure 12). These tests can cull objects even if there
are no large occluders near the viewpoint.

88

f

Figure 12: Detail objects Dl, D2, D3 and occluders
used to determine their visibility.

Occluders that are near detail objects can be de-
termined as follows. First, as detail objects are usu-
ally limited in spatial extent, they can be usefully
approximated = a single point (e.g., the center of the
object). Second, the problem of determining if the
detail object is visible from the viewpoint is identi-
cal to the problem of determining if the viewpoint is
visible from the detail object (i.e., visibility between
two points is refleziue). Thus, occluders that me
large when viewed from the center of the object (in
a viewing direction toward the viewpoint) are good
candidates to test. These are identified and stored
for each object using the data structure computed in
Section 3.1. Of course, once these occluders are de-
termined, it is necessary to perform the visibility test
on the entire detail object using separating and sup-
porting planes, instead of just on its midpoint.

4 Results

We have implemented the algorithm described above,
as well x tools for visualizing its operation. For mod-
els consisting of a few thousand large occluders (and
hundreds of additional detail objects), the algorithm
maintains interactive rates on an SGI OnyxTM work-
station (with a 250 MHz R4400 processor, 512 MB of
main memory and an SGI RealityEngine2TM graphics
pipeline), and culls a significant fraction of all models
on average. Figure 13 (color plate) shows snapshots
from several interactive walkthroughs.

We studied the performance of the algorithm on
two models: the fifth floor of Berkeley’s Soda Hall
building with furniture (Soda) and a city from View-
point Datalabs (City). In our implementation, the
kD-tree is constructed by splitting the current kD-
tree node alternately in each of the three dimensions,
and choosing a splitting plane that results in a roughly
balanced partitioning of the polygons. The kD-tree is
of height 8 (around 250 nodes) and the number of oc-
cluders is fixed at 32 per direction (for 8 directions)

in these experiments. Initialization and kD-tree con-
struction used about 5 seconds of CPLT time. The re-
sults reported below are averaged over the viewpoints
visited during smooth ‘[figure 8“ walkthroughs of the
models.

Table 1 shows the efficacy of the culling algorithm.
Occlusion culling reduces the rendering load (in terms
of polygons drawn) by a factor of six to eight over
frustum culling. The speedup obtained due to this
reduction of rendering load depends on the perfor-
mance of the hardware graphics pipeline – the lower
the performance, the higher the benefit of occlusion
culling. Table 2 shows the time spent in culling and
drawing these two models; we report these times for
the Onyx as well as an SGI Indigo2 ElanTM worksta-
tion (with a 200 MHz R4400 processor), which has
less powerful graphics hardware. Note that the algo-
rithm reduces total rendering time by a factor of 2 on
the Onyx, and by a factor of 5 on the Elan.

Scene Polygons Frustum Occlusion
Soda 134,832 19.7 2.6
City 108,841 36.9 5.6

Table 1: The column Fkustum shows the percentage
of polygons drawn after only view frustum culling,
and the column Occlusion shows the percentage of
polygons drawn after frustum and occlusion culling.

Scene I+ustum Occlusion
cull Draw lT~lclllDOt u raw Total

Onvx

Table 2: The columns labeled Fkustum show culling
and drawing times after only view frustum culling.
The columns labeled Occlusion show culling and
drawing times sfter frustum and occlusion culling.
All times me reported in milliseconds.

4.1 Spatial and Temporal Coherence

The visibility algorithm maintains (and tests) only
27-35 kD-tree nodes per frame (30-40% of the kD-
tree nodes in viewing frustum), reflecting the spatial
coherence exploited by the algorithm. Its use of tem-
poral coherence is indicated in Table 3, which shows
the time spent in the algorithm Visitde (excluding
fmstum culling) as the speed of the observer is var-
ied. In this experiment, the observer moves along the
“figure 8“ path with different speeds. The algorithm
spends lesser time for more slow moving observers,

89

reflecting the temporal coherence exploited by the al-
gorithm.

Scene Time in Visible (msec)
0.25x 0.5X lx 2x 4x 8x 16x

Soda 17 18 21 25 32 45 56
City 19 21 24 29 35 45 55

Table 3: Time spent in visibility processing for an
observer moving at increasing speed. The speeds are
given as multiples of the slowest speed, which corre-
sponds to “walking” speed in Tables 1 and 2.

5 Conclusion

This paper describes an efficient occlusion culling al-
gorithm that exploits the presence of large occluders
in urban and architectural models, and culls a sig-
nificant fraction of two test scenes. The algorithm is
conservative in that it uses only simple object-space
tests to detect occlusion. By organizing the polygons
in a kD-tree, it exploits spatial coherence. By caching
occlusion relations and large occluders across view-
points, it expioits temporal coherence in the motion
of the observer.

In future work, it would be interesting to apply
techniques developed in this paper for models that
do not contain large occluders (e.g., CAD models of
airplanes or submarines). One promising approach is
to construct “fictitious” occluders that conservatively
approximate the occlusion caused by a large mesh of
triangles. Also, we are investigating strategies for
adaptively choosing k, the size of the occluder set
dynamically maintained by the visibility algorithm.

Another interesting area of future research is in-
tegration of occlusion culling techniques with tex-
ture based approximation [11, 13, 16]. Finally, oc-
clusion culling techniques presented here (especially
those based on table lookup) may be amenable to
hardware implementation, yielding further speedups.

References

[1] AIREY, J. M., ROHLF, J. H., ANDBROOKS,JR.,
F. P. Towards Image Realism with Interac-
tive Update R.Ates in Complex Virtual Building
Environments. ACM Siggmph Special Issue on
1990 Symposium on Interactive 3D Gmphics 24,
2 (1990), 41-50.

[2] AKELEY, K. RealityEngine Graphics. SIG-
GRAPH ’93 Conference Proceedings (1993),
109-116.

[3] BENTLEY, J. Multidimensional binary search

trees used for associative searching. Communic-

ations of the ACM 18 (1975), 50%517.

[4] CATMULL, E. E. A Subdiwsion Algorathm for
Computer Display of Curved Surfaces. PhD the-
sis, University of Utah, Dec. 1974.

[5] COORG, S., AND TELLER, S. Temporally Coher-

ent Conservative Visibility. In Proc. 12th An-
nual ACM Srjmposium on Computational Geom-
etry (1996), pp. 78–87.

[6] FUNKHOUSER, T., SEQUIN, C., AND TELLER, S.
Management of Large Amounts of Data in Inter-
act ive Building Walkt hroughs. In 1+-oc. 1992
Workshop on Interactive 3D Gmphics (1992),
pp. 11–20.

[7] GARLICK, B., BAUM, D. R., AND WJNGET,
J. M. Interactive Viewing of Large Geometric
Databases Using Multiprocessor Graphics Work-
stations. Siggraph ’90 Course Notes (Parallel Al-
gon”thms and Architectures for 3D Image Gener-
ation) (1990).

[8] GREENE, N., AND KASS, M. Error-Bounded
Antialiaaed Rendering of Complex Environ-
ments. In SIGGRA PH ’94 Conference Proceed-
ings (1994), pp. 59–66.

[9] GREENE, N., KASS, M., AND MILLER, G. Hier-
archical Z-BufFer Visibility. In SIGGRAPH ’93
Conference Proceedings (1993), pp. 231-240.

[10] LUEBKE, D., AND GEORGES, C. Portals and
Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets. In Proc. 1995 Symposium on In-
teractive 3D Graphics (1995), pp. 105-106.

[11] MACIEL, P. W. C., AND SHIRLEY, P. Visual
Navigation of Large Environments Using Tex-
tured Clusters. In Proc. 1995 Symposium on
Zntemctive 3D Graphics (1995), pp. 95-102.

[12] NAYLOR, B. F. Partitioning !llee Image Rep-
resentation and Generation from 3D geometric
models. In Proc. Graphics Interface ’92 (1992),
pp. 201-211.

[13] SHADE, J., LMCHINSKI, D., SALESIN, D.,
DEROSE, T., AND SNYDER, J. Hierarchical
Image Caching for Accelerated Walkthroughs
of Complex Environments. In SIG GRAPH ’96
Conference Proceedings (1996), pp. 75-82.

[14] SUTHERLAND, 1. E., SPROULL, R. F., AND

SCHUMACHER,R. A. A Characterization of Ten
Hidden-Surface Algorithms. Computing Surveys
6, 1 (1974), 1-55.

[15] TELLER, S., AND SEQUIN,C. H. Visibility Pre-
processing for Interactive Walkthroughs. SIG-
GRAPH ’91 Conference Proceedings (1991), 61-
69.

[16] XIONG, R. A Stratified Rendering Algorithm for
Virtual Walkthroughs of Large Environments.
Masters Thesis, EECS Department, MIT, May
1996.

90

