
I-COLLIDE: An Interactive and Exact Collision Detection System 
for Large-Scale Environments 

Jonathan D. Cohen Ming C. Lin * Dinesh Manocha Madhav Ponamgi 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 27599-3175 

{cohenj,lin,manocha,ponamgi}Qcs.unc.edu 

ABSTRACT: 
We present an exact and interactive collision detection 
system, I-COLLIDE, for large-scale environments. Such 
environments are characterized by the number of objects 
undergoing rigid motion and the complexity of the mod- 
els. The algorithm does not assume the objects’ motions 
can be expressed as a closed form function of time. The 
collision detection system is general and can be easily in- 
terfaced with a variety of applications. The algorithm 
uses a two-level approach based on pruning multiple- 
object pairs using bounding boxes and performing exact 
collision detection between selected pairs of polyhedral 
models. We demonstrate the performance of the system 
in walkthrough and simulation environments consisting 
of a large number of moving objects. In particular, the 
system takes less than l/20 of a second to determine all 
the collisions and contacts in an environment consisting 
of more than a 1000 moving polytopes, each consisting of 
more than 50 faces on an HP-9000/750. 

1 INTRODUCTION 
Collision detection is a fundamental problem in computer 
animation, physically-based modeling, computer simu- 
lated environments and robotics. In these applications, 
an object’s motion is constrained by collisions with other 
objects and by other dynamic constraints. The prob- 
lem has been well studied in the literature. However, no 
good general collision detection algorithms and systems 
are known for interactive large-scale environments. 

A large-scale virtual environment, like a walkthrough, 
creates a computer-generated world, filled with real and 
virtual objects. Such an environment should give the user 
a feeling of presence, which includes making the images of 
both the user and the surrounding objects feel solid. For 
example, the objects should not pass through each other, 
and things should move as expected when pushed, pulled 
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or grasped. Such actions require accurate collision detec- 
tion. However, there may be hundreds, even thousands 
of objects in the virtual world, so a brute-force approach 
that tests all possible pairs for collisions is not acceptable. 
Efficiency is critical in a virtual environment, otherwise 
its interactive nature is lost [24]. A fast and interactive 
colIision detection algorithm is a fundamental component 
of a complex virtual environment. 

The objective of collision detection is to report all geo- 
metric contacts between objects. If we know the positions 
and orientations of the objects in advance, we can solve 
collision detection as a function of time. However, this 
is not the case in virtual environments or other interac- 
tive applications. In fact, in a walkthrough environment, 
we usually do not have any information regarding the 
maximum velocity or acceleration, because the user may 
move with abrupt changes in direction and speed. Due to 
these unconstrained variables, collision detection is cur- 
rently considered to be one of the major bottlenecks in 
building interactive simulated environments [20]. 

Main Contribution: We present a collision de- 
tection algorithm and system for interactive and exact 
collision detection in complex environments. In contrast 
to the previous work, we show that accurate, interac- 
tive performance can be attained in most environments if 
we use coherence to speed up pairwise interference tests 
and to reduce the actual number of these tests we per- 
form. We are able to successfully trim the O(n2) pos- 
sible interactions of n simultaneously moving objects to 
O(n + m) where m is the number of objects very clolre 
to each other. In particular, two objects are very close, 
if their axis-aligned bounding boxes overlap. Our ap- 
proach is flexible enough to handle dense environments 
without making assumptions about object velocity or ac- 
celeration. The system has been successfully applied to 
architectural walkthroughs and simulated environments 
and works well in practice. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we review some of the previous work in collision 
detection. Section 3 defines the concept of coherence and 
describes an exact pairwise collision detection algorithm 
which applies it. We describe our algorithm for collision 
detection between multiple objects in Section 4 and dis- 
cuss its implementation in Sections 5 and 6. Section 7 
presents our experimental results on walkthrough envi- 
ronments and simulations. 
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2 PREVIOUS WORK 

The problem of collision detection has been extensively 
studied in robotics, computational geometry, and com- 
puter graphics. The goal in robotics has been the 
planning of collision-free paths between obstacles [15]. 
This differs from virtual environments and physically- 
based :simulations, where the motion is subject to dy- 
namic constraints or external forces and cannot typi- 
cally be expressed as a closed form function of time 
[l, 3, 11, 18, 20, 211. 

At the same time, the emphasis in the computational 
geometry has been on theoretically efficient intersection 
detection algorithms [32]. Most of them are restricted to 
a static inst.ance of the problem and are non-trivial to 
implement. For convex 3-polytopes ’ linear time algo- 
rithms based on linear programming and tracking closest 
points [lo] have been proposed. More recently, temporal 
and geometric coherence have been used to devise algo- 
rithms based on checking local features of pairs of convex 
3-polytopes [3, 171. Alonso et al.[l] use bounding boxes 
and spatial partitioning to test all O(n’) pairs of arbi- 
trary polyhedral objects. 

Different methods have been proposed to overcome the 
bottleneck of O(n’) pairwise tests in an environment of 
n bodies. The simplest of these are based on spatial sub- 
division The space is divided into cells of equal vol- 
ume, and at each instance the objects are assigned to one 
or more cells. Collisions are checked between all object 
pairs belonging to a particular cell. This approach works 
well for :sparse environments in which the objects are uni- 
formly distributed through the space. Another approach 
operates directly on four-dimensional volumes swept out 
by object motion over time [4, 141. 

None of these algorithms adequately address the issue 
of collision detection in a virtual environment which re- 
quires p,erformance at interactive rates for thousands of 
pair-wise tests. Hubbard has proposed a solution to ad- 
dress this problem by trading accuracy for speed [14]. 
In an early extension of their work, Lin and Canny [16] 
proposed a scheduling scheme to handle multiple moving 
objects. Dworkin and Zeltzer extended this work for a 
sparse model [7]. 

3 BACKGROUND 

In this section, we highlight the importance of coherence 
in dynamic environments. We briefly review the algo- 
rithm for exact pairwise collision detection and present 
our mult.i-body collision detection scheme, both of which 
exploit coherence to achieve efficiency. 

3.1 Temporal and Geometric Coherence 

Temporal coherence is the property that the application 
state does not change significantly between time steps, 
or frames. The objects move only slightly from frame 
t,o frame. This slight movement of the objects trans- 
lates into geometric coherence, because their geometry, 
defined by the vertex coordinates, changes minimally be- 
tween frames. The underlying assumptionis that the time 

‘We shall refer to a bounded d-dimensional polyhedral set as 
a convex d-polytope, or briefly polytope. In common parlance, 
“polyhedron” is used to denote the union of the boundary and of 
the interior in E3. 

steps are small enorrgh that the objects to do not travel 
large distances between frames. 

3.2 Pairwise Collision Detection for Convex Polytopes 

We briefly review the Lin-Canny collision detection algo- 
rithm which tracks closest points between pairs of convex 
polytopes [IS, 171. This algorithm is used at the lowest 
level of collision detection to determine the exact contact 
stat.us betwe.en convex polytopes. The method maintains 
a pair of closest features for each convex polyt,ope pair 
and calculates the Euclidean distance between the fea- 
tures to detect collisions. This approach can be used in 
a static environment, but is especially well-suited for dy- 
namic environments in which objects move in a sequence 
of small, discrete steps. 

The method takes advantage of coherence: the closest 
features change infrequently as the polyt.opes move along 
finely discretized paths. The algorithm runs in ezpectd 
constant time if the polytopes are not moving swiftl!f. 
Even when a closest feature pair is changing rapidly, the 
algorithm ta:kes only slightly longer (the running time 
is proportional to the number of feature pairs traversed, 
which is a function of the relative motion the polytopes 
undergo). The method for finding closest feature pairs is 
based on Voronoi regions. The algorithm starts with .a 
candidate pair of features, one from each polytope, and 
checks whether the closest points he on these features. 
Since the polytopes and their faces are convex, this is a 
local test involving only the neighboring features of the 
current candidate features. If either feature fails the test, 
the algorithm. steps to a neighboring feature of one or 
both candidates, and tries again. With some simple pre- 
processing, the algorithm can guarantee that every fea- 
ture has a constant number of neighboring features. 

3.3 Penetration Detection for Convex Polytopes 

The core of the collision detection algorithm is built us 
ing the properties of Voronoi regions of convex polytopes. 
The Voronoi regions form a partition of space outside the 
polytope. When polytopes interpenetrate, some features 
may not fall into any Voronoi regions. This can at times 
lead to cycling of feature pairs. To circumvent this prob- 
lem, we partition the interior space of the convex poly- 
topes. The partitioning does not have to form the exact 
internal Voronoi regions, because we are not interested in 
knowing the closest features between two interpenetrat- 
ing polytopes, but only detecting such a case. So instead 
we use pseudo-Voronoi regions, obtained by joining each 
vertex of the polytope with the centroid of the polytope 
Pll. 

Given a partition of the exterior and the interior of the 
polytope, we walk from the external Voronoi regions into 
the pseudo-internal Voronoi regions when necessary. If 
either of the closest features falls into a pseudo-Voronoi 
region at the end of the walk, we know t,he 0bject.s 
are interpenetrating. Ensuring convergence as we walk 
through pseudo-internal Voronoi regions requires special 
case analysis and will be omitted here. 

3.4 Extension to Non-Convex Objects 

We extend the collision detection algorithm for convex 
polytopes to handle non-convex objects, such as articu- 
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lated bodies, by using a hierarchical representation. In 
the hierarchical representation, the internal nodes can be 
convex or non-convex sub-parts, but all the leaf nodes are 
convex polytopes or features [21]. 

Beginning with the leaf nodes, we construct either a 
convex hull or other bounding volume and work up the 
tree, level by level, to the root. The bounding volume 
associated with each node is the bounding volume of the 
union of its children; the root’s bounding volume encloses 
the whole hierarchy. For instance, a hand may have indi- 
vidual joints in the leaves, fingers in the internal nodes, 
and the entire hand in the root. 

We test for collision between a pair of these hierarchical 
trees recursively. The collision detection algorithm first 
tests for collision between the two parent nodes. If there 
is no collision between the two parents, the algorithm 
returns the closest feature pair of their bounding volumes. 
If there is a collision, the algorithm expands their children 
and recursively proceeds down the tree to determine if a 
collision actually occurs. More details are given in [21]. 

4 MULTIPLE-OBJECT COLLISION DETECTION 

Large-scale environments consist of stationary as well as 
moving objects. Let there be N moving objects and M 
stationary objects. Each of the N moving objects can 
collide with the other moving objects, as well as with the 

stationary ones. Keeping track of N 

( > 
2 + NM pairs 

of objects at every time step can become t.ime consum- 
ing as N and M get large. To achieve interactive rates, 
we must reduce this number before performing pairwise 
collision tests. The overall architecture of the multiple 
object collision detection algorithm is shown in Fig. 1. 

Sorting is the key to our pruning approach. Each ob- 
ject is surrounded by a 3-dimensional bounding volume. 
We sort these bounding volumes in 3-space to determine 
which pairs are overlapping. We only need to perform 
exact pairwise collision tests on these remaining pairs. 

However, it is not intuitively obvious how to sort ob- 
jects in 3-space. We use a dimension reduction approach. 
If two bodies collide in a 3-dimensional space, their or- 
thogonal projections onto the zy, yr, and zz-planes and 
2, y, and z-axes must overlap. Based on this observation, 
we choose axis-aligned bounding boxes as our bounding 
volumes. We efficiently project these bounding boxes 
onto a lower dimension, and perform our sort on these 
lower-dimensional structures. 

This approach is quite different from the typical space 
partitioning approaches used to reduce the number of 
pairs. A space partitioning approach puts considerable 
effort into choosing good partition sizes. But there is no 
partition size that prunes out object pairs as ideally as 
testing for bounding box overlaps. Partitioning schemes 
may work well for environments where N is small com- 
pared to M, but object sorting works well whether N is 
small or large. 

4.1 Bounding Volumes 

Many collision detection algorithms have used bounding 
boxes, spheres, ellipses, etc. to rule out collisions between 
objects which are far apart. We use bounding box over- 
laps to trigger the ezact collision detection algorithm. 

Architecture for Multi-body 
Collision Detection 

object tnnsfomutioru ovc~l~pplng palm 

ODD 
Pruning 

Multi-body Pairs 

mllldln~ 
pain 

Figure 1: Architecture for Multiple Body Collision De- 
tection Algorithm 

We have considered two types of axis-aligned bound- 
ing boxes: fixed-size bounding cubes (fixed cubes) and 
dynamically-resized rectangular bounding boxes (dy- 
namic boxes). 

l Fixed-Size Bounding Cubes: 
We compute the size of the fixed cube to be large enough 
to contain the object at any orientation. We define this 
axis-aligned cube by a center and a radius. Fixed cubes 
are easy to recompute as objects move, making them well- 
suited to dynamic environments. If an object is nearly 
spherical the fixed cube fits it well. 

As preprocessing steps we calculate the center and ra- 
dius of the fixed cube. At each time step as the object 
moves, we recompute the cube as follows: 

1. Transform the center using one vector-matrix multi- 
plication. 

2. Compute the minimum and maximum x, y, and I- 
coordinates by subtracting and adding the radius 
from the coordinates of the center. 

Step 1 involves only one vector-matrix multiplication. 
Step 2 needs six arithmetic operations (3 additions and 3 
subtractions). 

s Dynamically Rectangular Bounding Boxes: 
We compute the size of the rectangular bounding box to 
be the tightest axis-aligned box containing the object at 
a particular orientation. It is defined by its minimum 
and maximum x, y, and z-coordinates (for a convex ob- 
ject, these must correspond to coordinates of up to 6 of 
its vertices). As an object moves, we must recompute its 
minima and maxima, taking into account the object’s ori- 
entation. For oblong objects rectangular boxes fit better 
than cubes, resulting in fewer overlaps. This is advanta- 
geous as long as few of the objects are moving, as in a 
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Figure 2: Bounding Box Behavior 

waIkt.hrough environment. In such an environment, the 
savings gained by the reduced number of pairwise colli- 
sion detection tests outweigh the cost of computing the 
dynamically-resized boxes. 

As a precomputation, we compute each object’s ini- 
tial minima and maxima along each axis. It is assumed 
that the objects are convex. For non-convex polyhedral 
models, the following algorithm is applied to their convex 
hulls. As an object moves, we recompute its minima and 
maxima at each time step as follows: 

1. Check to see if the current minimum (or maximum) 
vertex for the 2, y, or z-coordinate still has the small- 
est (or largest) value in comparison to its neighboring 
vertices. If so we are finished. 

2. Update the vertex for that extremum by replacing 
it with the neighboring vertex with the smallest (or 
largest) value of all neighboring vertices. Repeat the 
entire process as necessary. 

This algorit.hm recomputes the bounding boxes at an ex- 
pected constant rate. Once again, we are exploiting the 
temporal and geometric coherence, in addition to the lo- 
cality of convex polytopes. 

We do not transform all the vertices as the objects un- 
dergo motion. As we are updating the bounding boxes 
new positions are computed for current vertices using 
matrix-vector multiplications. We can optimize this ap- 
proach by realizing that we are only interested in one 
coordina.te value of each extremal vertex, say the t coor- 
dinate while updating the minimum or maximum value 
along the x-axis. Therefore, there is no need to transform 
the other than coordinates in order to compare neigh- 
boring vertices. This reduces the number of arithmetic 
operations by two-thirds. 

4.2 One-Dimensional Sweep and Prune 

The one-dimensional sweep and prune algorithm begins 
by projecting each three-dimensional bounding box onto 
the Z, y! and t axes. Because the bounding boxes are 
axis-aligned, projecting them onto the coordinate axes re- 
sults in intervals (see Fig. 2). We are interested in over- 
laps among these intervals, because a pair of bounding 
boxes can overlap if and only if their intervals overlap in 
all three dimensions. 

We construct three lists, one for each dimension. Each 
list contains the values of the endpoints of the intervals 
corresponding to that dimension. By sorting these l&s, 
we can determine which intervals overlap. In the general 
case, such a sort would take O(n log n) time, where n is 
the number of objects. We can reduce this time bound 'by 
keeping the sorted lists from the previous frame, changing 
only the values of the interval endpoints. In environments 
where the objects make relatively small movements E,e- 
tween frames, the lists will be nearly sorted, so we can 
sort in expected O(n) time, as shown in [19, 31. Insertion 
sort works well for previously sorted lists. 

In addition to sorting, we need to keep track of changes 
in overlap status of interval pairs (i.e. from overlapping 
in the last time step to non-overlapping in the current 
time step, and vice-versa). This can be done in O(n + 
e, + ey + e,) time, where e,, e,,and e, are the number 
of exchanges along the x, y, and r-axes. This also runs in 
expected linear time due to coherence, but in the worst 
case e,,ey,and e, can each be O(n’) with an extremely 
small constant. 

Our method is suitable for dynamic environmem;s 
where coherence is preserved. In computational geom- 
etry literature several algorithms exist that solve the 
static version of determining 3-D bounding box overlaps 
in O(n log’ n + s) time, where s is the number of pairwise 
overlaps [12, 131. We have reduced this to O(n + s) b,y 
using coherence. 

4.3 Two-Dimensional Intersection Tests 

The two-dimensional intersection algorithm begins by 
projecting each three-dimensional axis-aligned bounding 
box onto any two of the x-y, X-Z, and y-z planes. Eac.h 
of these projections is a rectangle in 2-space. Typically 
there are fewer overlaps of these 2-D rectangles than of 
the 1-D intervals used by the sweep and prune technique. 
This results in fewer swaps as the objects move. In sit- 
uations where the projections onto one-dimension result 
in densely clustered intervals, the two-dimensional tech- 
nique is more efficient. The interval tree is a common 
data structure for performing such two-dimensional range 
queries [22]. 

Each query of an interval intersection takes O(log n+k) 
time where k is the number of reported intersections and 
n is the number of intervals. Therefore, reporting inter- 
sections among n rectangles can be done in O(n log n+Zi) 
where K is the total number of intersecting rectangles [s]. 

4.4 Alternatives to Dimension Reduction 

There are many different methods for reducing the num- 
ber of pairwise tests, such as binary space partitioning 
(BSP) trees [1:3], octrees, etc. 

Several practical and efficient algorithms are based on 
uniform space division. Divide space into unit cells (or 
volumes) and place each object in some cell(s). To check 
for collisions, examine the cell(s) occupied by each object 
to verify if the cell(s) is(are) shared by other objects. 
Choosing a near-optimal cell size is difficult, and failing 
to do sb results in large memory usage and computational 
inefficiency. 
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5 IMPLEMENTATION 

In this section we describe the implementat.ion details of 
I-COLLIDE based on the Sweep and Prune algorithm, 
the exact collision detection algorithm, the multi-body 
simulation, and their applications to walkthrough and 
simulations. 

5.1 Sweep and Prune 

As described earlier, the Sweep and Prune algorithm re- 
duces the number of pairwise collision tests by eliminating 
polytope pairs that are far apart. It involves three steps: 
calculating bounding boxes, sorting the minimum and 
maximum coordinates of the bounding boxes as the al- 
gorithm sweeps through each list, and determining which 
bounding boxes overlap. As it, t,urns out, we do the sec- 
ond and third steps simultaneously. 

Each bounding box consists of a minimum and a max- 
imum coordinate value for each dimension: z, y, and z. 
These minima and maxima are maintained in three sep- 
arate lists, one for each dimension. We sort each list of 
coordinate values using insertion sort, while maintaining 
an overlap status for each bounding box pair. The over- 
lap status consists of a boolean flag for each dimension. 
Whenever all three of these flags are set, the bounding 
boxes of the polytope pair overlap. These flags are only 
modified when insertion sort performs a swap. We de- 
cide whether or not to toggle a flag based on whether 
the coordinate values both refer to bounding box min- 
ima, both refer to bounding box maxima, or one refers to 
a bounding box minimum and the other a maximum. 

When a flag is toggled, the overlap status indicates one 
of three situations: 

All three dimensions of this bounding box pair now 
overlap. In this case, we add the corresponding poly- 
tope pair to a list of active pairs. 

This bounding box pair overlapped at the previous 
time step. In this case, we remove the corresponding 
polytope pair from the active list. 

This bounding box pair did not overlap at the pre- 
vious time step and does not overlap at the current 
time step. In this case, we do nothing. 

When sorting is completed for this time step, the active 
pair list contains all the polytope pairs whose bounding 
boxes currently overlap. We pass this active pair list to 
the exact collision detection routine to find t,he closest 
features of all these polytope pairs and determine which, 
if any, of them are colliding. 

5.2 Exact collision detection 

The collision detection routine processes each polytope 
pair in the active list. The first time a polytope pair is 
considered, we select a random feature from each poly- 
tope; otherwise, we use the previous closest feature pair 
as a starting point. This previous closest feature pair 
may not be a good guess when the polytope pair has just 
become active. Dworkin and Zeltzer [7] suggest precom- 
puting a lookup table for each polytope to help find better 
starting guesses. 

5.3 Multi-body Simulation 

The multi-body simulation is an application we developed 
to test the I-COLLIDE system. It represents a general, 
non-restrict,ed environment in which objects move in an 
arbitrary fashion resulting in collisions with simple im- 
pulse responses. 

While we can load any convex polytopes into the sim- 
ulation, we typically use those generated by the tessella- 
tion of random points on a sphere. Unless the number of 
vertices is large, the resulting polytopes are not spherical 
in appearance; they range from oblong to fat. The sim- 
ulation parameters of the polytopes were their number, 
their complexit,y measured as the number of faces, their 
rotational velocity. their translational velocity, the den- 
sity of their environment measured as the ratio of poly- 
tope volume to environment volume, and the bounding 
volume method used for the Sweep and Prune (fixed-size 
or dynamically-resized boxes). 

The simulation begins by placing the polytopes at ran- 
dom positions and orientations. At each time step, the 
positions and orientations are updated using the transla- 
tional and rotational velocities (since the detection rou- 
tines make no use of pre-defined path, the polytopes’ 
paths could just as easily be randomized at each time 
step). The simulation then calls the I-COLLIDE sys- 
tem and receives a list of colliding polytope pairs. It 
exchanges the translational velocities of these pairs to 
simulate an elastic reaction. Objects also rebound off the 
walls of the constraining volume. 

We use this simulation to test the funct,ionality and 
speed of the detection algorithm. In addition, we are able 
to visually display some of the key features. For example, 
the bounding boxes of the polytopes can be rendered at 
each time step. When the bounding boxes of a polytope 
pair overlap, we can render a line connecting the clos- 
est features of this polytope. It is also possible to show 
all pairs of closest features at each time step. These vi- 
sual aids have proven to be useful in indicating actual 
collisions and additional geometric information for algo- 
rithmic study and analysis. See Frame 1 at the end for 
an example of the simulation. 

5.4 Walkthrough 

The walkthrough is a head-mounted display application 
that involves a large number of polytopes depicting a re- 
alistic scene. The integration of our library into such 
an environment demonstrates that an interactive envi- 
ronment can use our collision detection library without 
affecting the application’s real-time performance. 

The walkthrough creates a virtual environment (our 
video shows a kitchen and a porch). The user travels 
through this environment, interacting with the polytopes: 
picking up virtual objects, changing their scale, and mov- 
ing them around. Whenever the user’s hand collides with 
the polytopes in the environment, the walkthrough pro- 
vides feedback by making colliding bodies appear red. 

We have incorporated the collision detection library 
routines into the walkthrough application. The scene is 
composed of polytopes, most of which are stationary. The 
user’s hand, composed of several convex polytopes, moves 
through this complex environment, modifying other poly- 
topes in the environment. Frames 2-4 show a sequence 
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of shots from a kitchen walkthrough environment. The 
pict,ures show images as seen by the left, eye. Frames 5-6 
show the user in a porch walkthrough. 

6 SYSTEM ISSUES 

To use I-COLLIDE, the application first loads a library 
of polytopes. The file format, we use is fairly simple. It 
is straightforward t.o convert polytope data from some 
other format (perhaps the output of some 3D modelling 
package) to this minimal format for I-COLLIDE. After 
loading the polytopes, the application t.hen chooses some 
polytope pairs to act.ivate for collision detection. This 
set of active pairs is fully configurable between collision 
passes. Inside the application loop, the application in- 
forms I-COLLIDE of the world t.ransformation for each 
polytope as it moves around. At any point, the appli- 
cation may call the collision test routine. I-COLLIDE 
returns a list. of all the colliding pairs, including a pair of 
colliding features for each. The application then responds 
to these collisions in some appropriate way. 

6.1 Space Issues 

For each pair of objects, I-COLLIDE maintains a struc- 
ture that contains the bounding box overlap status and 
the closest feature pair between the objects. These struc- 
tures conceptually form an upper-triangular O(n’) ma- 
trix. We access an entry in O(1) time by using the object 
id numbers as (row, column) entries. If only a few pairs 
of objects are interacting, then the O(n2) can be reduced 
at the expense of slightly larger access t.ime. For example, 
we can traverse a sparse matrix list to access an entry. 

6.2 Geometric Robustness 

In practice there are several types of degeneracies or er- 
rors that can occnr in the convex polytope models: du- 
plicate vertices, extraneous vertices, backfacing polygons, 
tracking error, non-planar faces, non-convex faces! non- 
convex polytopes, disconnected faces, etc. We have writ- 
ten a pre-processor to scan for common dcgeneracies and 
correct them when possible. 

6.3 Numerical Issues 

Numerical robustness is an important issue in the exact 
collision detection code. There are many special case ge- 
ometrical tests in this module, and it is difficult to ensure 
that the algorithm will not get into a cycle due to degen- 
erate overlap. We deal with this by performing ail of our 
feature tests to some tolerance. Without such a tolerance, 
floating point errors might allow some of the feature tests 
to cycle infinitely. We have not. observed this in practice 
so far, and have been careful to make the tests stable in 
the presence of small errors. 

The multi-body sweep and prune code is also designed 
to resist small numerical errors. The bounding box of 
each poIyt.ope is ext,ended by a small epsilon ’ in each di- 
rection. In addition to insulating the overlap tests from 
errors, this precaution also helps give the exact collision 
detection test a chance of being activated before the ob- 
jects are act.ually penetrating. 

‘This quantity is a function of velocity between the object 
pairs. 

6.4 Generality 

While the multi-body pruning code works well with the 
exact collision detection routine, it functions indepen- 
dently of the underlying collision detection routine. This 
second level collision routine might or might not be exact, 
and it certainly need not be limited to handling convex 
polytopes. 

7 PERFORMANCE ANALYSIS 

We measured the performance of the collision detection 
algorithm using the multi-body simulation as a benc:h- 
mark. We profiled the entire application and tabulated 
the CPU time of only the relevant detection routines. All 
of these tests were run on an HP-9000/750. The main 
routines involved in collision detection are those that up- 
date the bomding boxes, sort the bounding boxes, and 
perform exact collision detection on overlapping bound- 
ing boxes. A.s described in the implementation section we 
use t.wo different types of bounding boxes. Using fixed 
cubes as bolrnding boxes resulted in low collision time for 
the parameter ranges we tested. 

In each of the first. four graphs, we plot two lines. The 
bold line dis.plays the performance of using dynamically- 
resized bounding boxes whereas the other line shows the 
performance of using fixed-size cubes. All five graphs re- 
fer to “seconds per frame”, where a frame is one step of 
the simulation, involving one iteration of collision detec- 
tion without rendering time. Each graph was produced 
with the following parameters, by holding all but one con- 

stant. 

Number of polytopes. The default value is a 1000 
polytopes. 

Complexity of polytopes, which we define as the num.- 
ber of faces. The default value is 36 faces. 

Rotational velocity, which we define as the number 
of degrees the object rotates about an axis passing 
through .its centroid. The default value is 10 degrees. 

Translational velocity, which we define in relation to 
the object’s size. We estimate a radius for the object, 
and define the velocity as the percentage of its radius 
the object travels each frame. The default value is 
10%. 

Density, .which we define as the percentage of the en., 
vironment volume the polytopes occupy. The default 
value is 1.0%. 

In the graphs, the timing results do not include com- 
puting each polytope’s transformation matrix, rendering 
times, and of course any minor initialization cost. We 
ignored t.hese costs, because we wanted to measure t.he 
cost of collision detection alone. 

Graph 1 shows how the number of seconds per frame 
scales with an increasing number of polytopes. We took 
100 uniformly sampled data points from 20 to 3000 poly- 
topes. The fixed and dynamic bounding box methods 
scale nearly linearly with a small higher-order term. The 
dynamic bounding box method results in a slightly larger 
non-linear term because the resizing of bounding boxes 
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causes more swaps during sorting. This is explained fur- 
ther in our discussion of Graph 5. The seconds per frame 
numbers in Graph 1 compare very favorably with the 
work of Dworkin and Zeltzer [7] as well as those of Hub- 
bard [14]. For a 1000 polytopes in our simulation, our 
collision time results in 23 frames per second using 
the fixed bounding cubes. 

Graph 2 shows how the number faces affects the 
collision time. We took 20 uniformly sampled data 
points. For the dynamic bounding box method, increas- 
ing the model complexity increases the time to update 
the bounding boxes because finding the minimum and 
maximum values requires walking a longer path around 
the polyt.ope. Surprisingly, the time to sort the bounding 
boxes decreases with number of faces, because the poly- 
topes become more spherical and fat. -4s the polytopes 
become more spherical and fat, t.he bounding box dimen- 
sions change less as the polytopes rotate, so fewer swaps 
are need in the sweeping step. For the fixed bounding 
cube, the time to update the bounding boxes and to sort 
them is almost constant. 

Graph 3 shows the effect of changes in the density of 
the simulation volume. For both bounding box methods, 
increasing the density of polytope volume to simulation 
volume results in a larger sort time and more collisions. 
The number of collisions scales linearly with the density 
of the simulation volume. As the graph shows, the overall 
collision time scales well with the increases in density. 

Graphs 4 through 6 show t.he effect of rotational veloc- 
ity on the overall collision time. The slope of the line for 
the dynamic bounding box method is much larger t.han 
that of the fixed cube method. There are two reasons for 
this difference. The first reason is that the increase in 
rotational velocity increases the time required to update 
the dynamic bounding boxes. When we walk from the 
old maxima and minima to find the new ones, we need to 
traverse more features. 

The second reason is the larger number of swapped 
minima and maxima in the three sorted lists. Although 
the three-dimensional volume of the simulation is fairly 
sparse, each one-dimensional view of this volume is much 
more dense, with many bounding box intervals overlap- 
ping. As the boxes grow and shrink, they cause many 
swaps in these one-dimensional lists. And as the ro- 
tational velocity increases, the boxes change size more 
rapidly. 

Graph 6 clearly shows the advantages of t,he static box 
method. Both the update bounding box time and sort 
lists time are almost constant as the rotat,ional velocity 
increases. 

All of our tests show ezuct collision detection in de- 
manding environments can be achieved without incurring 
expensive time penalties. The architectural walkthrough 
models showed no perceptible performance degradation 
when collision detection was added (as in Frame 2 to 5). 

8 CONCLUSION 
Collision detection has been considered a major bottle- 
neck in computer-simulated environments. By making 
use of geometric and temporal coherence, our algorithm 
and system detects collisions more efficiently and effec- 
tively than earlier algorithms. Under many circumstances 
our system produces collision frame rates over 20 hertz 
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for environments with over a 1000 moving complex poly- 
topes. Our walkthrough experiments showed no degra- 
dation of frame rates when collision detection was added. 
We are currently working on incorporating general poly- 
hedral and spline models into our system and extending 
these algorit.hms to deformable models. 
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Frame 1: 100 polytopes, 1% density, 56 faces. 
Pair of bounding boxes overlapping. 

Frame 2: A multi-polytope hand moves through 
a kitchen walkthrough environment. 

Frame 3: When bounding boxes overlap, 
closest feature pairs appear. 

Frame 4: Red poIytopes indicate coIIisions. 

Frames 5 and 6: The hand touches a swing in a porch walkthrough. 
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